```
            dy[j]=yest[j];
        }
    else {
        for (k=1;k<iest;k++)
            fx[k+1]=x[iest-k]/xest;
        for ( }\textrm{j}=1;\textrm{j}<=nv;j++) { Evaluate next diagonal in tableau
            v=d[j][1];
            d[j][1]=yy=c=yest[j];
            for (k=2;k<=iest;k++) {
                b1=fx[k]*v;
                b=b1-c;
                    if (b) {
                    b=(c-v)/b;
                    ddy=c*b;
                    c=b1*b;
                    } else Care needed to avoid division by 0.
                    ddy=v;
                    if (k != iest) v=d[j][k];
                    d[j][k]=ddy;
                yy += ddy;
            }
            dy[j]=ddy;
            yz[j]=yy;
        }
    }
    free_vector(fx,1,iest);
}
```


CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag), §7.2.14. [1]
Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-Hall), §6.2.
Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399-422. [2]
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535. [3]

16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best to reformulate them as a system of first-order equations, as discussed in §16.0. There is a particular class of equations that occurs quite frequently in practice where you can gain about a factor of two in efficiency by differencing the equations directly. The equations are second-order systems where the derivative does not appear on the right-hand side:

$$
\begin{equation*}
y^{\prime \prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=z_{0} \tag{16.5.1}
\end{equation*}
$$

As usual, y can denote a vector of values.
Stoermer's rule, dating back to 1907, has been a popular method for discretizing such systems. With $h=H / m$ we have

$$
\begin{align*}
& y_{1}=y_{0}+h\left[z_{0}+\frac{1}{2} h f\left(x_{0}, y_{0}\right)\right] \\
& y_{k+1}-2 y_{k}+y_{k-1}=h^{2} f\left(x_{0}+k h, y_{k}\right), \quad k=1, \ldots, m-1 \tag{16.5.2}\\
& z_{m}=\left(y_{m}-y_{m-1}\right) / h+\frac{1}{2} h f\left(x_{0}+H, y_{m}\right)
\end{align*}
$$

Here z_{m} is $y^{\prime}\left(x_{0}+H\right)$. Henrici showed how to rewrite equations (16.5.2) to reduce roundoff error by using the quantities $\Delta_{k} \equiv y_{k+1}-y_{k}$. Start with

$$
\begin{align*}
\Delta_{0} & =h\left[z_{0}+\frac{1}{2} h f\left(x_{0}, y_{0}\right)\right] \\
y_{1} & =y_{0}+\Delta_{0} \tag{16.5.3}
\end{align*}
$$

Then for $k=1, \ldots, m-1$, set

$$
\begin{align*}
\Delta_{k} & =\Delta_{k-1}+h^{2} f\left(x_{0}+k h, y_{k}\right) \tag{16.5.4}\\
y_{k+1} & =y_{k}+\Delta_{k}
\end{align*}
$$

Finally compute the derivative from

$$
\begin{equation*}
z_{m}=\Delta_{m-1} / h+\frac{1}{2} h f\left(x_{0}+H, y_{m}\right) \tag{16.5.5}
\end{equation*}
$$

Gragg again showed that the error series for equations (16.5.3)-(16.5.5) contains only even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer. We replace mmid by the following routine stoerm:

```
#include "nrutil.h"
void stoerm(float y[], float d2y[], int nv, float xs, float htot, int nstep,
    float yout[], void (*derivs)(float, float [], float []))
Stoermer's rule for integrating \mp@subsup{y}{}{\prime\prime}=f(x,y) for a system of n = nv/2 equations. On input
y[1..nv] contains }y\mathrm{ in its first }n\mathrm{ elements and }\mp@subsup{y}{}{\prime}\mathrm{ in its second n elements, all evaluated at
xs. d2y[1..nv] contains the right-hand side function f (also evaluated at xs) in its first n
elements. Its second n elements are not referenced. Also input is htot, the total step to be
taken, and nstep, the number of substeps to be used. The output is returned as yout [1. .nv],
with the same storage arrangement as y. derivs is the user-supplied routine that calculates f.
{
    int i,n,neqns,nn;
    float h,h2,halfh,x,*ytemp;
    ytemp=vector(1,nv);
    h=htot/nstep; Stepsize this trip.
    halfh=0.5*h;
    neqns=nv/2; Number of equations.
    for (i=1;i<=neqns;i++) { First step.
        n=neqns+i;
        ytemp[i]=y[i]+(ytemp[n]=h*(y[n]+halfh*d2y[i]));
    }
    x=xs+h;
    (*derivs)(x,ytemp, yout); Use yout for temporary storage of derivatives.
    h2=h*h;
    for (nn=2;nn<=nstep;nn++) { General step.
        for (i=1;i<=neqns;i++)
            ytemp[i] += (ytemp[(n=neqns+i)] += h2*yout[i]);
        x += h;
        (*derivs)(x,ytemp,yout);
    }
    for (i=1;i<=neqns;i++) { Last step.
        n=neqns+i;
        yout[n]=ytemp[n]/h+halfh*yout[i];
        yout[i]=ytemp[i];
    }
    free_vector(ytemp,1,nv);
}
```

Note that for compatibility with bsstep the arrays y and d2y are of length $2 n$ for a system of n second-order equations. The values of y are stored in the first n elements of y , while the first derivatives are stored in the second n elements. The right-hand side f is stored in the first n elements of the array d 2 y ; the second n elements are unused. With this storage arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm using the same arguments; just be sure that the argument nv of bsstep is set to $2 n$. You should also use the more efficient sequence of stepsizes suggested by Deuffhard:

$$
\begin{equation*}
n=1,2,3,4,5, \ldots \tag{16.5.6}
\end{equation*}
$$

and set KMAXX $=12$ in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the possibility of a stiff set of equations arises. Stiffness occurs in a problem where there are two or more very different scales of the independent variable on which the dependent variables are changing. For example, consider the following set of equations [1]:

$$
\begin{align*}
& u^{\prime}=998 u+1998 v \\
& v^{\prime}=-999 u-1999 v \tag{16.6.1}
\end{align*}
$$

with boundary conditions

$$
\begin{equation*}
u(0)=1 \quad v(0)=0 \tag{16.6.2}
\end{equation*}
$$

By means of the transformation

$$
\begin{equation*}
u=2 y-z \quad v=-y+z \tag{16.6.3}
\end{equation*}
$$

we find the solution

$$
\begin{align*}
& u=2 e^{-x}-e^{-1000 x} \\
& v=-e^{-x}+e^{-1000 x} \tag{16.6.4}
\end{align*}
$$

