faqerep: A Jumpstart Perl Script

A. Johnson
November 14, 1999

Abstract

This little article is intended as a ‘jumpstart’ script into learning Perl.
The goal is not to try to teach Perl programming in one article or with
one script, but to try to give an entry point into learning Perl with a
script that should also prove useful as you continue your learning process.
This document is actually a ‘Literate Program’ written using the noweb
system — for those who aren’t familiar with reading code in this form, an
appendix provides some explanation and pointers to further information
on noweb and literate programming.

1 Introduction

Perl is a very powerful programming language which excels at (but is not limited
to) text processing. The Perl language is not a difficult language, though it can
seem cryptic at first blush due to all the funky punctuation which appears in
the language. Like any language, it merely takes time and practice to become
familiar with the syntax and meanings and the ways of saying different things
(or saying the same thing differently).

The intent of this article is not to teach Perl, but rather to introduce a
single, well documented script faggrep. The bonus is that unlike many of
the example scripts in books and tutorials, this is a script that you can (and
should) continue to use to help you use perl more effectively. Programming is
about problem solving. Very often one begins to tackle a problem by breaking
it down into smaller problems and addressing those. However, when learning a
new language, some of the smaller problems are often difficult because you do
not yet know how to express the solution in the context of the language you are
learning. This is when it is time to turn to the FAQ's.

Do not assume that the FAQ’s only address simple or ”little” questions and
that your question will not be found there—many FAQ’s do have simple answers,
but they are no less valuable for that. On the other hand, there are also many
"real programming issues” addressed in Perl’s FAQ’s, so not matter how easy or
difficult your particular problem seems to be, you’ll often have good luck finding
something of use in the FAQ’s.

The script presented here is designed to facilitate searching through the
nine sections of Perl’s FAQ’s for questions (and answers) relating to a keyword
or phrase you supply on the command-line. The script is not long (less than
40 lines of actual code) but it does demonstrate some common structures and
commands used in processing textfiles.

2 faqgrep: What is it? an informal specification

The Perl FAQ’s are broken into 9 sections, each covering some related set of
topics, and are included with any proper perl distribution. They come in the

November 14, 1999 faqgrep.nw 2

form of POD source files which can be read using the perldoc tool, or converted
to other formats such as manpages, html, latex, or plain text using various
translators (also included with perl).

Let us say that we have some kind of question about sorting. We’d rather
not browse through each FAQ looking for sort related information, and perhaps
we don’t want to find every single instance of the word sort for it may occur in
contexts unrelated to sorting at all — ”This sort of thing...”— or may be used
in contexts which do not directly answer questions about sorting.

In the POD source files, each question is a second level heading which appears
like:

=head2 How do I ... in Perl?

so we know, when we are looking for questions we need only look at lines begin-
ning with =head2. Thus, we could always use the grep tool on the command-line
like:

grep ’=head2.*sort’ /path/to/perl_pods/*faqg*.pod

and we would find out that perlfaqg4.pod contained 3 questions containing
the word ”sort”, and we could then proceed to read perlfaqd. The faggrep
script presented here simply automates the above task, and provides a little
more functionality. With it we can do the equivalent search from the command-
line:

faqgrep sort

But, we can also supply a command-line option to tell faqgrep to print out
the answer to all of the found questions, or we can adjust our search pattern
to focus on the question we really want. For example, let’s assume we have a
question on how to get a line randomly from a file:

[danger:ajohnson:~/devel/noweb/faqgrepl$ faqgrep random
perlfag4.pod:=head2 Why aren’t my random numbers random?
perlfag4.pod:=head2 How do I shuffle an array randomly?
perlfag4.pod:=head2 How do I select a random element from an array?
perlfagb.pod:=head2 How do I randomly update a binary file?
perlfagb.pod:=head2 How do I select a random line from a file?

Now, we see that the last question returned is the one we want so we add
another keyword that only occurs in that question and use the -f option to
faqgrep to tell it to extract the answer:

[danger:ajohnson: ~/devel/noweb/faqgrepl$ faqgrep -f random line
perlfagb.pod:=head2 How do I select a random line from a file?

Here’s an algorithm from the Camel Book:

srand;
rand($.) < 1 && ($line = $_) while <>;
’blah’
This has a significant advantage in space over reading the whole
file in. A simple proof by induction is available upon
request if you doubt its correctness.

This demonstrates the default behavior when using more than one keyword—
to search for entries containing all of the keywords. Alternately, one might wish
to find all entries matching any of the keywords—this is done with the -or
option and can result in quite a lot of output if one is not careful.

3a

3b

3c

November 14, 1999 faqgrep.nw 3

3 faqgrep: The Script

To begin with, we will first outline the overall structure of the script:
(faqgrep 3a)=

#!/usr/bin/perl -w

use strict;

(initialize_variables 3b)

(read_in_perifaq_filenames 4b)

(search_and_print 4c)

(faggrep.pod 5b)

All we have done thus far is subdivide our program into a few smaller chunks
which we can address one at a time, subdividing further if need be. The first
thing we need to do is initialize some varriables. In particular, we need a variable
to store the location of the perlfaq POD files, two variables for our options, and
one to hold our pattern.

(initialize_variables 3b)= (3a)
set $faqdir to point to your installed pod files:
my $fagdir = ’/usr/local/lib/perl5/5.00503/pod’;
my ($opt_£,$opt_or, $pattern) ;
(get_options 3c)
(create_keyword_pattern 4a)

Defines:
$faqdir, used in chunk 4.
$opt_f, used in chunks 3c and 5a.
$opt_or, used in chunks 3c and 4a.
$pattern, used in chunks 4 and Sa.
We use a simple method to extract our command line options and die with
a usage statement if we get an unrecognized option:
(get_options 3c)= (3b)
while ($ARGV[0]="/"-/){
$_=$ARGV[0] ;
if (/"-or$/){$opt_or=1;shift Q@ARGV;next}
if (/~-£$/){$opt_f=1;shift QARGV;next}
die<<HERE;
illegal option: $_
usage: faqgrep [-f] [-or] [keywords...]
HERE

Uses $opt_f 3b and $opt_or 3b.

November 14, 1999 faqgrep.nw 4

Now that our options are removed from the command line, we can do a
quick check for remaining keywords (or why bother running). To create our
$pattern in the case of the —or option we merely join all the keywords together
with the | regex alternation operator preceeded by a wildcard pattern. This is
a somewhat slow approach, but it serves for the present task. For the default
ANDed pattern, use a series of look-aheads, one for each keyword, which all
must pass for the pattern to succeed.

4a (create_keyword_pattern 4a)= (3b)
die "no keywords specified\n" unless QARGV;
if ($opt_or){
$pattern = > .*(7:’ . join(’|’,Q@ARGV) . ’)’;
}else{
$pattern=join(’’ ,map{" (?=.%*$_) "}@ARGV) ;

Uses $opt_or 3b and $pattern 3b.

There are now 9 sections to the perlfags, named 'perlfaql.pod’ .. 'perlfaq9.pod’—
We use opendir and readdir to get a list of the files in the $faqdir, and extract
only those with the substring ’faq’ in their names using the grep function:
4b (read_in_perifaq_filenames 4b)= (3a)
opendir (FAQDIR,$faqdir) || die "can’t open $faqdir $!";
my @faqs = grep /faq/,readdir FAQDIR;
closedir FAQDIR;

Defines:
@fagqgs, used in chunk jc.
Uses $faqdir 3b.

Now we know what we are looking for, and what files to look in. We search
through each faq file for lines beginning with =head2 that are followed by our
$pattern, and we print out the filename, and the matching line. If we found
the -f option on the command line, we also print the answer:

4c (search_and_print 4c)= (3a)
foreach my $faq (@fags) {
open(FAQ, "$faqdir/$faq") | [die "can’t $!";
while (<FAQ>) {
if (s/"=head2($pattern)/$1/i0) {
print "$faq:$_"
(print_answer_if_-f_option 5a)

}
close FAQ;

Uses $faqdir 3b, @fags 4b, and $pattern 3b.

ba

5b

November 14, 1999 faqgrep.nw)

To print the answer, we just keep printing lines until we hit another =head?2
line that does not contain our pattern:

(print_answer_if_-f_option 5a)= (4¢)
if ($opt_f) {
while (KFAQ>){
last if m/"=head(?7!$pattern)/io;
print;
}
}

Uses $opt_f 8b and $pattern 3b.

POD: faqgrep.pod
NAME
faqgrep — perl script to search perlfags

SYNOPSIS

faqgrep [-f] [-or] [keywords...]
faggrep sort hash

faqgrep -or sort hash

faqgrep -f sort array

DESCRIPTION

This script takes keywords as arguments and searches through the perlfags print-
ing on STDOUT the questions (and optionally the answers) which contain the
keywords.

-or
By default, keywords are ’ANDed’ together to find questions which contain
ALL of the keywords. Using the -or option ’ORs’ together the keywords
to find questions which contain ANY of the keywords.

-f
By default only the matching questions are printed. Using this option
causes the full entry (answer) of all matching questions to be printed.
This can cause a lot of output unless the search was restricted. It is
recommended that you first search for just one or two keywords and see
the resulting matches and then repeat the search using -f and additional
keywords to restrict output to just those entries you wish to see.

AUTHOR

Andrew L. Johnson <andrew-johnson@home.com>

COPYRIGHT

Copyright 1997—1998 Andrew L Johnson. This is free software and you may
redistribute it and/or modify it under the same terms as Perl itself.
(faggrep.pod 5bY= (3a)
This pod chunk has been converted to latex,
see above.

November 14, 1999

Identifier Index

$faq: 4c
$faqdir: 3b, 4b, 4c
@fags: 4b, 4c

$opt_f: 3b, 3c, ba
$opt_or: 3b, 3c, 4a
$pattern: 3b, 4a, 4c, ba

4 Improvements

faqgrep.nw 6

Code Chunk Index

create_keyword_pattern 4a) 3b, 4a
faqgrep 3a) 3a

faqgrep.pod 5b) 3a, 5b

get_options 3¢y 3b, 3c
initialize_variables 3b) 3a, 3b
print_answer_if_-f-option 5a) 4c, 5a
read_in_perifaq_filenames 4b) 3a, 4b
search_and_print 4c) 3a, 4c

(
(
(
(
(
(
(
(

There are many ways this code could be improved upon—so go ahead and hack
the heck out of it...we all know it won’t be complete until it reads email :-).

