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dy[j]=yest[j];
}

else {
for (k=1;k<iest;k++)

fx[k+1]=x[iest-k]/xest;
for (j=1;j<=nv;j++) { Evaluate next diagonal in tableau.

v=d[j][1];
d[j][1]=yy=c=yest[j];
for (k=2;k<=iest;k++) {

b1=fx[k]*v;
b=b1-c;
if (b) {

b=(c-v)/b;
ddy=c*b;
c=b1*b;

} else Care needed to avoid division by 0.
ddy=v;

if (k != iest) v=d[j][k];
d[j][k]=ddy;
yy += ddy;

}
dy[j]=ddy;
yz[j]=yy;

}
}
free_vector(fx,1,iest);

}
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16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. With h = H/m we have

y1 = y0 + h[z0 + 1
2
hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . ,m− 1

zm = (ym − ym−1)/h+ 1
2
hf(x0 +H, ym)

(16.5.2)



16.5 Second-Order Conservative Equations 733

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Here zm is y′(x0 +H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities ∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1
2hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h+ 1
2
hf(x0 +H, ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers ofh, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer.
We replace mmid by the following routine stoerm:

#include "nrutil.h"

void stoerm(float y[], float d2y[], int nv, float xs, float htot, int nstep,
float yout[], void (*derivs)(float, float [], float []))

Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y[1..nv] contains y in its first n elements and y′ in its second n elements, all evaluated at
xs. d2y[1..nv] contains the right-hand side function f (also evaluated at xs) in its first n
elements. Its second n elements are not referenced. Also input is htot, the total step to be
taken, and nstep, the number of substeps to be used. The output is returned as yout[1..nv],
with the same storage arrangement as y. derivs is the user-supplied routine that calculates f .
{

int i,n,neqns,nn;
float h,h2,halfh,x,*ytemp;

ytemp=vector(1,nv);
h=htot/nstep; Stepsize this trip.
halfh=0.5*h;
neqns=nv/2; Number of equations.
for (i=1;i<=neqns;i++) { First step.

n=neqns+i;
ytemp[i]=y[i]+(ytemp[n]=h*(y[n]+halfh*d2y[i]));

}
x=xs+h;
(*derivs)(x,ytemp,yout); Use yout for temporary storage of derivatives.
h2=h*h;
for (nn=2;nn<=nstep;nn++) { General step.

for (i=1;i<=neqns;i++)
ytemp[i] += (ytemp[(n=neqns+i)] += h2*yout[i]);

x += h;
(*derivs)(x,ytemp,yout);

}
for (i=1;i<=neqns;i++) { Last step.

n=neqns+i;
yout[n]=ytemp[n]/h+halfh*yout[i];
yout[i]=ytemp[i];

}
free_vector(ytemp,1,nv);

}
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Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the secondn elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
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16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u′ = 998u+ 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e−1000x term would require a stepsize h� 1/1000 for
the method to be stable (the reason for this is explained below). This is so even


