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Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m = k = 4 rational fit to the function f(x) = cos x/(1 + ex) in the
interval (0, π). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation – an ab initio integration for each desired
function value — along a path in the complex plane if necessary. While this may at
first seem like swatting a fly with a golden brick, it turns out that when you already
have the brick, and the fly is asleep right under it, all you have to do is let it fall!

As a specific example, let us consider the complex hypergeometric func-
tion 2F1(a, b, c; z), which is defined as the analytic continuation of the so-called
hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b+ 1) . . . (b+ j − 1)

c(c+ 1) . . . (c+ j − 1)

zj

j!
+ · · ·
(5.14.1)

The series converges only within the unit circle |z| < 1 (see [1]), but one’s interest
in the function is often not confined to this region.

The hypergeometric function 2F1 is a solution (in fact the solution that is regular
at the origin) of the hypergeometric differential equation, which we can write as

z(1− z)F ′′ = abF − [c− (a+ b+ 1)z]F ′ (5.14.2)
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Here prime denotes d/dz. One can see that the equation has regular singular points
at z = 0, 1, and∞. Since the desired solution is regular at z = 0, the values 1 and
∞ will in general be branch points. If we want 2F1 to be a single valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from 1 to ∞, though we may wish to keep
open the possibility of altering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
16. For now, we need only a high-level, “black-box” routine that integrates such
a set from initial conditions at one value of a (real) independent variable to final
conditions at some other value of the independent variable, while automatically
adjusting its internal stepsize to maintain some specified accuracy. That routine is
called odeint and, in one particular invocation, calculates its individual steps with
a sophisticated Bulirsch-Stoer technique.

Suppose that we know values for F and its derivative F ′ at some value z0, and
that we want to find F at some other point z1 in the complex plane. The straight-line
path connecting these two points is parametrized by

z(s) = z0 + s(z1 − z0) (5.14.3)

with s a real parameter. The differential equation (5.14.2) can now be written as
a set of two first-order equations,

dF

ds
= (z1 − z0)F ′

dF ′

ds
= (z1 − z0)

(
abF − [c− (a+ b+ 1)z]F ′

z(1− z)

) (5.14.4)

to be integrated from s = 0 to s = 1. Here F and F ′ are to be viewed as two
independent complex variables. The fact that prime means d/dz can be ignored; it
will emerge as a consequence of the first equation in (5.14.4). Moreover, the real and
imaginary parts of equation (5.14.4) define a set of four real differential equations,
with independent variable s. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisely this point of view that gets passed to the routine odeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary point z. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For |z| ≤ 1/2, the series in equation (5.14.1) will in general converge
rapidly, and it makes sense to use it directly. Otherwise, we integrate along a straight
line path from one of the starting points (±1/2, 0) or (0,±1/2). The former choices
are natural for 0 < Re(z) < 1 and Re(z) < 0, respectively. The latter choices are
used for Re(z) > 1, above and below the branch cut; the purpose of starting away
from the real axis in these cases is to avoid passing too close to the singularity at
z = 1 (see Figure 5.14.1). The location of the branch cut is defined by the fact that
our adopted strategy never integrates across the real axis for Re (z) > 1.

An implementation of this algorithm is given in §6.12 as the routine hypgeo.
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use power series
branch cut
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0 1 Re

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch
cut, and some integration paths from the circle |z| = 1/2 (where the power series converges rapidly)
to other points in the plane.

A number of variants on the procedure described thus far are possible, and easy
to program. If successively called values of z are close together (with identical values
of a, b, and c), then you can save the state vector (F, F ′) and the corresponding value
of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: the function value will be “correct,” but not the one you want.

Alternatively, you may wish to integrate to some position z by a dog-leg path
that does cross the real axis Re z > 1, as a means of moving the branch cut. For
example, in some cases you might want to integrate from (0, 1/2) to (3/2, 1/2),
and go from there to any point with Re z > 1 — with either sign of Im z. (If
you are, for example, finding roots of a function by an iterative method, you do
not want the integration for nearby values to take different paths around a branch
point. If it does, your root-finder will see discontinuous function values, and will
likely not converge correctly!)

In any case, be aware that a loss of numerical accuracy can result if you integrate
through a region of large function value on your way to a final answer where the
function value is small. (For the hypergeometric function, a particular case of this is
when a and b are both large and positive, with c and x >∼ 1.) In such cases, you’ll
need to find a better dog-leg path.

The general technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For



5.14 Evaluation of Functions by Path Integration 211

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are all special cases of the confluent hypergeometric function, with a
differential equation similar to the one used above (see, e.g., [1] §13.6, for a table of
special cases). The confluent hypergeometric function has no singularities at finite z:
That makes it easy to integrate. However, its essential singularity at infinity means
that it can have, along some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case by
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]


