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15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (xi, yi) to a
model that is not just a linear combination of 1 and x (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
could be 1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x+ a3x
2 + · · ·+ aMx

M−1 (15.4.1)

is a polynomial of degree M − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =

M∑
k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(x) can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters ak .

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.3)

As before, σi is the measurement error (standard deviation) of the ith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value σ = 1.

Once again, we will pick as best parameters those that minimize χ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N ×M components are constructed from the M
basis functions evaluated at the N abscissas xi, and from theN measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi
(15.4.4)

The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by

bi =
yi
σi

(15.4.5)

and denote the M vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.
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X1(x1)
σ1

x1 X2(x1)
σ1

. . . XM(x1)
σ1

X1( ) X2( ) . . . XM( )

X1(x2)
σ2

x2 X2(x2)
σ2

. . . XM(x2)
σ2

...
...

...
...

...
...

...

X1(xN)
σN

xN X2(xN)
σN

. . . XM(xN)
σN

da
ta

 p
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s

basis functions

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination ofM basis functions to N
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurementsare made, and the standard deviations of the measured dependentvariable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of χ2 with respect to all
M parameters ak vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields the M equations

0 =

N∑
i=1

1

σ2
i

yi − M∑
j=1

ajXj(xi)

Xk(xi) k = 1, . . . ,M (15.4.6)

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M∑
j=1

αkjaj = βk (15.4.7)

where

αkj =

N∑
i=1

Xj(xi)Xk(xi)

σ2
i

or equivalently [α] = AT · A (15.4.8)

an M × M matrix, and

βk =

N∑
i=1

yiXk(xi)

σ2
i

or equivalently [β] = AT · b (15.4.9)
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a vector of length M .
The equations (15.4.6) or (15.4.7) are called the normal equations of the least-

squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[α] · a = [β] or as
(
AT · A

)
· a = AT · b (15.4.10)

The inverse matrix Cjk ≡ [α]−1
jk is closely related to the probable (or, more

precisely, standard) uncertainties of the estimated parameters a. To estimate these
uncertainties, consider that

aj =

M∑
k=1

[α]−1
jk βk =

M∑
k=1

Cjk

[
N∑
i=1

yiXk(xi)

σ2
i

]
(15.4.11)

and that the variance associated with the estimate aj can be found as in (15.2.7) from

σ2(aj) =

N∑
i=1

σ2
i

(
∂aj
∂yi

)2

(15.4.12)

Note that αjk is independent of yi, so that

∂aj
∂yi

=
M∑
k=1

CjkXk(xi)/σ
2
i (15.4.13)

Consequently, we find that

σ2(aj) =

M∑
k=1

M∑
l=1

CjkCjl

[
N∑
i=1

Xk(xi)Xl(xi)

σ2
i

]
(15.4.14)

The final term in brackets is just the matrix [α]. Since this is the matrix inverse
of [C], (15.4.14) reduces immediately to

σ2(aj) = Cjj (15.4.15)

In other words, the diagonal elements of [C] are the variances (squared
uncertainties) of the fitted parameters a. It should not surprise you to learn that the
off-diagonal elements Cjk are the covariances between aj and ak (cf. 15.2.10); but
we shall defer discussion of these to §15.6.

We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but also the covariance matrix [C], it is most
convenient to use Gauss-Jordan elimination (routine gaussj of §2.1) to perform the
linear algebra. The operation count, in this application, is no larger than that for LU
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching to LU decomposition, without
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computation of the matrix inverse. In theory, since AT · A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error. An alternative, and
preferred, technique involves QR decomposition (§2.10, §11.3, and §11.6) of the
design matrix A. This is essentially what we did at the end of §15.2 for fitting data to
a straight line, but without invoking all the machinery ofQR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure is singular value decomposition (SVD), of which we give
an implementation. It turns out that SVD also fixes the roundoff problem, so it is our
recommended technique for all but “easy” least-squares problems. It is for these easy
problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in
practical work. Frequently it is a matter of “art” to decide which parameters ak
in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parameters ak. In the following routine the total number of
parameters ak is denoted ma (called M above). As input to the routine, you supply
an array ia[1..ma], whose components are either zero or nonzero (e.g., 1). Zeros
indicate that you want the corresponding elements of the parameter vector a[1..ma]
to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

#include "nrutil.h"

void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[],
int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))

Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sig[1..ndat], use χ2 minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y =

∑
i ai × afunci(x). The input array ia[1..ma]

indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a[1..ma], χ2 = chisq, and the covariance matrix covar[1..ma][1..ma]. (Parameters
held fixed will return zero covariances.) The user supplies a routine funcs(x,afunc,ma) that
returns the ma basis functions evaluated at x = x in the array afunc[1..ma].
{

void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
int i,j,k,l,m,mfit=0;
float ym,wt,sum,sig2i,**beta,*afunc;

beta=matrix(1,ma,1,1);
afunc=vector(1,ma);
for (j=1;j<=ma;j++)

if (ia[j]) mfit++;
if (mfit == 0) nrerror("lfit: no parameters to be fitted");
for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.

for (k=1;k<=mfit;k++) covar[j][k]=0.0;
beta[j][1]=0.0;

}
for (i=1;i<=ndat;i++) { Loop over data to accumulate coefficients of

the normal equations.
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(*funcs)(x[i],afunc,ma);
ym=y[i];
if (mfit < ma) { Subtract off dependences on known pieces

of the fitting function.for (j=1;j<=ma;j++)
if (!ia[j]) ym -= a[j]*afunc[j];

}
sig2i=1.0/SQR(sig[i]);
for (j=0,l=1;l<=ma;l++) {

if (ia[l]) {
wt=afunc[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)

if (ia[m]) covar[j][++k] += wt*afunc[m];
beta[j][1] += ym*wt;

}
}

}
for (j=2;j<=mfit;j++) Fill in above the diagonal from symmetry.

for (k=1;k<j;k++)
covar[k][j]=covar[j][k];

gaussj(covar,mfit,beta,1); Matrix solution.
for (j=0,l=1;l<=ma;l++)

if (ia[l]) a[l]=beta[++j][1]; Partition solution to appropriate coefficients
a.*chisq=0.0;

for (i=1;i<=ndat;i++) { Evaluate χ2 of the fit.
(*funcs)(x[i],afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += SQR((y[i]-sum)/sig[i]);

}
covsrt(covar,ma,ia,mfit); Sort covariance matrix to true order of fitting

coefficients.free_vector(afunc,1,ma);
free_matrix(beta,1,ma,1,1);

}

That last call to a function covsrt is only for the purpose of spreading the
covariances back into the full ma × ma covariance matrix, in the proper rows and
columns and with zero variances and covariances set for variables which were
held frozen.

The function covsrt is as follows.

#define SWAP(a,b) {swap=(a);(a)=(b);(b)=swap;}

void covsrt(float **covar, int ma, int ia[], int mfit)
Expand in storage the covariance matrix covar, so as to take into account parameters that are
being held fixed. (For the latter, return zero covariances.)
{

int i,j,k;
float swap;

for (i=mfit+1;i<=ma;i++)
for (j=1;j<=i;j++) covar[i][j]=covar[j][i]=0.0;

k=mfit;
for (j=ma;j>=1;j--) {

if (ia[j]) {
for (i=1;i<=ma;i++) SWAP(covar[i][k],covar[i][j])
for (i=1;i<=ma;i++) SWAP(covar[k][i],covar[j][i])
k--;

}
}

}
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Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equations are very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., in gaussj), in which case you get no solution at all. Or a
very small pivot may occur, in which case you typically get fitted parameters ak
with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [α], unable to distinguish between them, neatly folds up its tent and
becomes singular. There is a certain mathematical irony in the fact that least-squares
problems are both overdetermined (number of data points greater than number of
parameters) and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in §2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In
the case of an underdetermined system, SVD produces a solution whose values (for
us, the ak’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is
also what we want: When some combination of basis functions is irrelevant to the
fit, that combination will be driven down to a small, innocuous, value, rather than
pushed up to delicately canceling infinities.

In terms of the design matrix A (equation 15.4.4) and the vector b (equation
15.4.5), minimization of χ2 in (15.4.3) can be written as

find a that minimizes χ2 = |A · a− b|2 (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
svdcmp and svbksb are designed to solve. The solution, which is given by equation
(2.6.12), can be rewritten as follows: If U and V enter the SVD decomposition
of A according to equation (2.6.1), as computed by svdcmp, then let the vectors
U(i) i = 1, . . . ,M denote the columns of U (each one a vector of length N ); and
let the vectors V(i); i = 1, . . . ,M denote the columns of V (each one a vector
of length M ). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

a =

M∑
i=1

(
U(i) · b
wi

)
V(i) (15.4.17)

where the wi are, as in §2.6, the singular values calculated by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of

the columns of V, with coefficients obtained by forming dot products of the columns
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of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns of V. In fact, equation (15.4.17) can
be written in a form displaying these errors as

a =

[
M∑
i=1

(
U(i) · b
wi

)
V(i)

]
± 1

w1
V(1) ± · · · ±

1

wM
V(M) (15.4.18)

Here each ± is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectors V(i) are the principal axes of the error ellipsoid
of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter aj is given by

σ2(aj) =

M∑
i=1

1

w2
i

[V(i)]
2
j =

M∑
i=1

(
Vji
wi

)2

(15.4.19)

whose result should be identical with (15.4.14). As before, you should not be
surprised at the formula for the covariances, here given without proof,

Cov(aj , ak) =
M∑
i=1

(
VjiVki
w2
i

)
(15.4.20)

We introduced this subsection by noting that the normal equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is: If any singular value wi is zero, its
reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corresponds to adding to the fitted
parameters a a zero multiple, rather than some random large multiple, of any linear
combination of basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular value wi is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the
largest singular value is less than N times the machine precision ε. (You might
argue for

√
N , or a constant, instead of N as the multiple; that starts getting into

hardware-dependent questions.)
There is another reason for editing even additional singular values, ones large

enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the χ2 of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, while increasing the minimum
χ2 only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead
of using the normal equations. SVD’s only significant disadvantage is that it requires
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an extra array of size N ×M to store the whole design matrix. This storage
is overwritten by the matrix U. Storage is also required for the M ×M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly slower than solving the normal equations;
however, its great advantage, that it (theoretically) cannot fail, more than makes
up for the speed disadvantage.

In the routine that follows, the matrices u,v and the vector w are input as
working space. The logical dimensions of the problem are ndata data points by ma

basis functions (and fitted parameters). If you care only about the values a of the
fitted parameters, then u,v,w contain no useful information on output. If you want
probable errors for the fitted parameters, read on.

#include "nrutil.h"
#define TOL 1.0e-5

void svdfit(float x[], float y[], float sig[], int ndata, float a[], int ma,
float **u, float **v, float w[], float *chisq,
void (*funcs)(float, float [], int))

Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1..ndata], use χ2 minimization to determine the coefficients a[1..ma] of the fit-
ting function y =

∑
i ai × afunci(x). Here we solve the fitting equations using singular

value decomposition of the ndata by ma matrix, as in §2.6. Arrays u[1..ndata][1..ma],
v[1..ma][1..ma], and w[1..ma] provide workspace on input; on output they define the
singular value decomposition, and can be used to obtain the covariance matrix. The pro-
gram returns values for the ma fit parameters a, and χ2, chisq. The user supplies a routine
funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x in the array
afunc[1..ma].
{

void svbksb(float **u, float w[], float **v, int m, int n, float b[],
float x[]);

void svdcmp(float **a, int m, int n, float w[], float **v);
int j,i;
float wmax,tmp,thresh,sum,*b,*afunc;

b=vector(1,ndata);
afunc=vector(1,ma);
for (i=1;i<=ndata;i++) { Accumulate coefficients of the fitting ma-

trix.(*funcs)(x[i],afunc,ma);
tmp=1.0/sig[i];
for (j=1;j<=ma;j++) u[i][j]=afunc[j]*tmp;
b[i]=y[i]*tmp;

}
svdcmp(u,ndata,ma,w,v); Singular value decomposition.
wmax=0.0; Edit the singular values, given TOL from the

#define statement, between here ...for (j=1;j<=ma;j++)
if (w[j] > wmax) wmax=w[j];

thresh=TOL*wmax;
for (j=1;j<=ma;j++)

if (w[j] < thresh) w[j]=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0; Evaluate chi-square.
for (i=1;i<=ndata;i++) {

(*funcs)(x[i],afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += (tmp=(y[i]-sum)/sig[i],tmp*tmp);

}
free_vector(afunc,1,ma);
free_vector(b,1,ndata);

}
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Feeding the matrix v and vector w output by the above program into the
following short routine, you easily obtain variances and covariances of the fitted
parameters a. The square roots of the variances are the standard deviations of
the fitted parameters. The routine straightforwardly implements equation (15.4.20)
above, with the convention that singular values equal to zero are recognized as
having been edited out of the fit.

#include "nrutil.h"

void svdvar(float **v, int ma, float w[], float **cvm)
To evaluate the covariance matrix cvm[1..ma][1..ma] of the fit for ma parameters obtained
by svdfit, call this routine with matrices v[1..ma][1..ma], w[1..ma] as returned from
svdfit.
{

int k,j,i;
float sum,*wti;

wti=vector(1,ma);
for (i=1;i<=ma;i++) {

wti[i]=0.0;
if (w[i]) wti[i]=1.0/(w[i]*w[i]);

}
for (i=1;i<=ma;i++) { Sum contributions to covariance matrix (15.4.20).

for (j=1;j<=i;j++) {
for (sum=0.0,k=1;k<=ma;k++) sum += v[i][k]*v[j][k]*wti[k];
cvm[j][i]=cvm[i][j]=sum;

}
}
free_vector(wti,1,ma);

}

Examples

Be aware that some apparently nonlinear problems can be expressed so that
they are linear. For example, an exponential model with two parameters a and b,

y(x) = a exp(−bx) (15.4.21)

can be rewritten as
log[y(x)] = c− bx (15.4.22)

which is linear in its parameters c and b. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for “non-parameters,” as in

y(x) = a exp(−bx+ d) (15.4.23)

Here the parameters a and d are, in fact, indistinguishable. This is a good example of
where the normal equations will be exactly singular, and where SVD will find a zero
singular value. SVD will then make a “least-squares” choice for setting a balance
between a and d (or, rather, their equivalents in the linear model derived by taking the
logarithms). However — and this is true whenever SVD gives back a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletions in the basis set.

Here are two examples for user-supplied routines funcs. The first one is trivial
and fits a general polynomial to a set of data:
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void fpoly(float x, float p[], int np)
Fitting routine for a polynomial of degree np-1, with coefficients in the array p[1..np].
{

int j;

p[1]=1.0;
for (j=2;j<=np;j++) p[j]=p[j-1]*x;

}

The second example is slightly less trivial. It is used to fit Legendre polynomials
up to some order nl-1 through a data set.

void fleg(float x, float pl[], int nl)
Fitting routine for an expansion with nl Legendre polynomials pl, evaluated using the recurrence
relation as in §5.5.
{

int j;
float twox,f2,f1,d;

pl[1]=1.0;
pl[2]=x;
if (nl > 2) {

twox=2.0*x;
f2=x;
d=1.0;
for (j=3;j<=nl;j++) {

f1=d++;
f2 += twox;
pl[j]=(f2*pl[j-1]-f1*pl[j-2])/d;

}
}

}

Multidimensional Fits

If you are measuring a single variable y as a function of more than one variable
— say, a vector of variables x, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). The χ2 merit function is now

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(xi)
σi

]2

(15.4.24)

All of the preceding discussion goes through unchanged, with x replaced by x. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In both lfit and svdfit, the only use made
of the array elements x[i] is that each element is in turn passed to the user-supplied
routine funcs, which duly gives back the values of the basis functions at that point.
If you set x[i]=i before calling lfit or svdfit, and independently provide funcs
with the true vector values of your data points (e.g., in global variables), then funcs

can translate from the fictitious x[i]’s to the actual data points before doing its work.
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15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M
unknown parameters ak, k = 1, 2, . . . ,M . We use the same approach as in previous
sections, namely to define a χ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated until χ2 stops (or
effectively stops) decreasing.

How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently
close to the minimum, we expect the χ2 function to be well approximated by a
quadratic form, which we can write as

χ2(a) ≈ γ − d · a +
1

2
a · D · a (15.5.1)

where d is an M -vector and D is an M ×M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parameters acur to the minimizing ones amin in a single leap, namely

amin = acur + D−1 ·
[
−∇χ2(acur)

]
(15.5.2)

(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape

of the function that we are trying to minimize at acur. In that case, about all we
can do is take a step down the gradient, as in the steepest descent method (§10.6).
In other words,

anext = acur − constant×∇χ2(acur) (15.5.3)

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the χ2

function at any set of parameters a. To use (15.5.2) we also need the matrix D, which
is the second derivative matrix (Hessian matrix) of the χ2 merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methods not just because our function was nonlinear, but also
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6
concerned themselves with two different techniques for building up this information.


