Regression

Correlation Coefficient

So you have the following data:

X	У
1	100
2	150
5	300
8	290
10	500
15	450

You plug these into your favorite statistics program and learn that the correlation coefficient is

```
r = 0.897080517 \dots
```

Now what?

p-value

Turns out that one thing you can do is find a "p-value", which is the probability that random chance alone can account for a value of r that far from 0.

The details look like this:

$$H_0$$
 = null hypothesis = "r is zero".
 N = number of data points = 6 in this example
 $d.f.$ = degrees of freedom = $N-2$
 $t = \frac{r}{\sqrt{(1-r^2)/(N-2)}}$ = Students - t statistic

Then you do a "two-tailed test" to find the probability of getting a value of t that extreme by random chance alone.

in Excel

To do this with Excel, the function calls look like this:

```
r = CORREL ( Xarray, Yarray )
t = r/sqrt ((1-r^2) / (N-2))
```

2 explain.nb

$$p-value = TDIST(t, N-2, 2)$$

So there, mnnh.

Jim Mahoney, April 2005