
120 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routines in §3.1–§3.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
points are equal, takes the tabulated values as perfect. If they in fact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be yi ≡ y(xi). If the interpolating
polynomial is written as

y = c0 + c1x+ c2x
2 + · · ·+ cNx

N (3.5.1)

then the ci’s are required to satisfy the linear equation

1 x0 x2

0 · · · xN0

1 x1 x2
1 · · · xN1

...
...

...
...

1 xN x2
N · · · xNN

 ·

c0

c1
...
cN

 =

y0

y1

...
yN

 (3.5.2)

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); however
the special method that was derived in §2.8 is more efficient by a large factor, of
order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki. Note that the
arrays are all assumed to be zero-offset.

3.5 Coefficients of the Interpolating Polynomial 121

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include "nrutil.h"

void polcoe(float x[], float y[], int n, float cof[])
Given arrays x[0..n] and y[0..n] containing a tabulated function yi = f(xi), this routine

returns an array of coefficients cof[0..n], such that yi =
∑
j cofjx

j
i .

{
int k,j,i;
float phi,ff,b,*s;

s=vector(0,n);
for (i=0;i<=n;i++) s[i]=cof[i]=0.0;
s[n] = -x[0];
for (i=1;i<=n;i++) { Coefficients si of the master polynomial P (x) are

found by recurrence.for (j=n-i;j<=n-1;j++)
s[j] -= x[i]*s[j+1];

s[n] -= x[i];
}
for (j=0;j<=n;j++) {

phi=n+1;
for (k=n;k>=1;k--) The quantity phi =

∏
j 6=k(xj − xk) is found as a

derivative of P (xj).phi=k*s[k]+x[j]*phi;
ff=y[j]/phi;
b=1.0; Coefficients of polynomials in each term of the La-

grange formula are found by synthetic division of
P (x) by (x− xj). The solution ck is accumu-
lated.

for (k=n;k>=0;k--) {
cof[k] += b*ff;
b=s[k]+x[j]*b;

}
}
free_vector(s,0,n);

}

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x = 0, then this value will evidently be c0. Now
we can subtract c0 from the yi’s and divide each by its corresponding xi. Throwing
out one point (the one with smallest xi is a good candidate), we can repeat the
procedure to find c1, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N3, while the preceding one was of order N2. You will
find, however, that neither works very well for large N , because of the intrinsic
ill-condition of the Vandermonde problem. In single precision, N up to 8 or 10 is
satisfactory; about double this in double precision.

#include <math.h>
#include "nrutil.h"

void polcof(float xa[], float ya[], int n, float cof[])
Given arrays xa[0..n] and ya[0..n] containing a tabulated function yai = f(xai), this

routine returns an array of coefficients cof[0..n] such that yai =
∑
j cofjxa

j
i .

{
void polint(float xa[], float ya[], int n, float x, float *y, float *dy);
int k,j,i;
float xmin,dy,*x,*y;

122 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x=vector(0,n);
y=vector(0,n);
for (j=0;j<=n;j++) {

x[j]=xa[j];
y[j]=ya[j];

}
for (j=0;j<=n;j++) {

polint(x-1,y-1,n+1-j,0.0,&cof[j],&dy);
Subtract 1 from the pointers to x and y because polint uses dimensions [1..n]. We
extrapolate to x = 0.
xmin=1.0e38;
k = -1;
for (i=0;i<=n-j;i++) { Find the remaining xi of smallest

absolute value,if (fabs(x[i]) < xmin) {
xmin=fabs(x[i]);
k=i;

}
if (x[i]) y[i]=(y[i]-cof[j])/x[i]; (meanwhile reducing all the terms)

}
for (i=k+1;i<=n-j;i++) { and eliminate it.

y[i-1]=y[i];
x[i-1]=x[i];

}
}
free_vector(y,0,n);
free_vector(x,0,n);

}

If the point x = 0 is not in (or at least close to) the range of the tabulated xi’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to put x = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions 123

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate of y(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated values y and n one-dimensional vec-
tors giving the tabulated values of each of the independent variables x1, x2, . . . ,
xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points in n-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya[1..m][1..n]. We are also given an array x1a[1..m], and an array x2a[1..n].
The relation of these input quantities to an underlying function y(x1, x2) is

ya[j][k] = y(x1a[j], x2a[k]) (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
(x1, x2).

An important concept is that of the grid square in which the point (x1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a[j] ≤ x1 ≤ x1a[j+1]

x2a[k] ≤ x2 ≤ x2a[k+1]
(3.6.2)

defines j and k, then

y1 ≡ ya[j][k]

y2 ≡ ya[j+1][k]

y3 ≡ ya[j+1][k+1]

y4 ≡ ya[j][k+1]

(3.6.3)

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are:

t ≡ (x1 − x1a[j])/(x1a[j+1]− x1a[j])

u ≡ (x2 − x2a[k])/(x2a[k+1]− x2a[k])
(3.6.4)

(so that t and u each lie between 0 and 1), and

y(x1 , x2) = (1− t)(1− u)y1 + t(1− u)y2 + tuy3 + (1− t)uy4 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated

