learning-problem type (examples attributes goals)
attribute-name function (attribute)
attribute-values function (attribute)
attribute-value function (attribute example)
random-examples function (n attributes)
classify function (unclassified-examples goals h performance-element)
consistent function (examples goals h performance-element)
Coded examples have goal values (in a single list) followed by attribute values, both in fixed order
code-examples function (examples attributes goals)
code-example function (example attributes goals)
code-unclassified-example function (example attributes goals)
print-learning-problem function (problem &optional stream depth)
learning-curve function (induction-algorithm examples -> hypothesis performance-element hypothesis + example -> prediction examples attributes goals trials training-size-increment &optional error-fn)
this version uses incremental data sets rather than a new batch each time
incremental-learning-curve function (induction-algorithm examples -> hypothesis performance-element hypothesis + example -> prediction examples attributes goals trials training-size-increment &optional error-fn)
accuracy function (h performance-element test-set goals &optional error-fn)
decision-tree-learning function (problem)
dtl function (examples attributes goal &optional prior)
distribution function (examples goal)
majority function (examples goal)
select-attribute function (examples attributes goal)
information-value function (a examples goal)
bits-required function (d)
dtpredict is the standard "performance element" that interfaces with the example-generation and learning-curve functions
dtpredict function (dt example)
decision-list-learning function (k problem)
dll function (k examples attributes goal)
select-test finds a test of size at most k that picks out a set of examples with uniform classification. Returns test and subset.
select-test function (k examples attributes goal)
select-k-test function (k examples attributes goal test-attributes)
generate-terms function (attributes)
uniform-classification function (examples goal)
passes function (example test)
dlpredict is the standard "performance element" that interfaces with the example-generation and learning-curve functions
dlpredict function (dl example)
unit type (parents sequence of indices of units in previous layer children sequence of indices of units in subsequent layer weights weights on links from parents g activation function dg activation gradient function g' (if it exists) a activation level in total weighted input gradient g'(in_i) )
make-connected-nn returns a multi-layer network with layers given by sizes
make-connected-nn function (sizes &optional previous g dg)
step-function function (threshold x)
sign-function function (threshold x)
sigmoid function (x)
nn-learning establishes the basic epoch struture for updating, Calls the desired updating mechanism to improve network until either all correct or runs out of epochs
nn-learning function (problem network learning-method &key tolerance limit)
nn-error function (examples network)
network-output function (inputs network)
nn-output is the standard "performance element" for neural networks and interfaces to example-generating and learning-curve functions. Since performance elements are required to take only two arguments (hypothesis and example), nn-output is used in an appropriate lambda-expression
nn-output function (network unclassified-example attributes goals)
unit-output computes the output of a unit given a set of inputs it always adds a bias input of -1 as the zeroth input
unit-output function (inputs unit)
get-unit-inputs function (inputs parents)
random-weights function (n low high)
print-nn prints out the network relatively prettily
print-nn function (network)
perceptron learning - single-layer neural networks make-perceptron returns a one-layer network with m units, n inputs each
make-perceptron function (n m &optional g)
majority-perceptron function (n &optional g)
perceptron-learning is the standard "induction algorithm" and interfaces to the learning-curve functions
perceptron-learning function (problem)
Perceptron updating - simple version without lower bound on delta Hertz, Krogh, and Palmer, eq. 5.19 (p.97)
perceptron-update function (perceptron actual-inputs predicted target &optional learning-rate)
back-propagation learning - multi-layer neural networks backprop-learning is the standard "induction algorithm" and interfaces to the learning-curve functions
backprop-learning function (problem &optional hidden)
Backprop updating - Hertz, Krogh, and Palmer, p.117
backprop-update function (network actual-inputs predicted target &optional learning-rate)
backpropagate function (rnetwork network in reverse order inputs the inputs to the network deltas the "errors" for current layer learning-rate)
backprop-update-layer function (layer all-inputs deltas learning-rate)
compute-deltas propagates the deltas back from layer i to layer j pretty ugly, partly because weights Wji are stored only at layer i
compute-deltas function (jlayer ilayer ideltas)
q-entry function (q a i)
all-q-entries function (i q)
q-actions function (s q)
Given an MDP, determine the q-values of the states. Q-iteration iterates on the Q-values instead of the U-values. Basic equation is Q(a,i) <- R(i) + sum_j M(a,i,j) max_a' Q(a',j) where Q(a',j) MUST be the old value not the new.
q-iteration function (mdp &optional qold &key epsilon)
average-successor-q function (a i q m)
Compute optimal policy from Q table
q-optimal-policy function (q)
Choice functions select an action under specific circumstances Pick a random action
q-random-choice function (s q)
Pick the currently best action
q-dmax-choice function (s q)
Pick the currently best action with tie-breaking
q-max-choice function (s q)
*restaurant-multivalued* variable
*restaurant-multivalued-problem* variable
*restaurant-real* variable
*restaurant-real12-problem* variable
*restaurant-real100-problem* variable
*restaurant-boolean* variable
*restaurant-boolean-problem* variable
*majority-boolean* variable
*majority-boolean-problem* variable
*ex-19-4-boolean-problem* variable
*and-boolean-problem* variable
*xor-boolean-problem* variable
*4x3-passive-m-data* variable
*4x3-passive-r-data* variable
*4x3-passive-mdp* variable
make-passive-lms-learner function ()
lms-update function (u e percepts n)
make-passive-adp-learner function ()
Updating the transition model according to oberved transition i->j. Fairly tedious because of initializing new transition records.
update-passive-model function (j current state (destination of transition) percepts in reverse chronological order m transition model, indexed by state )
(passive-policy M) makes a policy of no-ops for use in value determination
passive-policy function (m)
*alpha* variable
initial learning rate parameter
make-passive-td-learner function ()
td-update function (u e percepts n)
current-alpha function (n)
make-random-adp-learner function (actions)
make-maximizing-adp-learner function (actions)
make-active-adp-learner function (actions choice-function)
Update current model to reflect the evidence from the most recent action
update-active-model function (mdp current description of envt. percepts in reverse chronological order action last action taken )
make-random-qi-learner function (actions)
make-maximizing-qi-learner function (actions)
make-active-qi-learner function (actions choice-function)
*r+* variable
*ne* variable
exploration-function function (u n)
make-exploring-adp-learner function (actions)
Given an environment model M, determine the values of states U. Use value iteration, with initial values given by U itself. Basic equation is U(i) <- r(i) + max_a f(sum_j M(a,i,j)U(j), N(a,i)) where f is the exploration function. Does not applyt to terminal states.
exploratory-value-iteration function (mdp &optional uold &key epsilon)
exploration-choice function (s u m r)
make-exploring-tdq-learner function (actions)
update-exploratory-q function (q a i j n ri)
exploration-q-choice function (s q n)
AIMA Home | Authors | Lisp Code | AI Programming | Instructors Pages |