
A Simple Tangler Program

Andrew L. Johnson

March 22, 2000

Abstract

The following is a slightly modified excerpt from chapter 9 of my book
Elements of Programming with Perl, published by Manning Publications.
It is reprinted here with permission of the publisher. This program is
a simplified tangler program for use with single file literate programs
written in the noweb syntax.

A Simple Tangler

Now that we know what the chunk definition and reference syntax is, we can
build a limited tangler program to allow us to write our perl programs using
noweb’s syntax, intermixing code chunks and documentation chunks (we are in
a documentation chunk right now) throughout the source file.

We want our tangler to operate similarly to notangle, allowing a -R option
to specify the root chunk and a -L option to include line directives. We will
add two differences. The notangle program simply prints the tangled code to
STDOUT so you have to redirect it to a file yourself. We will assume that
the root chunk-name is also the filename you want to use for the tangled code.
So, running our tangler program with a root option of -Rblah will create a file
named ‘blah’ and write the tangled code to it. The second difference is that if
no -R option is given, our program will automatically find all root chunks and
print them to their respective files based on their chunk-names (a root chunk
will be any chunk that is not used inside another chunk definition).

We shall call our tangler pqtangle for Perl Quick Tangler, and write it in a
file named pqtangle.nw. Our initial program outline (our root chunk) looks like:

1 〈pqtangle 1〉≡
#!/usr/bin/perl -w

use strict;

〈declare variables 2a〉
〈get options 2b〉
〈open and parse file for chunks 3b〉
〈make array of root chunks 4b〉
〈print root chunks 5a〉
〈subroutine definitions 5b〉

1

We will need variables to reflect the two options our program can accept (the
-R and -L options for a root chunk and to turn on line directives respectively.
We will also use variables to hold patterns containing double left angle brackets
and double right angle brackets:

2a 〈declare variables 2a〉≡ (1) 3a .

my $Root; # root option

my $Line_dir; # format option

my $la = ’<’ . ’<’;

my $ra = ’>’ . ’>’;

Defines:
$la, used in chunks 3–5, 7, and 8.
$Line dir, used in chunks 2b and 7–9.
$ra, used in chunks 3–5 and 7–9.
$Root, used in chunks 2b and 4b.

Notice that we’ve used the \%def syntax on the chunk-ending line to mark
these two variables as defined in this chunk. These def lines are ignored by the
tangler, but we have to recognize them if we want to recognize general noweb
syntax—and we may as well use them so we can weave our documentation (and
you can see what the cross-reference information available looks like if you visit
the above mentioned site). We will consider other variables shortly.

There is a simple technique for extracting options (and their potential ar-
guments) from the command line arguments. Recall that all the command line
arguments are in the @ARGV array when the program runs. We can simply use a
while loop to pull the first item out of this array if it starts with a dash, then
we test that the option is valid (in this case, begins with either -R or -L) and
set our option variables appropriately: For the root option, we simply capture
everything following the -R into the \$1 variable and assign it to the \$Root
variable. For the line directive we assign a generic string to the variable that
contains placeholders for the line number, filename, and newline that we will
substitute in as needed during the program:

2b 〈get options 2b〉≡ (1)

while ($ARGV[0] =~ m/^-/) {

$_ = shift @ARGV;

last if m/^--$/;

$Root = $1 if m/^-R(.*)/;

$Line_dir = ’#line %L "%F"%N’ if m/^-L/;

}

Uses $Line dir 2a and $Root 2a.

The convention for command line options is that they must all come before
any other arguments and that anything after a -- argument is not to be treated
as an option (to allow you to pass other arguments that start with a dash but
are not options).

We will need a few more variables declared at the file scope to allow us to
store various bits of information relating to the chunks we find. We will need
an array to hold the list of all the root chunks we find, a hash to mark which

2

chunks are are used in other chunks, and a hash of arrays to store file and line
number information where each chunk starts in the source file:

3a 〈declare variables 2a〉+≡ (1) / 2a

my (@roots, %used, %chunks, $file);

Defines:
%chunks, used in chunks 4–6.
$file, used in chunks 3c, 4a, and 7c.
@roots, used in chunks 4b and 5a.
%used, used in chunk 4.

The next thing we need to do is open the source file and parse it for chunks,
recording information about each chunk we find:

3b 〈open and parse file for chunks 3b〉≡ (1)

〈open the source file 3c〉
while (<FILE>) {

〈find and parse chunks 3d〉
}

This is a simple tangling program, and we only allow one source file to be
specified on the command line. Now that we have already pulled out any options
from @ARGV, we can simply test this array to make sure there is still at least one
more item in it (the filename) store that value in our \$file variable, and open
the file:

3c 〈open the source file 3c〉≡ (3b)

unless (@ARGV) {die "no file given for processing\n"}

$file = $ARGV[0];

open(FILE,$file)||die "can’t open $file $!";

Uses $file 3a.

We will declare two additional lexical variables to be used during our parsing
loop on the file, one to hold each line in turn and one to hold the current line
number (actually the current line number plus 1 so that if we find a chunk
definition the line number points to the first line of code immediately following
the chunk tag).

3d 〈find and parse chunks 3d〉≡ (3b)

my $line = $_;

my $line_no = $. + 1;

if ($line =~ m/^$la([^>]+)$ra=\s*$/) {

〈parse chunk 4a〉
}

Defines:
$line, used in chunks 4a and 6–9.
$line no, used in chunks 4a and 7c.

Uses $la 2a and $ra 2a.

The regular expression above simply finds lines that have match the chunk
definition tag and captures the chunk name into the \$1 variable. This expres-
sion assumes that a > will not be part of the chunk name and that no chunk
name will be entirely empty.

3

The first thing we when parsing a chunk itself is to record where in the file
the chunk begins. We do this using the tell() function. This function returns
the current byte offset into the file represented by the filehandle. Later we can
use this value to seek() directly to this position in the file when we are actually
tangling out the code. Then we can continue looping through the chunk (while
the current line does not match either a single @ or one followed by a \%def
list of identifiers. Inside this loop we grab the next line of the file, and see if it
contains a reference to another chunk—if it does, we use that chunk name as a
key in our \%used hash and add one to its value (this hash will thus be a record
of every chunk that was used inside of another chunk).

4a 〈parse chunk 4a〉≡ (3d)

my $begin_offset = tell FILE;

while (($line !~ m/^(\@\s*$|\@\s*\%def)/)) {

$line = <FILE>;

$used{$1} += 1 if $line =~ m/^\s*$la([^>]+)$ra\s*$/;

}

push @{$chunks{$1}}, "$begin_offset:$file:$line_no";

Uses %chunks 3a, $file 3a, $la 2a, $line 3d, $line no 3d, $ra 2a, and %used 3a.

When we finished reading through the chunk, we used the ‘auto-vivification’
syntax to push a string containing the offset, filename, and line number in-
formation of the chunk we just parsed. In other words, the \%chunks hash
contains keys which are chunk names and whose values hold an array of off-
set/information strings for every location where that chunk’s definition is con-
tinued throughout the file. The \$1 variable here is the one matched in the
outer if statement, the one matched inside the inner while loop was localized
to that block which is now out of scope.

At this point we know the byte offset location of where every chunk definition
starts in the file, and the line number of the first line of code in that chunk
definition. We also have a record of every chunk that was used in another
chunk (and hence can not be a root chunk itself). We will now populate our
@roots array with the root chunks we need to extract. If we were given the
-R option, we will only store that one root chunk name in this array. If that
option was not given we want to extract all the root chunks—we can do this
by simply looping through the keys of the \%chunks hash (the keys are all the
chunk definitions encountered) and pushing them onto the @roots array if they
were not used (are not seen in the \%used hash).

4b 〈make array of root chunks 4b〉≡ (1)

if ($Root) {

@roots = ($Root);

} else {

foreach my $key (keys %chunks) {

push @roots, $key if not $used{$key};

}

}

Uses %chunks 3a, $Root 2a, @roots 3a, and %used 3a.

4

Printing out the root chunks is simply a matter of opening a file for writing
for each root chunk name and printing out the tangled version of that chunk
(which we do using a function called print\ chunk()):

5a 〈print root chunks 5a〉≡ (1)

foreach my $root (@roots) {

open(PROGRAM, ">$root") || die "can’t open $root: $!";

print_chunk($root,’’);

}

close PROGRAM;

Uses @roots 3a.

The print\ chunk() subroutine takes two arguments, the name of the chunk
to print and a string representing the current indentation level (which is empty
for the beginning of root chunks)—this indentation argument will be discussed
shortly.

Now we can start defining our chunk of subroutine definitions, which at the
moment has only one:

5b 〈subroutine definitions 5b〉≡ (1) 7b .

〈sub print chunk 5c〉

The subroutine to print the chunk begins by assigning the two arguments to
lexical variables. This function will be called recursively to print out any chunks
contained within the current chunk being printed. For this reason, we need to
ensure that the current chunk name is actually defined in the \%chunks hash
(there may have been a typo in the name of an embedded chunk reference).
Then we may print the chunk.

5c 〈sub print chunk 5c〉≡ (5b)

sub print_chunk {

my ($chunk,$whitespace) = @_;

〈make sure chunk is defined 5d〉
〈print the chunk 6a〉

}

Defines:
$chunk, used in chunks 5d and 6a.
$whitespace, used in chunks 8b and 9a.

Testing whether the current chunk is defined is a simple matter of checking
its name in the \%chunks hash—if we do not find it we issue a warning and
return from the function (we should probably use die() here, but by using a
warning we can continue and perhaps find other such errors which the user can
then fix all at once).

5d 〈make sure chunk is defined 5d〉≡ (5c)

unless (exists $chunks{$chunk}) {

warn "undefined chunk name: lachunk$ra\n";

return;

}

Uses $chunk 5c, %chunks 3a, $la 2a, and $ra 2a.

5

Printing out the chunk is a fairly complex task and we need to break this
down into more manageable units before proceeding. First we will assign the
list of chunk information strings (offsets and line numbers for chunk definitions)
into a lexical array variable. Then we will seek to position to begin processing
a chunk, set a shebang line flag (we will discuss this shortly), set up and print
the line directive if necessary, and tangle out (print) the current chunk.

6a 〈print the chunk 6a〉≡ (5c)

my @locations = @{$chunks{$chunk}};

foreach my $item (@locations) {

〈get location info and seek to offset 6b〉
〈set flag for shebang line 6c〉
〈set and print line directive 7a〉
〈tangle out current chunk 8a〉

}

Defines:
$item, used in chunk 6b.
@locations, never used.

Uses $chunk 5c and %chunks 3a.

Remember that each chunk was assigned a list of strings, each of which was
a colon separated list containing the offset into the file, the filename itself, and
the line number. We simply split such a string at the colons into three lexical
variables and then seek() to the offset in the file where the chunk definition
begins (or is continued). The seek() function takes three arguments: A file-
handle to seek on, a byte offset position, and a third argument which tells it to
move to the position relative to a certain point (0 means move directly to that
position, 1 means move that many bytes forward from the current position, and
2 means move to byte position given relative to the end of the file—in which
case it usually only makes sense to use a negative byte offset). We use only the
0 flag for the third argument. The seek() function returns 1 if successful and
0 if it failed, so we can test it and die() just as we do for a call to the open()
function.

6b 〈get location info and seek to offset 6b〉≡ (6a)

my ($offset, $filename, $line_number) = split /:/,$item;

seek(FILE, $offset,0) || die "seek failed on $filename: $!";

my $line=<FILE>;

Defines:
$filename, used in chunks 7–9.
$line number, used in chunks 7–9.
$offset, used in chunk 8b.

Uses $item 6a and $line 3d.

In a perl program, you often use a ‘shebang’ line as the first line in the
program. This line must be the first line in the file so we do not want a line
directive emitted before this line. Instead, we would like to emit a line directive
immediately following the shebang line and pointing to the next line in the code
chunk. Here we merely test if the current code line is a shebang line and set a
flag if it is.

6

6c 〈set flag for shebang line 6c〉≡ (6a)

my $shebang_special = 0;

$shebang_special = 1 if $line =~ m/^#!/;

Defines:
$shebang special, used in chunks 7a and 9b.

Uses $line 3d.

At this point we need to create a formatted line directive, substituting in the
correct information for the placeholders we used in the \$Line\ dir variable.
We will format this line directive in a separate function. Then we need to print
out this line directive, but only if the current line is not a shebang line, or an
embedded chunk reference (in which case, we will want to print a line directive
when processing that chunk). We use a simple set of logical ORs which will
terminate at the first expression that is true, and thus only print out the line
directive when it is needed.

7a 〈set and print line directive 7a〉≡ (6a)

my $line_dir;

if ($Line_dir) {

$line_dir = make_line_dir($line_number,$filename);

$line =~ m/^\s*$la.*?$ra\s*$/ ||

$shebang_special ||

print PROGRAM "$line_dir";

}

Defines:
$line dir, used in chunks 7–9.

Uses $filename 6b, $la 2a, $line 3d, $Line dir 2a, $line number 6b, $ra 2a,
and $shebang special 6c.

Since we have just used the make\ line\ dir() function, we should go ahead
and define it here—this also illustrates the point about being able to write our
literate source in the order that makes sense for discussion. First let’s add to
the subroutine definitions chunk:

7b 〈subroutine definitions 5b〉+≡ (1) / 5b

〈sub make line dir 7c〉

Now, the function to format our line directive is a simple set of substitutions
operations. The function is passed parameters for the current line number and
the filename, which we immediately assign to lexical variables. We then declare
a new lexical \$line\ dir variable and assign it the value of our file scoped
\$Line\ dir variable which holds the line directive string with placeholders.
Finally, we simply replace the placeholders with their proper values and return
the value of the \$line\ dir variable.

7c 〈sub make line dir 7c〉≡ (7b)

sub make_line_dir {

my ($line_no,$file) = @_;

my $line_dir = $Line_dir;

$line_dir =~ s/\%L/$line_no/;

$line_dir =~ s/\%F/$file/;

$line_dir =~ s/\%\%/%/;

7

$line_dir =~ s/\%N/\n/;

return $line_dir;

}

Uses $file 3a, $Line dir 2a, $line dir 7a, and $line no 3d.

In order to tangle out our chunk, we use a similar loop to that used when
parsing the chunks in the first place—that is, we continually loop while the
current line does not match a chunk terminating line (we must make sure we
read in another line in both of blocks of the if/else statement or we would
be looping forever on the same line). Inside the loop the current line might be
an embedded chunk reference, in which case we will need to tangle out that
embedded chunk. Note, we are capturing the leading whitespace if there is
an embedded chunk reference, as well as the chunk name—this way we can
call the print\ chunk() routine and pass it a string representing the current
indentation level so our tangled code has the appropriate indentation. If the
line does not contain a chunk reference, we will simply print the code line (and
print out a line directive following it if it was a shebang line).

8a 〈tangle out current chunk 8a〉≡ (6a)

while ($line !~ m/^(\@\s*$|\@\s\%def)/) {

if ($line =~ m/^(\s*?)$la([^>]+)$ra\s*$/) {

〈tangle out embedded chunk 8b〉
} else {

〈print out line 9a〉
〈take care of shebang line 9b〉

}

}

Uses $la 2a, $line 3d, and $ra 2a.

To tangle out an embedded chunk, we first get the current offset into the file
and calculate our new indentation level. Then we make a recursive call to the
print\ chunk() function to deal with the embedded chunk. Following that we
simply reset our indentation to its previous value, seek() back to where we left
off in the file and read in a new line from the file. We will also have to print a
new line directive indicating our position in the file again.

8b 〈tangle out embedded chunk 8b〉≡ (8a)

my $offset = tell FILE;

my $addedspace = $1;

$whitespace = $addedspace.$whitespace;

&print_chunk($2,$whitespace);

$whitespace = substr($whitespace,length($addedspace));

seek(FILE,$offset,0) || die "can’t seek on $filename: $!";

$line_number += 1;

$line = <FILE>;

〈add returning line directive 8c〉
Uses $filename 6b, $line 3d, $line number 6b, $offset 6b, and $whitespace 5c.

We need to add a new line directive to indicate that we have returned back
the position in the current chunk. We need only do this if the current line is
not another chunk reference.

8

8c 〈add returning line directive 8c〉≡ (8b)

if ($Line_dir) {

$line_dir = make_line_dir($line_number,$filename);

print PROGRAM $line_dir if $line !~ /^\s*$la.*?$ra\s*$/;

}

Uses $filename 6b, $la 2a, $line 3d, $Line dir 2a, $line dir 7a, $line number 6b,
and $ra 2a.

If the current line is not a chunk reference we simply need to print it out
with the correct amount of leading whitespace, read in another line line from
the file and increment our line number counter.

9a 〈print out line 9a〉≡ (8a)

print PROGRAM $whitespace,$line;

$line = <FILE>;

$line_number += 1;

Uses $line 3d, $line number 6b, and $whitespace 5c.

Finally, if the current line is a shebang line then we want to add a line
directive directly after it, and reset the shebang flag to 0.

9b 〈take care of shebang line 9b〉≡ (8a)

if ($Line_dir && $shebang_special) {

$line_dir = make_line_dir($line_number,$filename);

print PROGRAM "$line_dir" if $line !~ m/^\s*$la[^>]+$ra\s*$/;

$shebang_special = 0;

}

Uses $filename 6b, $line 3d, $Line dir 2a, $line dir 7a, $line number 6b, $ra 2a,
and $shebang special 6c.

That concludes the pqtangle program. The whole program is about 95
lines of code and won’t be listed here. Of course, you already have enough
experience reading the chunk syntax that you can assemble it from the literate
listing above. If you do not wish to enter the code manually, the tangled script
is available at the site mentioned in the previous section.

9

Identifier Index

$chunk: 5c, 5d, 6a
%chunks: 3a, 4a, 4b, 5d, 6a
$file: 3a, 3c, 4a, 7c
$filename: 6b, 7a, 8b, 8c, 9b
$item: 6a, 6b
$la: 2a, 3d, 4a, 5d, 7a, 8a, 8c
$line: 3d, 4a, 6b, 6c, 7a, 8a, 8b, 8c,

9a, 9b
$Line dir: 2a, 2b, 7a, 7c, 8c, 9b
$line dir: 7a, 7c, 8c, 9b

$line no: 3d, 4a, 7c
$line number: 6b, 7a, 8b, 8c, 9a, 9b
@locations: 6a
$offset: 6b, 8b
$ra: 2a, 3d, 4a, 5d, 7a, 8a, 8c, 9b
$Root: 2a, 2b, 4b
@roots: 3a, 4b, 5a
$shebang special: 6c, 7a, 9b
%used: 3a, 4a, 4b
$whitespace: 5c, 8b, 9a

Chunk Index

〈add returning line directive 8c〉
〈declare variables 2a〉
〈find and parse chunks 3d〉
〈get location info and seek to offset 6b〉
〈get options 2b〉
〈make array of root chunks 4b〉
〈make sure chunk is defined 5d〉
〈open and parse file for chunks 3b〉
〈open the source file 3c〉
〈parse chunk 4a〉
〈pqtangle 1〉

〈print out line 9a〉
〈print root chunks 5a〉
〈print the chunk 6a〉
〈set and print line directive 7a〉
〈set flag for shebang line 6c〉
〈sub make line dir 7c〉
〈sub print chunk 5c〉
〈subroutine definitions 5b〉
〈take care of shebang line 9b〉
〈tangle out current chunk 8a〉
〈tangle out embedded chunk 8b〉

10

