
300 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by ±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because 218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table [2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition,we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like C, DES is very slow, so excruciatingly slow, in fact, that
our previous implementation can be viewed as more mischievous than useful. Here we give
a much faster and simpler algorithm which, though it may not be secure in the cryptographic
sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
nonlinear bit-mixing function. Figure 7.5.1 shows the flow of information in DES during
this mixing. The function g, which takes 32-bits into 32-bits, is called the “cipher function.”
Meyer and Matyas [4] discuss the importance of the cipher function being nonlinear, as well
as other design criteria.

DES constructs its cipher function g from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. Apparently, this function was chosen
to be particularly strong cryptographically (or conceivably as some critics contend, to have
an exquisitely subtle cryptographic flaw!). For our purposes, a different function g that can
be rapidly computed in a high-level computer language is preferable. Such a function may
weaken the algorithm cryptographically. Our purposes are not, however, cryptographic: We
want to find the fastest g, and smallest number of iterations of the mixing procedure in Figure
7.5.1, such that our output random sequence passes the standard tests that are customarily
applied to random number generators. The resulting algorithm will not be DES, but rather a
kind of “pseudo-DES,” better suited to the purpose at hand.

Following the criterion, mentioned above, that g should be nonlinear, we must give
the integer multiply operation a prominent place in g. Because 64-bit registers are not
generally accessible in high-level languages, we must confine ourselves to multiplying 16-bit

7.5 Random Sequences Based on Data Encryption 301

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

32-bit XOR

right 32-bit wordleft 32-bit word

right 32-bit wordleft 32-bit word

g

32-bit XOR

right 32-bit wordleft 32-bit word

g

Figure 7.5.1. The Data Encryption Standard (DES) iterates a nonlinear function g on two 32-bit words,
in the manner shown here (after Meyer and Matyas [4]).

operands into a 32-bit result. So, the general idea of g, almost forced, is to calculate the three
distinct 32-bit products of the high and low 16-bit input half-words, and then to combine
these, and perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or)
into a single 32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation, and tests of the randomness of
the output, lead to the sequence of operations shown in Figure 7.5.2. The few new elements
in the figure need explanation: The values C1 and C2 are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants
via exclusive-or ensures that the overall g has no bias towards 0 or 1 bits.

The “reverse half-words” operation in Figure 7.5.2 turns out to be essential; otherwise,
the very lowest and very highest bits are not properly mixed by the three multiplications.
The nonobvious choices in g are therefore: where along the vertical “pipeline” to do the
reverse; in what order to combine the three products and C2; and with which operation (add
or exclusive-or) should each combining be done? We tested these choices exhaustively before
settling on the algorithm shown in the figure.

It remains to determine the smallest number of iterationsNit that we can get away with.
The minimum meaningful Nit is evidently two, since a single iteration simply moves one
32-bit word without altering it. One can use the constants C1 and C2 to help determine an
appropriate Nit: When Nit = 2 and C1 = C2 = 0 (an intentionally very poor choice), the
generator fails several tests of randomness by easily measurable, though not overwhelming,
amounts. When Nit = 4, on the other hand, or with Nit = 2 but with the constants
C1, C2 nonsparse, we have been unable to find any statistical deviation from randomness in
sequences of up to 109 floating numbers ri derived from this scheme. The combined strength
of Nit = 4 and nonsparse C1, C2 should therefore give sequences that are random to tests
even far beyond those that we have actually tried. These are our recommended conservative

302 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

lo2hi2

XORC1

XORC2

NOT

+

hi • lo

reverse
half-words

+

Figure 7.5.2. The nonlinear function g used by the routine psdes.

parameter values, notwithstanding the fact that Nit = 2 (which is, of course, twice as fast)
has no nonrandomness discernible (by us).

Implementation of these ideas is straightforward. The following routine is not quite
strictly portable, since it assumes that unsigned long integers are 32-bits, as is the case
on most machines. However, there is no reason to believe that longer integers would be in
any way inferior (with suitable extensions of the constants C1, C2). C does not provide a
convenient, portable way to divide a long integer into half words, so we must use a combination
of masking (& 0xffff) with left- and right-shifts by 16 bits (<<16 and >>16). On some
machines the half-word extraction could be made faster by the use of C’s union construction,
but this would generally not be portable between “big-endian” and “little-endian” machines.
(Big- and little-endian refer to the order in which the bytes are stored in a word.)

#define NITER 4

void psdes(unsigned long *lword, unsigned long *irword)
“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are re-
turned hashed on all bits.
{

unsigned long i,ia,ib,iswap,itmph=0,itmpl=0;
static unsigned long c1[NITER]={

0xbaa96887L, 0x1e17d32cL, 0x03bcdc3cL, 0x0f33d1b2L};
static unsigned long c2[NITER]={

0x4b0f3b58L, 0xe874f0c3L, 0x6955c5a6L, 0x55a7ca46L};

for (i=0;i<NITER;i++) {
Perform niter iterations of DES logic, using a simpler (non-cryptographic) nonlinear func-
tion instead of DES’s.

7.5 Random Sequences Based on Data Encryption 303

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ia=(iswap=(*irword)) ^ c1[i]; The bit-rich constants c1 and (below)
c2 guarantee lots of nonlinear mix-
ing.

itmpl = ia & 0xffff;
itmph = ia >> 16;
ib=itmpl*itmpl+ ~(itmph*itmph);
*irword=(*lword) ^ (((ia = (ib >> 16) |

((ib & 0xffff) << 16)) ^ c2[i])+itmpl*itmph);
*lword=iswap;

}
}

The routine ran4, listed below, uses psdes to generate uniform random deviates. We
adopt the convention that a negative value of the argumentidum sets the left 32-bit word, while
a positive value i sets the right 32-bit word, returns the ith random deviate, and increments
idum to i+ 1. This is no more than a convenient way of defining many different sequences
(negative values of idum), but still with random access to each sequence (positive values of
idum). For getting a floating-point number from the 32-bit integer, we like to do it by the
masking trick described at the end of §7.1, above. The hex constants 3F800000 and 007FFFFF
are the appropriate ones for computers using the IEEE representation for 32-bit floating-point
numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the correct hex
constants are, respectively, 00004080 and FFFF007F. For greater portability, you can instead
construct a floating number by making the (signed) 32-bit integer nonnegative (typically, you
add exactly 231 if it is negative) and then multiplying it by a floating constant (typically 2.−31).

An interesting, and sometimes useful, feature of the routine ran4, below, is that it allows
random access to the nth random value in a sequence, without the necessity of first generating
values 1 · · ·n− 1. This property is shared by any random number generator based on hashing
(the technique of mapping data keys, which may be highly clustered in value, approximately
uniformly into a storage address space) [5,6]. One might have a simulation problem in which
some certain rare situation becomes recognizable by its consequences only considerably after
it has occurred. One may wish to restart the simulation back at that occurrence, using identical
random values but, say, varying some other control parameters. The relevant question might
then be something like “what random numbers were used in cycle number 337098901?” It
might already be cycle number 395100273 before the question comes up. Random generators
based on recursion, rather than hashing, cannot easily answer such a question.

float ran4(long *idum)
Returns a uniform random deviate in the range 0.0 to 1.0, generated by pseudo-DES (DES-
like) hashing of the 64-bit word (idums,idum), where idums was set by a previous call with
negative idum. Also increments idum. Routine can be used to generate a random sequence
by successive calls, leaving idum unaltered between calls; or it can randomly access the nth
deviate in a sequence by calling with idum = n. Different sequences are initialized by calls with
differing negative values of idum.
{

void psdes(unsigned long *lword, unsigned long *irword);
unsigned long irword,itemp,lword;
static long idums = 0;
The hexadecimal constants jflone and jflmsk below are used to produce a floating number
between 1. and 2. by bitwise masking. They are machine-dependent. See text.

#if defined(vax) || defined(_vax_) || defined(__vax__) || defined(VAX)
static unsigned long jflone = 0x00004080;
static unsigned long jflmsk = 0xffff007f;

#else
static unsigned long jflone = 0x3f800000;
static unsigned long jflmsk = 0x007fffff;

#endif

if (*idum < 0) { Reset idums and prepare to return the first
deviate in its sequence.idums = -(*idum);

*idum=1;
}
irword=(*idum);
lword=idums;

304 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

psdes(&lword,&irword); “Pseudo-DES” encode the words.
itemp=jflone | (jflmsk & irword); Mask to a floating number between 1 and

2.++(*idum);
return (*(float *)&itemp)-1.0; Subtraction moves range to 0. to 1.

}

The accompanying table gives data for verifying that ran4 and psdes work correctly
on your machine. We do not advise the use of ran4 unless you are able to reproduce the
hex values shown. Typically, ran4 is about 4 times slower than ran0 (§7.1), or about 3
times slower than ran1.

Values for Verifying the Implementation of psdes

idum before psdes call after psdes call (hex) ran4(idum)

lword irword lword irword VAX PC

–1 1 1 604D1DCE 509C0C23 0.275898 0.219120

99 1 99 D97F8571 A66CB41A 0.208204 0.849246

–99 99 1 7822309D 64300984 0.034307 0.375290

99 99 99 D7F376F0 59BA89EB 0.838676 0.457334

Successive calls to psdes with arguments−1, 99,−99, and 1, should produce exactly the
lword and irword values shown. Masking conversion to a returned floating random value
is allowed to be machine dependent; values for VAX and PC are shown.

CITED REFERENCES AND FURTHER READING:

Data Encryption Standard, 1977 January 15, Federal Information Processing Standards Publi-
cation, number 46 (Washington: U.S. Department of Commerce, National Bureau of Stan-
dards). [1]

Guidelines for Implementing and Using the NBS Data Encryption Standard, 1981 April 1, Federal
Information Processing Standards Publication, number 74 (Washington: U.S. Department
of Commerce, National Bureau of Standards). [2]

Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard,
1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, Na-
tional Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York:
Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in §10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

