Regression

Correlation Coefficient

So you have the following data :

x	y
1	100
2	150
5	300
8	290
10	500
15	450

You plug these into your favorite statistics program and learn that the correlation coefficient is

$$
r=0.897080517 \ldots
$$

Now what?

p-value

Turns out that one thing you can do is find a "p-value", which is the probability that random chance alone can account for a value of r that far from 0 .

The details look like this :

$$
\begin{aligned}
& H_{0}=\text { null hypothesis }=" r \text { is zero } " . \\
& N=\text { number of data points }=6 \text { in this example } \\
& d . f .=\text { degrees of freedom }=N-2 \\
& t=\frac{r}{\sqrt{\left(1-r^{2}\right) /(N-2)}}=\text { Students }-t \text { statistic }
\end{aligned}
$$

Then you do a "two-tailed test" to find the probability of getting a value of t that extreme by random chance alone.

in Excel

To do this with Excel, the function calls look like this :

```
r = CORREL ( Xarray, Yarray )
t = r/sqrt ((1-r^2)/(N-2))
```

```
p-value = = TDIST(t, N-2, 2)
```


So there, mnnh.

Jim Mahoney, April 2005

