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1 Problems

Problems taken from Chapter 0 of [1].

Problem 1.1 Problem 0.3 from [1]. Let A be the set {x, y, z} and let B be the set {x, y}.
Is A a subset of B? Is B a subset of A? What is A∪B? What is A∩B? What is A×B?
What is the power set of B?

• A is not a subset of B, because z ∈ A, but z /∈ B.

• B is a subset of A, because every item in B is also in A.

• A ∪B = {x, y, z}.

• A ∩B = {x, y}.

• A×B = {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.

• P(B) = {∅, {x} , {y} , {x, y}}.

Problem 1.2 Problem 0.7 from [1]. For each part, give a relation that satisfies the
condition:

1. Reflexive and symmetric but not transitive.

2. Reflexive and transitive but not symmetric.

3. And symmetric and transitive but not reflexive.

1. We can use the relation R = {(a, b)|a, b ∈ Z and a + b is odd or a× b is a perfect square}.
This is a little bit kluge but it works. aRa is true for all a because a× a is a perfect
square. If aRb, then bRa because either a+ b is odd, in which case b+a is also odd,
or a × b is a perfect square, in which case b × a is also a perfect square. But R is
not transitive because 3R2 and 2R1 but not 3R1.
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2. ≤ works because a ≤ a for all a. If a ≤ b and b ≤ c, then a ≤ c. But it fails
symmetry, 1 ≤ 2 but 2 6≤ 1.

3. We can use the relation R = {(a, b)|a and b are both even}. It is symmetric because
if aRb, then b and a are both even, so bRa. If aRb and bRc, then aRc because a
and c are both even. But it is not reflexive because 1R1 is not true.

Problem 1.3 Problem 0.11 from [1]. Find the error in the following proof that all horses
are the same color.

The proof is good up until the last statement: ”Therefore all the horses in H must have
the same color”. It dose not account for the fact that H1 and H2 could be mutually
exclusive piles. This happens when h = 2 and there are only 2 horses, each which could
be different colors. Even though every horse in H1 and H2 have the same color, each pile
could have have horses of different colors, and H need not have horses of only one color.

Problem 1.4 Problem 0.12 from [1]. Show that every graph with 2 or more nodes con-
tains two nodes that have equal degree.

If a graph has n nodes, the minimum degree that it can have is 0. A node can touch at
maximum the n− 1 other nodes, so the maximum degree is n− 1. There are n possible
degrees. We now break into two separate cases:

• If no node has degree 0, then there are only n − 1 possible degrees. Because there
are n nodes, two nodes must have the same degree.

• If, on the other hand, one of the nodes of the graph has degree 0, the maximum
degree is n−2 instead of n−1. This is because a degree of n−1 only happens when
a node touches ever other node. Because no node touches the node with degree 0,
the maximum must be n− 2. Therefore, there are only n− 1 possible degrees and
we can again conclude that two nodes must have the same degree.

Problem 1.5 Show that 1× 2+2× 3+ . . .+n(n+1) = n(n+1)(n+2)/3 for all positive
integer n.

We can prove this with induction on n. Our base case is n = 1. We can easily verify that
1(1 + 1) = 1(1 + 1)(1 + 2)/3. We then proceed to the induction step, where we assume
that

1× 2 + . . . + n(n + 1) = n(n + 1)(n + 2)/3

and attempt to show that

1× 2 + . . . + n(n + 1) + (n + 1)(n + 2) = (n + 1)(n + 2)(n + 3)/3,

or that the series is true for n + 1. We can do so as follows:
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1× 2 + . . . + n(n + 1) = n(n + 1)(n + 2)/3

1× 2 + . . . + n(n + 1) + (n + 1)(n + 2) = n(n + 1)(n + 2)/3 + (n + 1)(n + 2)

= (n + 1)(n + 2)
n

3
+ (n + 1)(n + 2)

3

3
= (n + 1)(n + 2)(n + 3)/3

Which is precisely what we wanted to show.
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