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3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, but are well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through the m + 1 points
(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)

Qν(x)
=
p0 + p1x+ · · ·+ pµx

µ

q0 + q1x+ · · ·+ qνxν
(3.2.1)

Since there are µ+ ν + 1 unknown p’s and q’s (q0 being arbitrary), we must have

m+ 1 = µ+ ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values of x, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for all
finite real x, but has an analytic continuation with poles in the complex x-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values of x, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). This is called Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recurrence
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relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)(

x−xi
x−xi+m

)(
1− R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

)
− 1

(3.2.3)

This recurrence generates the rational functions throughm+ 1 points from the ones
throughm and (the termR(i+1)...(i+m−1) in equation 3.2.3)m−1 points. It is started
with

Ri = yi (3.2.4)

and with
R ≡ [Ri(i+1)...(i+m) with m = −1] = 0 (3.2.5)

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cm,i ≡ Ri...(i+m) −Ri...(i+m−1)

Dm,i ≡ Ri...(i+m) −R(i+1)...(i+m)

(3.2.6)

Note that these satisfy the relation

Cm+1,i −Dm+1,i = Cm,i+1 −Dm,i (3.2.7)

which is useful in proving the recurrences

Dm+1,i =
Cm,i+1(Cm,i+1 −Dm,i)(
x−xi

x−xi+m+1

)
Dm,i −Cm,i+1

Cm+1,i =

(
x−xi

x−xi+m+1

)
Dm,i(Cm,i+1 −Dm,i)(

x−xi
x−xi+m+1

)
Dm,i −Cm,i+1

(3.2.8)

This recurrence is implemented in the following function, whose use is analogous
in every way to polint in §3.1. Note again that unit-offset input arrays are
assumed (§1.2).

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-25 A small number.
#define FREERETURN {free_vector(d,1,n);free_vector(c,1,n);return;}

void ratint(float xa[], float ya[], int n, float x, float *y, float *dy)
Given arrays xa[1..n] and ya[1..n], and given a value of x, this routine returns a value of
y and an accuracy estimate dy. The value returned is that of the diagonal rational function,
evaluated at x, which passes through the n points (xai, yai), i = 1...n.
{

int m,i,ns=1;
float w,t,hh,h,dd,*c,*d;
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c=vector(1,n);
d=vector(1,n);
hh=fabs(x-xa[1]);
for (i=1;i<=n;i++) {

h=fabs(x-xa[i]);
if (h == 0.0) {

*y=ya[i];
*dy=0.0;
FREERETURN

} else if (h < hh) {
ns=i;
hh=h;

}
c[i]=ya[i];
d[i]=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero

condition.}
*y=ya[ns--];
for (m=1;m<n;m++) {

for (i=1;i<=n-m;i++) {
w=c[i+1]-d[i];
h=xa[i+m]-x; h will never be zero, since this was tested in the initial-

izing loop.t=(xa[i]-x)*d[i]/h;
dd=t-c[i+1];
if (dd == 0.0) nrerror("Error in routine ratint");
This error condition indicates that the interpolating function has a pole at the
requested value of x.
dd=w/dd;
d[i]=c[i+1]*dd;
c[i]=t*dd;

}
*y += (*dy=(2*ns < (n-m) ? c[ns+1] : d[ns--]));

}
FREERETURN

}
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3.3 Cubic Spline Interpolation

Given a tabulated function yi = y(xi), i = 1...N , focus attention on one
particular interval, between xj and xj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj +Byj+1 (3.3.1)


