Formal Languages and the Theory of Computation Assignment 1

Joshua Lande

January 22, 2006

1 Problems

Problems taken from Chapter 0 of [1].
Problem 1.1 Problem 0.3 from [1]. Let A be the set $\{x, y, z\}$ and let B be the set $\{x, y\}$. Is A a subset of B ? Is B a subset of A ? What is $A \cup B$? What is $A \cap B$? What is $A \times B$? What is the power set of B ?

- A is not a subset of B, because $z \in A$, but $z \notin B$.
- B is a subset of A, because every item in B is also in A.
- $A \cup B=\{x, y, z\}$.
- $A \cap B=\{x, y\}$.
- $A \times B=\{(x, x),(x, y),(y, x),(y, y),(z, x),(z, y)\}$.
- $\mathcal{P}(B)=\{\emptyset,\{x\},\{y\},\{x, y\}\}$.

Problem 1.2 Problem 0.7 from [1]. For each part, give a relation that satisfies the condition:

1. Reflexive and symmetric but not transitive.
2. Reflexive and transitive but not symmetric.
3. And symmetric and transitive but not reflexive.
4. We can use the relation $R=\{(a, b) \mid a, b \in \mathbb{Z}$ and $a+b$ is odd or $a \times b$ is a perfect square $\}$. This is a little bit kluge but it works. $a R a$ is true for all a because $a \times a$ is a perfect square. If $a R b$, then $b R a$ because either $a+b$ is odd, in which case $b+a$ is also odd, or $a \times b$ is a perfect square, in which case $b \times a$ is also a perfect square. But R is not transitive because $3 R 2$ and $2 R 1$ but not $3 R 1$.

2 . \leq works because $a \leq a$ for all a. If $a \leq b$ and $b \leq c$, then $a \leq c$. But it fails symmetry, $1 \leq 2$ but $2 \not \leq 1$.
3. We can use the relation $R=\{(a, b) \mid a$ and b are both even $\}$. It is symmetric because if $a R b$, then b and a are both even, so $b R a$. If $a R b$ and $b R c$, then $a R c$ because a and c are both even. But it is not reflexive because $1 R 1$ is not true.

Problem 1.3 Problem 0.11 from [1]. Find the error in the following proof that all horses are the same color.

The proof is good up until the last statement: "Therefore all the horses in H must have the same color". It dose not account for the fact that H_{1} and H_{2} could be mutually exclusive piles. This happens when $h=2$ and there are only 2 horses, each which could be different colors. Even though every horse in H_{1} and H_{2} have the same color, each pile could have have horses of different colors, and H need not have horses of only one color.

Problem 1.4 Problem 0.12 from [1]. Show that every graph with 2 or more nodes contains two nodes that have equal degree.

If a graph has n nodes, the minimum degree that it can have is 0 . A node can touch at maximum the $n-1$ other nodes, so the maximum degree is $n-1$. There are n possible degrees. We now break into two separate cases:

- If no node has degree 0 , then there are only $n-1$ possible degrees. Because there are n nodes, two nodes must have the same degree.
- If, on the other hand, one of the nodes of the graph has degree 0 , the maximum degree is $n-2$ instead of $n-1$. This is because a degree of $n-1$ only happens when a node touches ever other node. Because no node touches the node with degree 0 , the maximum must be $n-2$. Therefore, there are only $n-1$ possible degrees and we can again conclude that two nodes must have the same degree.

Problem 1.5 Show that $1 \times 2+2 \times 3+\ldots+n(n+1)=n(n+1)(n+2) / 3$ for all positive integer n.

We can prove this with induction on n. Our base case is $n=1$. We can easily verify that $1(1+1)=1(1+1)(1+2) / 3$. We then proceed to the induction step, where we assume that

$$
1 \times 2+\ldots+n(n+1)=n(n+1)(n+2) / 3
$$

and attempt to show that

$$
1 \times 2+\ldots+n(n+1)+(n+1)(n+2)=(n+1)(n+2)(n+3) / 3
$$

or that the series is true for $n+1$. We can do so as follows:

$$
\begin{aligned}
1 \times 2+\ldots+n(n+1) & =n(n+1)(n+2) / 3 \\
1 \times 2+\ldots+n(n+1)+(n+1)(n+2) & =n(n+1)(n+2) / 3+(n+1)(n+2) \\
& =(n+1)(n+2) \frac{n}{3}+(n+1)(n+2) \frac{3}{3} \\
& =(n+1)(n+2)(n+3) / 3
\end{aligned}
$$

Which is precisely what we wanted to show.

References

[1] M. Sipser. Introduction to the Theory of Computation. Thomson Learning, Inc., Massachusetts, 2006.

