1 Languages

a The language with symbols (, ), [ and ] whose valid strings are those with correctly matching and nested parentheses and brackets.

· This is a context-free language.

· For any p, the string ((…(())…)) of length 2p (p open parentheses followed by p close parentheses) is in this language.  Any way of splitting this string into three substrings x y and z for the pumping lemma must have y composed entirely of open parentheses, because |xy| ≤ p, so x and y must both be part of the first half of the string.  Since |y| > 0, any string xyiz with i ≠ 1 will have mismatched parentheses, and therefore won’t be part of the language, so this language fails the pumping lemma and is not regular.  Since a PDA can be built to parse this language, it is context free.
· Pushdown Automaton: 

Q = {A,B,C}

Σ = {(,),[,]}

Γ = {(,[,$}

δ = ({A,ε,ε→B,$}, {B,(,ε→B,(}, {B,[,ε→B,[}, {B,),(→B,ε}, {B,],[→B,ε}, {B,ε,$→C, ε })
q0 = A

F = {C}
· Context Free Grammar:
S → ε

S → A

A → AA

A → OpP

P → ACp

A → ObB

B → ACb

A → OpCp

A → ObCb

Op → (

Cp → )

Ob → [

Cb → ]

b The Fibonacci numbers, in some suitable representation. (For this solution, the input is of the form _11…111_, where the number of 1s is the number being input.)
· This is a context-sensitive language.

· For any p, let N be a Fibonacci number F(n) such that F(n-1) > p.  Encode that number as a string s of N ones terminated on both ends by a single underscore, making s a string in this language.  Divide s into 5 pieces uvxyz such that |vy| > 0 and |vxy| ≤ p.  If v and y do not contain any underscores, then they contain a number of ones greater than zero but no more than p.  When this string is pumped, where s2 = uv2xy2z, the number of ones in s2 will be |vy| greater than in s.  But the smallest Fibonacci number greater than N is  F(n+1) = F(n)+F(n-1) > F(n) + p, so s2 cannot represent a Fibonacci number, and is not in the language.  If, on the other hand, either v or y does contain an underscore, pumping those sections will result in a improperly formatted string, which would also not be in this language, because every string in this language has exactly two underscores.  This language fails the pumping lemma for context free grammars, but it can be recognized by an LBA, so the language must be context-sensitive.
· Linear Bounded Automaton:

See machine.txt and tape.txt
machine.txt is formatted to run on my turing-machine simulator from week six.  If the tape contains a Fibonacci number encoded as indicated above, the machine halts in the accept state.  If not, it halts in the reject state (or just halts if the tape isn’t formatted properly).  It never leaves the initial tape, but the turing-machine emulator grows the tape by head proximity to the right side, so in the last step, the emulator may grow the tape by 1.

The machine works by generating Fibonacci numbers on the tape.  If the input is consumed just as a Fibonacci number is completed, then the machine accepts.  If the input is consumed part way through creating the next Fibonacci number, the machine rejects.

You can run it with “java TuringMachine machine.txt start tape.txt 0 0”.

· Context Sensitive Grammar:
c The subset of {0, 1}* whose strings have even length and no more than 3 contiguous 1’s.

· This is a regular language.

· Because I can build a Finite Automaton to recognize this language, it must be regular, and regular is the most restrictive class in the Chomsky Hierarchy.

· Finite Automaton:

Q = {A1, A2, B1, B2, C1, C2, D1, D2, E}

Σ = {0, 1}

δ = ({A1,0→A2}, {A1,1→B2}, {A2,0→A1}, {A2,1→B1}, {B1,0→A2}, {B1,1→C2}, {B2,0→A1}, {B2,1→C1}, {C1,0→A2}, {C1,1→D2}, {C2,0→A1}, {C2,1→D1}, {D1,0→A2}, {D1,1→E}, {D2,0→A1}, {D2,1→E}, {E,0→E}, {E,1→E})
q0 = A1
F = { A1, B1, C1, D1}

· Right Regular Grammar:
A → 0C

A → 1D

A → 1E

A → ε

B → 0C

B → ε

C → 0A

C → 1B

C → 1G

D → 0A

E → 1B

E → 1F

F → 1D

G → 1D

G → 1H

H → 1B

d The set {ambncm+n : m, n ≥ 0}.
· This language is context free.

· For any p, the string apbncp+n is in this language.  Any way of splitting this string into three substrings x y and z for the pumping lemma must have y composed entirely of as, because |xy| ≤ p, so x and y must both be part of the ap section of the string.  The string xyiz with i = 2 will be ap+|y|bncp+n won’t be part of the language, because |y| > 0 and thus p+|y|+n ≠ p+n, so this language fails the pumping lemma and is not regular.  Since a PDA can be built to parse this language, it is context free.
· Pushdown Automaton:

Q = {A,B,C, D, E}

Σ = {a,b,c}

Γ = {1,$}

δ = ({A,ε,ε→B,$}, {B,a,ε→B,1}, {B,b,ε→C,1}, {B,c,1→D,ε}, {C,b,ε→C,1}, {C,c,1→D,ε}, {D,c,1→D,ε}, {D,ε,$→E,ε})

q0 = A

F = {A, E}

· Context Free Grammar:

S → ε

S → M
S → N

M → AC

M → AO

M → N

N → BC
N → BP
O → MC

P → NC

A → a

B → b

C → c

2 Programs
a pda.c implements my PDA for language d.

b cfg.java implements my CFG for language d.

c There are screenshots of both.
3 Closure
a If C is the language composed of the concatenations of languages A, B in P, let MA and MB be TMs that decide A and B in polynomial time.  Define MC as follows:
MC = “On input w:

1.  For each character in the input, divide the input into two pieces w1 and w2, with the selected character being the first character in w2.
2.  Run A on w1 and B on w2.  If they both accept, accept.  If not, return to step 1.

3.  If no split produces an accepting pair, reject.”

There are |w| characters on which to split the input, so the upper bound of this construction is O(|w|∙tA(nA)∙tB(nB)).  Since A, B are members of P, tA(nA) and tB(nB) are both polynomials, so the concatenation also runs in polynomial time, and thus C is a member of P, and P is closed under concatenation.
b If language A is a member of P, then there is a TM DA that decides A in polynomial time.  Let DĀ be a TM that decides Ā.
DĀ = “On input w:

1.  Run DA on w.  If DA accepts, reject.  If DA rejects, accept.”

This machine is essentially the same as DA, just with the accept and reject reversed.  It should have the same runtime upper bound, so if A is a member of P, so is Ā, and P is closed under complement.

c If A and B are both languages in the class NP, then there exist polynomial time verifiers VA and VB for A and B.  If language U is the union of A and B, then there exists a verifier VU that verifies members of the language U.
VU = “On input <w,c>:

1.  If the first character of c is a 0, then run VA on <w,csub>, where csub is c, but with the first character removed.  If VA accepts, accept.  If VA rejects, reject.
2.  If the first character of c is a 1, then run VB on <w,csub>, where csub is c, but with the first character removed.  If VB accepts, accept.  If VB rejects, reject.”

This machine takes as input both the solution and the certificate.  In this case, the certificates are the same as they would be for VA or VB, but with an extra character added.  Since U is the union of A and B, every string in U is also in either A or B.  If it is in A, the first character in the certificate is 0, and if it is in B, then the first character in the certificate is 1.  Since VU makes a single constant-time choice and then emulates either VA or VB, its runtime upper bound is the higher of the upper bounds on VA and VB.  Since both VA and VB are polynomial in time, then VU is also polynomial in time, and thus U has a polynomial time verifier and is a part of NP, so NP is closed under union.

d If the languages A and B are members of the class NP, then there are non-deterministic polynomial time TMs NA and NB that decide A and B.  Let NC be a non-deterministic TM that decides C, the concatenation of languages A and B.
NC = “On input w:

1.  Non-deterministically divide w into w1 and w2 such that w1w2 = w.

2.  Run NA on w1.  If it rejects, reject.  If it accepts, move to step 3.

3.  Run NB on w2.  If it rejects, reject.  If it accepts, accept.”
This machine simply divides the input and runs NA and NB in sequence, so the runtime of NC is the sum of the runtimes of NA and NB, and the runtime upper bound of NC is essentially the higher of the runtimes of NA and NB.  Since NA and NB are both polynomial in runtime, then NC is also polynomial in runtime.  Since C is decided by a non-deterministic polynomial time TM NC, C is a member of the class NP, and NP is closed under concatenation.

4 ≠-SAT

· Let φ be a formula in 3CNF.  For any valid ≠-assignment to the variables in φ, each clause must contain both a true literal and a false one, because each clause must have a pair of literals with unequal truth values.  If we reversed all the variable assignments in this solution, it would reverse the values of each literal in each clause.  Because each clause contains both a true and a false literal, when the values were reversed, each clause would still contain both a true and a false literal, and would therefore be true, so reversing the variable assignments in a valid ≠-assignment produces another valid ≠-assignment.

· For any formula φ3 in 3SAT, let φ≠ be a formula in 3CNF such that for every clause i (y1, y2, y3) in φ3, there are two clauses (y1, y2, zi) and (¬zi, y3, b) in φ≠, where zi is a variable specific to this clause pair, and b is a variable that occurs in every clause pair.  The creation of these clauses follows directly from each clause in φ3, and requires no context, and so should be constant in time.  Since this process need be repeated once for each clause, generating φ≠ from φ3 should be linear in time based on the number of clauses in φ3, and so the conversion from φ3 to φ≠ is polynomial in time.
· Because reversing all the variable assignments in a valid ≠-assignment produces another valid ≠-assignment, any solution to φ≠ either has b=false or can be converted into a solution to φ≠ with b=false by reversing all the variable assignments in the solution.  In this solution, the y3 in each clause pair is either true or false.
If y3 is false, then the associated zi must be false, so that ¬zi can be true and the second clause in the pair can be valid.  Since zi is false, at least one of y1 and y2 for this clause must be true, in order to make the first clause in the pair valid.  This means that this assignment of variables will make the clause in φ3 from which this pair was generated true.
If y3 is true, then the second clause is valid regardless of the value of zi, and so values of y1 and y2 don’t matter.  If they are both true, zi can be false, and if they are both false, zi can be true.  If exactly one of them is true, then zi’s assignment doesn’t matter.  In any case, because y3 is true, this assignment of variables will also make the original clause in φ3 true.
· So any solution to φ≠ is either directly a solution to φ3 (if b=false) or the exact opposite of a solution to φ3 (if b=true).  So if ≠-SAT can be solved in polynomial time, then any problem in 3SAT can be converted into a ≠-SAT problem in polynomial time and solved, making 3SAT (and thus all NP problems) solvable in polynomial time, so ≠-SAT is NP complete.
The framework for this solution comes from the text of Sipser’s Problem 7.24.

5 Let PD be a TM that decides P.  The TM S can be constructed to decide ATM as follows:

S = “On input <M, w>:


1.
Use M and w to construct the following TM Mw.



Mw = “On input x:



1.
Simulate M on w.  If it halts and rejects, reject.




If it accepts, accept.”

2.
Use TM PD to determine whether <Mw> is a string in P.  If yes,



accept.  If no, reject.”
Mw is independent of its input.  It accepts all inputs if M accepts w, and accepts nothing if M rejects w or doesn’t halt.  Clearly, a machine that accepts all inputs accepts all palindromes, and a machine that accepts no inputs does not accept all palindromes, so PD essentially decides whether Mw always accepts or never accepts.  If it always accepts, than M accepts w, and if Mw never accepts, then M does not accept w, so PD decides whether or not M accepts w, and S decides ATM.  This is impossible, so PD must not exist, and thus P is undecidable.

This solution is adapted from the solution to Sipser’s Problem 5.28.
I have used the Sipser book as a general reference for definitions and theorems.
