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Introduction
This document is an attempt to clearly explain the basic principles of image compression, JPEG

encoding in particular. The entire process of creating a digital image is fundamentally based on the

creation and manipulation of pixels. A pixel is a single point of color. Viewed on a computer or

television screen, they are a composite of varying intensities of the primary colors Red, Green, and

Blue. Image compression is essentialy the process of manipulating these three basic colors in any

number of esoteric ways to reduce the amount of information needed to represent an image and to

control the level of detail.

The process of JPEG conversion is twofold. First, image information is converted into different

formats which allow more exacting control over minute aspects. Once a certain level of control has

been reached, certain parts of the image, which due to the limitations of the human eye, can be

removed without any noticeable effect. Once those uneccesary aspects are removed, the image is then

viewed as pieces of data, which are rearranged and re-ordered with the intent of storing the maximum

possible amount of information in the smallest possible space.

The goal of this paper is to provide what is more or less a laymans guide to this entire process.

In order to do this several basic concepts of image and data representation as well as conceptual

abstractions must be explored. The process of JPEG conversion is much more detailed and complex

than is within the scope of this paper. That said, this is still somewhat of a technical document, but

every attempt is being made to explain these concepts in a clear and concise manner. The downside

to this is that omissions and generalizations are neccesary. This is by no means an authoritative

document, and should be used as a guide, not a primary reference source.
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Color

RGB
When creating color on a pixel, each component of Red, Green, and Blue light is defined as a

value of intensity. For the purpose of this paper color intensity is defined in a range of 0 to 255, 0

being complete dark and 255 being as intense as it gets. Because they are primary colors they can be

combined in varying ratios to create any color desired. However, there is a substantial difference

between mixing these colors and the mixing of, for instance, paint colors. The mixing of paint is

done in what is called a subtractive manner. When you mix equal parts of red, green, and blue paint,

you’ll come up with black, or at the very least a really icky brown color. RGB mixing, on the other

hand, is an additive process. If you mix equal parts of each together you create white.

This additive quality, among other things, makes RGB very well suited for pixel representa-

tion but when trying to store large amounts of image data,  a little bit of a snag can occur. For ex-

ample, take these images demonstrating the difference

between additive and subtractive mixing. They’re each

100x100 pixel images with each pixel requiring 3 seperate

components. So in order to display just one of these

relatively small images, there are 3 x 100^2 values that

need to be stored. Thats 30,000 values. It’s fairly obvious

how that could balloon into something absurd very quickly. So the problem is, how do you represent

these images without taking up such absurd amounts of space?

YUV
Another method of representing color information is known as YUV. While they both consist of

three seperate image components, the way they represent data is drastically different. Instead of using

Additive Mixing             Subtractive Mixing
Taken from RGB entry on the wikipedia
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three basic values of color to create pixel values, YUV is composed of a Luminance component (Y)

which describes light intensity, and two Chrominance components (Cb and Cr) which define color.

This method of representation, in addition to more closely mirroring the functioning of our own

visual systems, allows for slightly more control over various aspects of the pixel. Since the intensity

and color of a pixel are seperated, they can each be manipulated independent of the other. This is not

something really possible with the RGB model, because of the very basic nature of how it defines

color, you can’t manipulate a specific color without affecting the intensity as well.

This seperation of components is vital, especially because the Chrominance values contain far

more information than the human eye can interpret. This fact combined with the ability to alter the

chrominance values independently allows us to begin to weed out information that is doing nothing

but taking up space. The next progression in this attempt to more effeciently control these color

values is a rather large jump into the world of differential equations.

The Discrete Cosine Transform

The Discrete Cosine Transform is a mathematical formula which belongs to a family of functions

known as Fourier Transforms. The Mathematics of the DCT are intense and fairly confusing for those

who aren’t intimately familiar with higher level math. To

put it concisely, when a DCT is applied to a set of nu-

meric data, it looks at the entire set and interprets it as a

waveform. If you give it a set of 64 numbers representing

a waveform it will give you back a new set of 64 numbers representing the sinusoidal values of the

waveform.

Now, unless you harbor an intimate love of math, that last paragraph probably made little, if

any, sense. Defining this in laymans terms can be a little tricky, and rife with innacuracies that are

fairly irrelevant as far as long as you’re more concerned with the effect of the formula as opposed to

the way it works.

For the purpose of image compression, this formula is applied to an 8x8 block of individual

The Discrete Cosine Transform
Copied from wikipedia entry on the DCT.
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pixel components (Y, Cb, or Cr independent of the others). It crunches over all 64 values in the block

and returns a completely different set of 64 values referred to as  DC-components. This new set of 64

DC-components represent various components of the entire 8x8 block, as opposed to components of

each individual pixel. The DC-Components are ordered from lowest to highest in terms of complex-

ity, or detail.

The first few DC-components are fairly vauge representations of whichever image component

the DCT was run on. For instance, if the DCT was run on a block of Luminance values, the first few

DC-components it returned would be generalized values of Luminance which were present over the

entire block. Like RGB, these DC-components are combined in an additive nature. Each new DC-

coeffecient provides greater levels of detail, eventually representing the same amount of information

as the original block, but in a completely different notation.

It is at this point where severe manipulation of the image data occurs, through a process

called image quantization.

Quantization
In sharp contrast with the DCT, image quantization is a refreshingly straightforward process. As

already noted, there is quite a lot of excess information contained in images. The DCT has seperated

out these levels of complexity which means that they can now be altered or completely removed.

Quantization is not much more than simple division.

Depending on the image component that the DCT was run on, each DC-component in the 8x8

block is divided by a corresponding value contained in the appropriate quantization table.

Luminance Quantization Table Chrominance Quantization Table
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After the quantization occurs, the resulting value is rounded off and saved. Many values end up

rounding off to zero because of the value of the number they are being divided by. The design of the

quantization table can be completely arbitrary, however, the ones shown above are the standard tables

defined by the ITU-T81 JPEG standard and do a pretty good job of getting rid of excess information

without degrading or effecting the quality of the image.

The quality of the image can be further tweaked by multiplying the quantization values by a

(usually small) number choosen by the encoder. Generally speaking though, a value of two or greater

renders the image more or less unrecognizable.

At this point, we’ve skimmed pretty much all of the fat that we can off of the image data. The

next stage of the process involves various encoding schemes designed to futher minimize the size of

the data.

Encoding
In order to understand the full value of encoding data, a basic understanding is required for how

data in general is stored on a computer, specifically the concepts of hexadecimal and binary notation.

Bytes, Bits, and Hex’s
At the absolute lowest level, all data on a computer is stored in the binary notation of 1’s and 0’s

called bits. However, these binary values are generally managed in groups of hexadecimal values

called bytes. Each byte contains 8 bits which can be used to represent any number of things. For

example,  the character “A” is represented by the hexadecimal value 41 which has the binary value of

01000001. So that’s one byte with a value of 41, stored in the 8 bits 01000001.

Runlength Coding
Often in data streams there is quite a bit of repetition. Runlength Coding (RLC) is a very simple
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way to take advantage of that repetition to further decrease the space required to store that data. It

works is by replacing long strings of repeating values with one instance of the value and a number

indicating how often that value is repeated. Look at the following stream of data

 AAABAACAACDDAAAAABABABBBBBBDDD

 That’s 30 separate values stored in 240 bits. Now if we rewrite it using RLC, we get :

 (3A) (B) (2AAC)  (DD) (5A) (2BA) (6B) (3D)

That’s 18 Values stored in 144 bits, almost half of what we had initially. There are more com-

plex implementations of RLC, including the one used by JPEG which is called zero runlength cod-

ing. It’s not something worth explaining at this point, just keep this concept in mind.

Huffman Encoding
The Huffman encoding scheme is one which concentrates on a lower level of data storage.

Instead of merely dealing with the end values, it creates an alternate model for the binary representa-

tion and storage of values. Like RLC, it also looks at repetition in data, but it completely ignores the

ordering, concentrating instead on frequency of character occurence. Consider the following string of

data

AAHHHBCCDHHDDDHFFEEEEGEGABCDBEFHHEFAHHBDA

The first step to encoding this string is to look at the number of time each  individual character

occurs and build a  frequency table ordered by occurrence values.  Once we have the table, we use it

to build a data model called a Huffman Tree. This tree is just a way to visually represent an abstract

data structure. It’s construction logic is straightforward but doesn’t neccesarily make sense if until
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you see the end result. For now just worry about the construction of the tree, not the reasoning behind

it’s design.

Building the Tree

The first thing we do is look for the two lowest occurrence values (G and C) and group them

together to start the tree.

Now, instead of removing G and C from the frequency table, combine their values, so they’re

now worth 5. Now start again, looking for the next two lowest values (F and B) and add them to the

tree.

Now, rebuild the frequency table, and repeat the process. At this point the two lowest values are

GC and A. This means that we just add  A onto the GC section of the tree..

We continue this process, until every value is present in the tree, at which point we get a model

that looks like this.

If we start at the bottom of the tree and want to reach any particular value, we travel in a series

left and right movements up the tree. For instance, if we wanted to reach A, then we would go Left,

Left, then Right. If we describe this path up the tree in binary by stating that a 1 value indicates a

Character    G  C  F  B  A  D  E  H
Occurence  2   3  4   4  5  6  7  10

G        C

Character     F   B  GC   A  D  E  H
Occurence    4   4    5    5  6  7  10

G       C F       B

            G    C  A   F     B

       G    C    A      E         F    B    D    H
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move left, and a 0 value indicates a move right, we have a simple and economical method to repre-

sent this movement.

This manner of representation can be recorded in what a Huffman Table, which is a  list of

binary values called Huffman codes corresponding to a list of the characters.

The reasoning behind the tree structure is hopefully clearer at this juncture. The values that

occur most commonly  have the shortest Huffman code, while the values that occur less frequently

have longer Huffman codes. Now it all comes together.

The Huffman table is encoded in the file preceding the data. This table has 8 characters and 26

binary values, so it comes out to a total of 90 bits. Now instead of writing out the hexadecimal value

of each character we can write out the Huffman code for it.

In order to write out 10 of the characters of the string this table was built for in regular hexadeci-

mal, it would take 80 bits to represent.However, writing it out using the Huffman codes only requires

the use of 32 bits..

In this particular case, the requirement to include the 90 bit Huffman table increases the size of

       G    C    A      E         F   B    D      H

1

1

1

1

1

1

1

0

0

0

0

0

0

0
      H 00
      E 10
      D 010
      A 110
      B 0110
      C 1110
      F 0111
      G 1111

        Character  Huffman Code

AAHHHBCCDHH

010000010100000101
001000010010000100
100001001000010000
100100001101000011
010001000100100001
001000

1101100000000110
111011100100000

Original String

Binary Representation

Huffman Representation
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the Huffman encoded string to 122. However, if the entire string is encoded with this method, you

have more respectable savings. In straight hexadecimal notation, the entire string takes up 328 bits.

Huffman encoding is able to represent the string in 209 bits (including the 90 bit table). It should be

fairly obvious at this point that the Huffman scheme works better with larger amounts of data. The

compression ratio is directly linked to the amount of data being encoded.

JPEG Encoder Walkthrough
Okay, we’ve gone over pretty much everything required to understand the JPEG  encoding

process. This section is meant to provide a concrete demonstration of the concepts discussed

throughout this paper.

Step 1 : Colorspace Conversion
The first thing we need to do is get the image data out of the RGB colorspace and into YUV.

Eric Hamilton’s paper “JPEG File Exchange Format”  details formulae for this conversion.

This is a simple matrix multiplication. Basically it says to multiply red by the first value in each

row, green by the second value, and blue by the third. Then total it all up and add 128 to the Cb and

Cr values, and nothing to the Y value.

Lets Start with the following values :

Y
Cb
Cr][ = 0.299    +   0.587   +  0.114

-0.1687 -   0.3313  +  0.5
0.5         -   0.4187  -  0.0813][ X Red

Green
Blue][  + 0

 + 128
 + 128

][+
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After applying the conversion formula we get these :

Step 2 :  Discrete Cosine Transform
Due to the annoyingly complex nature of the DCT, before these values can be run through it

they all need to have 128 subtracted from them. The explanation would take at least another 10 pages

and probably another two weeks.

Greens

18 23 30 34 30 20 28 22
21 33 30 32 32 26 28 20
23 25 28 61 68 50 22 18
52 46 54 109 110 46 15 21
96 95 77 107 82 38 27 25
111 136 90 90 68 89 80 39
116 170 125 130 143 173 143 61
159 182 162 152 186 177 165 79

 11 18 27 32 31 21 29 22
 15 29 27 30 31 29 30 23
 16 21 24 58 67 52 23 20
 43 39 50 107 108 48 18 22
 85 88 71 101 77 36 27 23
 99 124 82 81 61 84 75 36
 100 156 112 119 133 165 135 52
 141 166 145 138 172 165 153 66

Reds

33 32 34 34 32 29 38 28
44 51 44 42 42 41 40 29
56 53 52 82 88 70 38 30
95 85 89 143 140 75 40 37
148 144 122 150 121 73 57 49
169 190 143 140 117 134 119 70
175 228 181 187 197 226 190 99
220 241 219 210 244 235 219 123

Y Values
-106.31 -102.87 -97.14 -94.22 -97.28 -105.19 -96.896 -104.206
-100.80 -90.074 -94.15 -93.23 -93.12 -97.17 -96.184 -104.967
-95.931 -95.084 -93.28 -61.06 -54.13 -71.79 -101.10 -106.184
-64.169 -71.137 -63.99 -9.062 -9.258 -73.10 -105.18 -102.102
-17.706 -19.147 -38.22 -8.827 -34.90 -79.76 -92.03 -96.052
-1.026 22.778 -23.06 -24.07 -46.14 -26.11 -36.909 -80.073
3.817 57.746 12.262 17.789 30.006 59.93 28.141 -56.664
47.187 69.817 49.105 39.746 73.746 64.97 51.778 -37.326

Cb Values
-0.6634 2.83969 6.77029 9.13777 9.10769 4.9451 7.16117 5.54754
-0.6185 4.80301 5.08330 6.85444 7.35444 6.72191 7.32401 5.9451
-2.2091 0.73064 2.29996 13.1456 16.4015 12.5345 4.36001 4.34266
3.75074 3.63651 8.19668 25.7647 26.7377 9.82352 1.75505 4.06236
14.3519 16.5598 12.3675 21.6500 15.3706 4.42596 2.98958 2.40545
17.3122 25.4413 13.8942 13.9003 8.50926 16.4456 14.7743 4.89893
16.6344 33.9043 21.3240 23.6462 28.5285 38.6423 30.7094 7.27777
28.1183 36.3136 30.1876 28.5372 38.6750 36.9914 34.0882 9.63263

Cr Values
8.06909 4.90649 2.2439 0.16259
11.9878 9.3252 7.2439 5.1626
17.0691 14.3252 12.3252 10.7439
22.2317 20.0691 17.8252 17.1626
26.8943 25.0691 22.9878 21.9878
29.9756 27.9756 27.1504 25.7317
30.8008 30.1382 29.0569 29.3943
31.9634 30.8008 29.8821 30.1382

0.91870 4.4187 4.9187 3
5.0813 7.2561 5.8374 4.2561
10.0813 9.8374 7.9187 5.8374
15.1626 14.3374 12.2561 7.9187
19.9065 17.6626 15 12.1626
25.0691 22.9065 19.9065 15.7439
27.813 27.1504 24.1504 19.7317
0.1382 29.9756 27.9756 23.0569

Post DCT Y’s
-2839.684  -2110.108  421.9667  -288.6896  155.88795    144.81830   166.51424  62.793205
-76.55416  40.155171  -29.4407  -30.80738  8.1155219 113.28241   -195.5582  537.81862
-515.8054  -305.0000  242.9430  311.49422  -257.0510 -98.06543   7.9502593  29.452906
-39.40645  56.972388  -73.9698  92.662595  2.0637053 35.642327   -484.3606  577.09627
-94.39451  -100.6143  -41.1075  -111.2262    215.65232 -52.44706   20.779365  4.3598763
-3.059665  33.730500  -10.4739  43.337697  -47.84591 20.502824   -124.1418  284.50073
-214.0486  -117.0599  114.1007  -48.18856   30.374948 4.0808427   13.935403  20.556045
-40.04132  50.953505  -65.2861  107.60766  -61.65439 23.592612   -28.57956   61.993949
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Step 3 : Quantization
Now that we have the quantized values for each block of data, we pull in the quantization tables

and use them to weed out the information we don’t need. It is at this point that any image quality

choices should be made, uniform increase or decrease in the quantization table will directly affect the

end quality of the image.

It should be clear now why quantization is responsible for the biggest reduction in image

filesize. At this point, the image data is almost ready for encoding, however there are two small steps

to take before that happens.

The first step is to Zig-Zag re-order the values in each of the blocks. Zig-Zag reordering is a

pretty simple task. All you do is take the values from the DCT and rearrange them in a Zig-Zag order

Post DCT Cb’s

1108.186  -383.3392   -31.5466 -13.12400   -6.459576 0.1250999  -6.674715 0.7351888
-2.69333  7.7657266   -3.82009 4.5208844  -0.162558 5.0549597  -2.763259 139.37678
-4.29980  -54.11245   18.41341 8.3706858   4.0120400   4.8281583  3.2768756 7.1559714
-2.99068  10.178810   0.776009 9.3787279   -3.387893 12.860224  -9.154700 68.410796
-12.3600  -62.18321   -1.23797 -6.207398   0.2013820 -2.165932  2.6949863 2.4962227
-1.29278  1.7737930  0.908273 6.9747337   -5.071009 8.3684342  -1.967254 57.618788
0.044956  -46.95568   4.155120 -5.628569   0.3295392 -7.785915  0.6923177 1.6984639
-1.62035  2.7969660   -0.99463 2.7965586   1.1023176 4.2847946  -3.991238 43.448326

Post DCT Cr’s

872.15656  -354.1337 110.04863  -78.69675  45.697784  40.178537  -51.29957  12.792144
-20.05875  5.0561958 -7.675064  -22.16592  1.5894958  20.237869  -56.05146  46.923676
-160.6473  -30.53594 59.387422  94.214057  -82.48934  -31.10950  0.4861114  6.0760250
-9.576603  11.458551 -21.63120  24.074417  0.9153078  3.4126870  -134.1091  118.47385
-31.06748  18.120246 -11.68223  -29.38433  62.304479  -12.14458  7.3675185  -1.558818
-2.585503  7.7186281 -3.000186  10.429191  -14.20979  -0.729168  -36.68985  43.665873
-63.01157  1.9517068 29.842508  -7.926997  7.0729022  4.1746896  7.2089793  2.9872271
-9.711238  17.180228 -17.90075  29.629483  -14.08521  0.1563493  -7.445540  -17.97507

Quantized Y Values

-177  -191   42  -18   6  3 -3 1
-6  3    -2   -1   0  1 -3 9
-36  -23    15   12   -6  -1 0 0
-2  3    -3   3   0  0 -6 9
-5  -4    -1   -1   3  0 0 0
0  0    0   0   0  0 -1 3
-4  -1    1   0   0  0 0 0
0  0    0   1   0  0 0 0

Quantized Cr Values

51 -19 1 0 0 0 0 0
0 0 0 0 0 0 0 0
-3 -1 0 3 -1 0 0 0
0 0 0 0 0 0 -1 1
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Quantized Cb Values

65 -21 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 -3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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[The DC-Coeffecient] is the coefficient in the quantized vector corresponding to the

lowest frequency in the image (it's the 0 frequency) , and (before quantization) is

mathematically = (the sum of 8x8 image samples) / 8 . (It's like an average value for

that block of image samples). It is said that it contains a lot of energy present in the

original 8x8 image block. (Usually it gets large values).

The DC values are later encoded in a slightly different matter seperately from the rest of the

image data (referred to as the AC-Coeffecients).

in the same matrix. The re-ordering table below is a representation of where the old values go in the

new matrix. Although it doesn’t really work in this case, the majority of the time this allows for

easier runlength encoding of the quantized values.

The second step is to remove the first value of each block and put it aside seperately before

encoding the rest of the data. This value is called the DC-Coeffecient, and Cristi Cuturicu does an

excellent job of explaining it’s importance in his “Note about the JPEG Decoding Algorithm” :

Zig-Zag Reordering Table
From Page 30 of ITU-T81

Y Values Zig-Zagged

-177  -191 3   -3  -3  9 3 0
42  6   1    1  -36 -3 0 0
-18 -6   0   -23   3 -6 0 0
3 -1   15   -2  9 0 0 0
-2 12   0   -5  0 0 0 0
-6 0   -4   0  -1 0 0 0
-1 -1   0   3  1 0 1 0
-1 3   -4  -1  0 0 0 0

CB Values Zig-Zagged

65 -21 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 -3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Cr Values Zig-Zagged

51 -19 0 0 0 0 0 0
1 0 0 0 -3 0 0 0
0 0 0 -1 0 -1 0 0
0 0 0 0 1 0 0 0
0 3 0 -1 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Using this scheme, the encoded values for each component are :

After all the 8x8 blocks in the image have been encoded, a (once again) slightly modified

Huffman encoding is performed. When encoding an entire image, all of the component values for all

the blocks are used to build the frequency count. Since we’ve only got one of each here, we’ll just

use that data, but it’s important to remember that at this point we are no longer operating on indi-

vidual 8x8 blocks of data.

Before the frequency count of is taken, the strings of zero-runlength encoded data are altered.

The second value of each runlength pair is replaced by the minimum number of bits required to

represent that value and the binary representation of the actual value is placed after the runlength

pair. When encoding negative numbers, the bits required to store that number as a positive value are

counted, the bits are inverted, and that value is stored after the runlength pair.

For Example:

Once everything has been converted in that manner a frequency count is taken of the runlength

pairs, but not the binary value.

(0, -191)  (0, 3)     (0, -3)   (0, -3)    (0, 9)     (0,3)     (1, 42)
(0,6)     (0, 1)     (0, 1)     (0, -36)  (0, -3)   (2, -18) (0, -6)
(1, -23)    (0, 3)     (0, -6)   (2, 3)      (0, -1)   (0, 15)  (0, -2)
(0, 9)     (3, -2)   (0, 12)   (1, -5)     (4, -6)   (1, -4)  (0, -1)
(3, -1)      (0, -1)   (1, 3)     (0, 1)      (1, 1)     (0, -1)  (0, 3)
(0, -4)      (0, -1)   (3, 0)

Encoded Y Data

(0, -21) (3, 1) (13, -3) (15, 0)  (15, 0) (11, 0)

Encoded Cb Data

(0, -19) (6, 1)  (3, -3) (6, -1)  (1, -1) (6, 1)
(4, 3)    (1, -1) (4, -1)   (15, 0) (6, 0)

Encoded Cr Data

Initial Positive Value # of bits Binary New Runlength
Pair In Binary required Value String
(0, -191) 10111110 8 01000001 (0, 8) 01000001
(0, 12) 00001100 4 1100 (0, 4) 1100
(1, -23) 00010111 5 01000 (1, 5) 01000
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The DC Coeffecient

Now We’ve got all the information we need to write the AC-coeffecients out to a file, but we

still need to code the DC. In yet another weird little trick, the designers of the JPEG standard decided

that because the DC-Coeffecients of progressive blocks where generally fairly close together, they

would encode not the value of the DC, but rather the difference between the current DC and the last

one. So essentialy, the value encoded = (DCcurrent - DClast). For the first DC value of any image, DClast

is equal to zero.So in order to store these values, you first need to convert them all to the difference

values, and then proceed to zero runlength and huffman encode those values.

The Final Bit-Stream
Now we’ve got our fully encoded image data just ready to be written to a JPEG file. The JPEG

file is structured in a fairly intricate manner. After the markers identifying it as a JPEG, the quantiza-

tion tables used are written to the file. After that each individual Huffman table is recorded, and

finally, the image data is written out.

So uh...Now what?
 That’s pretty much all there is to tell. If you’re at all interested in pursuing this concept any

further, I’ve got a minor reading list assembled that you might find amusing.

Books
Video and Image Processing in Multimedia Systems

Borko Furht Stephen W. Smoliar and Hongjiang Zhang
Kluwer Academic Publishers

Image and Video Compression Standards
Vasudev Bhaskaran and Konstantinos Konstantinides
Kluwer Academic Publishing

Files
The Jpeg File Interchange Format  by Eric Hamilton
ITU-T81 (The Last Free JPEG Standard)
A note about the JPEG decoding algorithm by  Cristi Cuturicu
The Wikipedia....It’s awesome, in the original sense of the word.



Appendix A : JpegEnc.pl

#!/usr/bin/perl

Declaring Modules :
GD is used for importing image data
Math::FFT is used to apply the DCT
Algorithm::Huffman builds the huffman tables.

use GD;
use Math::FFT;
use Algorithm::Huffman;

####
# Grab image data from the command
# line and get info about it.
####

Getting the Image :

We take the name of the picture from the command line,
at this point this script only accepts PNG images.

my $pic = shift;
my $img = GD::Image->newFromPng($pic, 1);

Get image height and width information, use it
to create variables describing the number of 8x8 blocks
in the image. After all these, undefine the $pic variable.

my ($width, $height) = $img->getBounds();
my $wblock = ($width  / 8);
my $hblock = ($height / 8);
my $blocks = ($wblock * $hblock);
undef $pic;
my @HuffCount;
my @data;

Tables :
Define the quantization and the zig-zag tables here. The quantization
tables have already been zig-zag reorderd for ease of use.

my @LuminanceQT = qw
(16 11 40 51 60 55 29 51 10 24 61 58 14 22 87 55 16 12 26 13 17 80
35 64 12 19 16 14 62 24 81 121 14 24 56 18 77 104 103 120 40 69 22
103 113 87 101 112 57 37 109 92 78 72 98 100 56 68 49 64 92 95 103 99);

my @ChrominanceQT = qw
(17 18 99 99 99 99 99 99 24 99 99 99 24 99 99 99 47 18 99 26 56 99 99
99 21 66 56 47 99 99 99 99 26 99 99 99 99 99 99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99);

my @ZigSort = qw
(0 1 5 6 14 15 27 282  4  7  13 16 26 29 42 3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53 10 19 23 32 39 45 52 54 20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61 35 36 48 49 57 58 62 63);



Colorspace Conversion :
Here we take the RGB values for each pixel and convert them into YUV.

my $ct = 0;
my $blocktag = 0;
my $ct1 = 0;
my $ypos = 0;

This loop goes over each pixel, one 8x8 block at a time. Once it’s done a single 8x8 block, it
passes all of it’s information to the encoding subroutine, waits for it to finish, and then
processes the next 8x8 block

While ($ypos != $height)
{
for (my $x = 0; $x != $width; $x++)
{
$ct++;
for my $y (0 .. 7)

{
Color Conversion

my  ($r,$g,$b)   = $img->rgb($img->getPixel($x,$y));
push (@YVals,  ((0.299 * $r + 0.587 * $g + 0.114 * $b + 0) - 128));
push (@CbVals, ((-0.1687 * $r - 0.03313 * $g + 0.5 * $b + 128) - 128));

      push (@CrVals, (( 0.5    * $r - 0.4187  * $g - 0.0813 * $b + 128) - 128));
      $ct1++;
      }

if ($ct == 8)
{

This calls two subroutines  for each component. The call to the encoder subroutine
(which is run first) and then passes the output of the subroutine to the Parsing
subroutine. The output of the parsing subroutine is a count of how many
components it handles, and is placed in the nested array $Count

$Count{0}{$blocktag} = Parser(EncodeBlock(\@YVals,\@LuminanceQT),0,$blocktag);
$Count{1}{$blocktag} = Parser(EncodeBlock(\@CbVals, \@ChrominanceQT,1,

$blocktag),1,$blocktag);

$Count{2}{$blocktag} = Parser(EncodeBlock(\@CrVals, \@ChrominanceQT, 2,
$blocktag), 2, $blocktag);

undef @YVals;
undef @CbVals;
undef @CrVals;
$blocktag++;
$ct = 0;

                        }
                }

$ypos += 8;
        }
$blocktag—;

After all of the image data has been encoded and parsed, we build Huffman Tables
my $YHuff = Algorithm::Huffman->new(@HuffCount[0]);
my $YEncodeHash = $YHuff->encode_hash;

my $CbHuff = Algorithm::Huffman->new(@HuffCount[1]);
my $CbEncodeHash = $CbHuff->encode_hash;

my $CrHuff = Algorithm::Huffman->new(@HuffCount[2]);
my $CrEncodeHash = $CrHuff->encode_hash;

At this point we have all the neccesary data to write the JPEG stream. This code doesn’t
actually deal with writing this stream, as it’s an additional level of complexity that’s quite a
lot to handle.



sub EncodeBlock
{

This is the encoding subroutine. It gets passed an array reference to whatever image
data it’s currently working on, as well as a reference to whichever quantization table
should be used for that block of image data.

($arrayref, $qt) = @_;

Here we build the Fourier Transform object and run the DCT on whatever data the
encoder block has been passed. After that the data is zig-zag re-ordered.

my $fft   = new Math::FFT($arrayref);
my $dct  = $fft->ddct();
for $ct (0 .. 63) {push (@Zigged, $dct->[$ZigSort[$ct]]);}

Get rid of the FFT object and th DC-coeffecients.
undef $dct;
undef $fft;
undef $arrayref;
untie $fft;

Quantize all the data, round it off, and stick it in the @Rounded array.
for $ct (0 .. 63)

{
push (@Rounded, int($Zigged[$ct] / ($qt->[$ct] + 0.5)));
}

undef $qt;
undef @Zigged;

Here we take the DC-Coeffecient off of the @Rounded array so that we can encode
The AC-components seperately.

@RunValues = (shift (@Rounded));
@RunZeroes = 0;

Zero-Runlength Encoding of the AC-Coeffecients. $zct is the zero counter, which is used
to keep track of the amount of preceding zeroes for each value.

$zct = 0;
foreach (@Rounded)

{
If the current value is zero, increment the zero counter;

$zct++  if ($_ == 0);

If there are 16 zeroes in a row, create a RLC value of (0, 15) and reset the zero
counter.

if ($zct == 16)
{
push (@RunZeroes, 15 );
push (@RunValues, 0 );
$zct = 0;
}

If there is a non-zero value, pass that to the @RunValues array and record the
number of preceding zeroes in @Runzero. Then reset the zero counter.

if ($_ != 0)
{
push (@RunZeroes, $zct);
push (@RunValues, $_);
$zct = 0;
}

}



undef $zct;
undef @Rounded;

Here we encode the run-values in the binary representation used by the JPEG format.
foreach (@RunValues)

{
If the value is negative, make it positive and change the value $IsNeg to 1, so that
we can remember if it’s negative.

$val = ($_ * -1) and $IsNeg = 1 if ($_ < 0);
$val = $_ and $IsNeg = 0 if ($_ > 0);

Here we convert tha value in $_ into binary by using pack and unpack. By wrapping
the entire process in int() any leading zeroes that aren’t required are removed.

$_ = int(unpack(“B*”, pack(“n”, $val)));

If the value is a negative value, we flip the bits. This method of bit-inversion is string
based, not numeric. In an functional piece of code, this would be done in a numeric
manner for sake of effeciency.

s/0/a/g if ($IsNeg == 1);
s/1/b/g if ($IsNeg == 1);
s/a/1/g if ($IsNeg == 1);
s/b/0/g if ($IsNeg == 1);

Record the minimum number of bits required to encode the value, and record it in
@RunCategory.

for ($ct = 0; $ct != 16; $ct++)
{
$category = $ct if /(\w{$ct,})/;
}

push (@RunCategory, $category);
}

Here we create the huffman value of the DC and AC components.
$DcHuff = join ‘’, unshift(@RunZeroes), unshift(@RunCategory);
for $ct (0 .. $#RunZeroes)

{
push (@AcHuff, join ‘’, $RunZeroes[$ct], $RunCategory[$ct]);
}

This returns the image data and huffman values of the AC and DC components, as
well as a count of the number of huffman codes.

return ($DcHuff, $DcCoeff, \@AcHuff, \@RunValues, $#RunZeroes);
}

sub Parser
{

All the data from the encoder subroutine is passed to this one, as well as a value
indicating the type of data (Y = 0 Cb = 1 Cr = 2). Also passes the Block ID tag.

($DcHuff, $DcCoeff, $AcHuff, $AcCoeff, $Count, $Type, $Block) = @_;

for $ct (0 .. $Count)
{

The Huffman value and Coeffecient value are recorded in the a nested hash which
references an hash.

$data[$Type][$Block][$ct]->{huff} = $AcHuff->[$ct];
$data[$Type][$Block][$ct]->{coeff} = $AcCoeff->[$ct];



Build Frequency tables for the Huffman Encoding Algorithm.
if ($HuffCount[$Type]->{$AcHuff->[$ct]})

{
$HuffCount[$Type]->{$AcHuff->[$ct]}++ ;
}

else
{
$HuffCount[$Type]->{$AcHuff->[$ct]} = “1”;
}

}
Store the DC information and return the number of ac components for that specific
block.

$data[$Type][$Block][0]->{dchuff} = $DcHuff;
$data[$Type][$Block][0]->{dccoeff} = $DcCoeff;
return ($Count);
}


