6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients

The gamma function is defined by the integral

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \tag{6.1.1}
\end{equation*}
$$

When the argument z is an integer, the gamma function is just the familiar factorial function, but offset by one,

$$
\begin{equation*}
n!=\Gamma(n+1) \tag{6.1.2}
\end{equation*}
$$

The gamma function satisfies the recurrence relation

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{6.1.3}
\end{equation*}
$$

If the function is known for arguments $z>1$ or, more generally, in the half complex plane $\operatorname{Re}(z)>1$ it can be obtained for $z<1$ or $\operatorname{Re}(z)<1$ by the reflection formula

$$
\begin{equation*}
\Gamma(1-z)=\frac{\pi}{\Gamma(z) \sin (\pi z)}=\frac{\pi z}{\Gamma(1+z) \sin (\pi z)} \tag{6.1.4}
\end{equation*}
$$

Notice that $\Gamma(z)$ has a pole at $z=0$, and at all negative integer values of z.
There are a variety of methods in use for calculating the function $\Gamma(z)$ numerically, but none is quite as neat as the approximation derived by Lanczos [1]. This scheme is entirely specific to the gamma function, seemingly plucked from thin air. We will not attempt to derive the approximation, but only state the resulting formula: For certain integer choices of γ and N, and for certain coefficients $c_{1}, c_{2}, \ldots, c_{N}$, the gamma function is given by

$$
\begin{align*}
\Gamma(z+1) & =\left(z+\gamma+\frac{1}{2}\right)^{z+\frac{1}{2}} e^{-\left(z+\gamma+\frac{1}{2}\right)} \\
& \times \sqrt{2 \pi}\left[c_{0}+\frac{c_{1}}{z+1}+\frac{c_{2}}{z+2}+\cdots+\frac{c_{N}}{z+N}+\epsilon\right] \quad(z>0) \tag{6.1.5}
\end{align*}
$$

You can see that this is a sort of take-off on Stirling's approximation, but with a series of corrections that take into account the first few poles in the left complex plane. The constant c_{0} is very nearly equal to 1 . The error term is parametrized by ϵ. For $\gamma=5, N=6$, and a certain set of c 's, the error is smaller than $|\epsilon|<2 \times 10^{-10}$. Impressed? If not, then perhaps you will be impressed by the fact that (with these same parameters) the formula (6.1.5) and bound on ϵ apply for the complex gamma function, everywhere in the half complex plane Re $z>0$.

It is better to implement $\ln \Gamma(x)$ than $\Gamma(x)$, since the latter will overflow many computers' floating-point representation at quite modest values of x. Often the gamma function is used in calculations where the large values of $\Gamma(x)$ are divided by other large numbers, with the result being a perfectly ordinary value. Such operations would normally be coded as subtraction of logarithms. With (6.1.5) in hand, we can compute the logarithm of the gamma function with two calls to a logarithm and 25 or so arithmetic operations. This makes it not much more difficult than other built-in functions that we take for granted, such as $\sin x$ or e^{x} :

```
#include <math.h>
float gammln(float xx)
Returns the value ln}[\Gamma(xx)] for xx > 0.
{
    Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
    accuracy is good enough.
    double x,y,tmp,ser;
    static double cof[6]={76.18009172947146,-86.50532032941677,
        24.01409824083091,-1.231739572450155,
        0.1208650973866179e-2,-0.5395239384953e-5};
    int j;
    y=x=xx;
    tmp=x+5.5;
    tmp == (x+0.5)*log(tmp);
    ser=1.000000000190015;
    for (j=0;j<=5;j++) ser += cof[j]/++y;
    return -tmp+log(2.5066282746310005*ser/x);
}
```

How shall we write a routine for the factorial function $n!$? Generally the factorial function will be called for small integer values (for large values it will overflow anyway!), and in most applications the same integer value will be called for many times. It is a profligate waste of computer time to call $\exp (\operatorname{gamm} \ln (n+1.0))$ for each required factorial. Better to go back to basics, holding gammln in reserve for unlikely calls:

```
#include <math.h>
float factrl(int n)
Returns the value n! as a floating-point number.
{
    float gammln(float xx);
    void nrerror(char error_text[]);
    static int ntop=4;
    static float a[33]={1.0,1.0,2.0,6.0,24.0}; Fill in table only as required.
    int j;
    if (n < 0) nrerror("Negative factorial in routine factrl");
    if (n > 32) return exp(gammln(n+1.0));
    Larger value than size of table is required. Actually, this big a value is going to overflow
    on many computers, but no harm in trying.
    while (ntop<n) { Fill in table up to desired value.
        j=ntop++;
        a[ntop]=a[j]*ntop;
    }
    return a[n];
}
```

A useful point is that factrl will be exact for the smaller values of n, since floating-point multiplies on small integers are exact on all computers. This exactness will not hold if we turn to the logarithm of the factorials. For binomial coefficients, however, we must do exactly this, since the individual factorials in a binomial coefficient will overflow long before the coefficient itself will.

The binomial coefficient is defined by

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad 0 \leq k \leq n \tag{6.1.6}
\end{equation*}
$$

```
#include <math.h>
float bico(int n, int k)
Returns the binomial coefficient ( 
{
    float factln(int n);
    return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
    The floor function cleans up roundoff error for smaller values of n and k.
}
```

which uses

```
float factln(int n)
Returns ln(n!).
{
    float gammln(float xx);
    void nrerror(char error_text[]);
    static float a[101]; A static array is automatically initialized to zero.
    if (n < 0) nrerror("Negative factorial in routine factln");
    if (n <= 1) return 0.0;
    if (n <= 100) return a[n] ? a[n] : (a[n]=gammln(n+1.0)); In range of table.
    else return gammln(n+1.0); Out of range of table.
}
```

If your problem requires a series of related binomial coefficients, a good idea is to use recurrence relations, for example

$$
\begin{align*}
& \binom{n+1}{k}=\frac{n+1}{n-k+1}\binom{n}{k}=\binom{n}{k}+\binom{n}{k-1} \\
& \binom{n}{k+1}=\frac{n-k}{k+1}\binom{n}{k} \tag{6.1.7}
\end{align*}
$$

Finally, turning away from the combinatorial functions with integer valued arguments, we come to the beta function,

$$
\begin{equation*}
B(z, w)=B(w, z)=\int_{0}^{1} t^{z-1}(1-t)^{w-1} d t \tag{6.1.8}
\end{equation*}
$$

which is related to the gamma function by

$$
\begin{equation*}
B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)} \tag{6.1.9}
\end{equation*}
$$

hence

```
#include <math.h>
```

float beta(float z, float w)
Returns the value of the beta function $B(z, w)$.
\{
float gammln(float $x x$);
return exp (gammln(z)+gammln(w)-gammln(z+w));
\}

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapter 6.

6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function

The incomplete gamma function is defined by

$$
\begin{equation*}
P(a, x) \equiv \frac{\gamma(a, x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t \quad(a>0) \tag{6.2.1}
\end{equation*}
$$

It has the limiting values

$$
\begin{equation*}
P(a, 0)=0 \quad \text { and } \quad P(a, \infty)=1 \tag{6.2.2}
\end{equation*}
$$

The incomplete gamma function $P(a, x)$ is monotonic and (for a greater than one or so) rises from "near-zero" to "near-unity" in a range of x centered on about $a-1$, and of width about \sqrt{a} (see Figure 6.2.1).

The complement of $P(a, x)$ is also confusingly called an incomplete gamma function,

$$
\begin{equation*}
Q(a, x) \equiv 1-P(a, x) \equiv \frac{\Gamma(a, x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_{x}^{\infty} e^{-t} t^{a-1} d t \quad(a>0) \tag{6.2.3}
\end{equation*}
$$

