
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 1. Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particular tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infallible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering a practical judgment on relative merit. We
do, therefore, offer you our practical judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our advice is.

We presume that you are able to read computer programs in C, that being
the language of this version of Numerical Recipes (Second Edition). The book
Numerical Recipes in FORTRAN (Second Edition) is separately available, if you
prefer to program in that language. Earlier editions of Numerical Recipes in Pascal
and Numerical Recipes Routines and Examples in BASIC are also available; while
not containing the additional material of the Second Edition versions in C and
FORTRAN, these versions are perfectly serviceable if Pascal or BASIC is your
language of choice.

When we include programs in the text, they look like this:

#include <math.h>
#define RAD (3.14159265/180.0)

void flmoon(int n, int nph, long *jd, float *frac)
Our programs begin with an introductory comment summarizing their purpose and explaining
their calling sequence. This routine calculates the phases of the moon. Given an integer n and
a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for full, 3 for last
quarter), the routine returns the Julian Day Number jd, and the fractional part of a day frac
to be added to it, of the nth such phase since January, 1900. Greenwich Mean Time is assumed.
{

void nrerror(char error_text[]);
int i;
float am,as,c,t,t2,xtra;

c=n+nph/4.0; This is how we comment an individual
line.

1

2 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

t=c/1236.85;
t2=t*t;
as=359.2242+29.105356*c; You aren’t really intended to understand

this algorithm, but it does work!am=306.0253+385.816918*c+0.010730*t2;
*jd=2415020+28L*n+7L*nph;
xtra=0.75933+1.53058868*c+((1.178e-4)-(1.55e-7)*t)*t2;
if (nph == 0 || nph == 2)

xtra += (0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin(RAD*am);
else if (nph == 1 || nph == 3)

xtra += (0.1721-4.0e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am);
else nrerror("nph is unknown in flmoon"); This is how we will indicate error

conditions.i=(int)(xtra >= 0.0 ? floor(xtra) : ceil(xtra-1.0));
*jd += i;
*frac=xtra-i;

}

If the syntax of the function definition above looks strange to you, then you are
probably used to the older Kernighan and Ritchie (“K&R”) syntax, rather than that of
the newer ANSI C. In this edition, we adopt ANSI C as our standard. You might want
to look ahead to §1.2 where ANSI C function prototypes are discussed in more detail.

Note our convention of handling all errors and exceptional cases with a statement
like nrerror("some error message");. The function nrerror() is part of a
small file of utility programs, nrutil.c, listed in Appendix B at the back of the
book. This Appendix includes a number of other utilities that we will describe later in
this chapter. Function nrerror() prints the indicated error message to your stderr
device (usually your terminal screen), and then invokes the function exit(), which
terminates execution. The function exit() is in every C library we know of; but if
you find it missing, you can modify nrerror() so that it does anything else that will
halt execution. For example, you can have it pause for input from the keyboard, and
then manually interrupt execution. In some applications, you will want to modify
nrerror() to do more sophisticated error handling, for example to transfer control
somewhere else, with an error flag or error code set.

We will have more to say about the C programming language, its conventions
and style, in §1.1 and §1.2.

Computational Environment and Program Validation

Our goal is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across different C compilers. C was designed with this type of portability in
mind. Nevertheless, we have found that there is no substitute for actually checking
all programs on a variety of compilers, in the process uncovering differences in
library structure or contents, and even occasional differences in allowed syntax. As
surrogates for the large number of possible combinations, we have tested all the
programs in this book on the combinations of machines, operating systems, and
compilers shown on the accompanying table. More generally, the programs should
run without modification on any compiler that implements the ANSI C standard,
as described for example in Harbison and Steele’s excellent book [1]. With small
modifications, our programs should run on any compiler that implements the older,
de facto K&R standard [2]. An example of the kind of trivial incompatibility to
watch out for is that ANSI C requires the memory allocation functions malloc()

1.0 Introduction 3

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Tested Machines and Compilers

Hardware O/S Version Compiler Version

IBM PC compatible 486/33 MS-DOS 5.0/Windows 3.1 Microsoft C/C++ 7.0

IBM PC compatible 486/33 MS-DOS 5.0 Borland C/C++ 2.0

IBM RS/6000 AIX 3.2 IBM xlc 1.02

DECstation 5000/25 ULTRIX 4.2A CodeCenter (Saber) C 3.1.1

DECsystem 5400 ULTRIX 4.1 GNU C Compiler 2.1

Sun SPARCstation 2 SunOS 4.1 GNU C Compiler 1.40

DECstation 5000/200 ULTRIX 4.2 DEC RISC C 2.1*

Sun SPARCstation 2 SunOS 4.1 Sun cc 1.1*

*compiler version does not fully implement ANSI C; only K&R validated

and free() to be declared via the header stdlib.h; some older compilers require
them to be declared with the header file malloc.h, while others regard them as
inherent in the language and require no header file at all.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance
of propagating typographical errors. “Driver” or demonstration programs that we
used as part of our validations are available separately as the Numerical Recipes
Example Book (C), as well as in machine-readable form. If you plan to use more
than a few of the programs in this book, or if you plan to use programs in this book
on more than one different computer, then you may find it useful to obtain a copy
of these demonstration programs.

Of course we would be foolish to claim that there are no bugs in our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to the Numerical Recipes routines of the First Edition, rest
assured: almost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should also be aware that some routines common to
both editions have alterations in their calling interfaces, so are not directly “plug
compatible.” A fairly complete list is: chsone, chstwo, covsrt, dfpmin, laguer,
lfit, memcof, mrqcof, mrqmin, pzextr, ran4, realft, rzextr, shoot, shootf.
There may be others (depending in part on which printing of the First Edition is taken
for the comparison). If you have written software of any appreciable complexity

4 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

adi mglin or mgfas better method

cosft cosft1 or cosft2 choice of boundary conditions

cel, el2 rf, rd, rj, rc better algorithms

des, desks ran4 now uses psdes was too slow

mdian1, mdian2 select, selip more general

qcksrt sort name change (sort is now hpsort)

rkqc rkqs better method

smooft use convlvwith coefficients from savgol

sparse linbcg more general

that is dependent on First Edition routines, we do not recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this [3].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”
is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listing cited references in the order cited, and listing suggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining three sections of this chapter review some basic concepts of
programming (control structures, etc.), discuss a set of conventions specific to C

that we have adopted in this book, and introduce some fundamental concepts in
numerical analysis (roundoff error, etc.). Thereafter, we plunge into the substantive
material of the book.

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 1991, C: A Reference Manual, 3rd ed. (Englewood Cliffs,
NJ: Prentice-Hall). [1]

1.1 Program Organization and Control Structures 5

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Kernighan, B., and Ritchie, D. 1978, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall). [2] [Reference for K&R “traditional” C. Later editions of this book conform
to the ANSI C standard.]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [3]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
different, namely a process that unfolds in time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

In all three cases, the target of the communication, in its visual form, is a human
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of this book, are in quite a different
situation. You need, or want, to know not just what a program does, but also how
it does it, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainable or reusable code, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — all three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equally hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels [1-3].
At a low level is the ascii character set. Then, constants, identifiers, operands,

