Formal Languages and the Theory of Computation Assignment 1

Joshua Lande

January 22, 2006

1 Problems

Problems taken from Chapter 0 of [1].

Problem 1.1 Problem 0.3 from [1]. Let A be the set $\{x, y, z\}$ and let B be the set $\{x, y\}$. Is A a subset of B? Is B a subset of A? What is $A \cup B$? What is $A \cap B$? What is $A \times B$? What is the power set of B?

- A is not a subset of B, because $z \in A$, but $z \notin B$.
- B is a subset of A, because every item in B is also in A.
- $A \cup B = \{x, y, z\}.$
- $A \cap B = \{x, y\}.$
- $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.$
- $\mathcal{P}(B) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.$

Problem 1.2 Problem 0.7 from [1]. For each part, give a relation that satisfies the condition:

- 1. Reflexive and symmetric but not transitive.
- 2. Reflexive and transitive but not symmetric.
- 3. And symmetric and transitive but not reflexive.
- 1. We can use the relation $R = \{(a, b) | a, b \in \mathbb{Z} \text{ and } a + b \text{ is odd or } a \times b \text{ is a perfect square}\}$. This is a little bit kluge but it works. aRa is true for all a because $a \times a$ is a perfect square. If aRb, then bRa because either a + b is odd, in which case b + a is also odd, or $a \times b$ is a perfect square, in which case $b \times a$ is also a perfect square. But R is not transitive because 3R2 and 2R1 but not 3R1.

- 2. \leq works because $a \leq a$ for all a. If $a \leq b$ and $b \leq c$, then $a \leq c$. But it fails symmetry, $1 \leq 2$ but $2 \not\leq 1$.
- 3. We can use the relation $R = \{(a, b) | a \text{ and } b \text{ are both even}\}$. It is symmetric because if aRb, then b and a are both even, so bRa. If aRb and bRc, then aRc because a and c are both even. But it is not reflexive because 1R1 is not true.

Problem 1.3 Problem 0.11 from [1]. Find the error in the following proof that all horses are the same color.

The proof is good up until the last statement: "Therefore all the horses in H must have the same color". It dose not account for the fact that H_1 and H_2 could be mutually exclusive piles. This happens when h = 2 and there are only 2 horses, each which could be different colors. Even though every horse in H_1 and H_2 have the same color, each pile could have horses of different colors, and H need not have horses of only one color.

Problem 1.4 Problem 0.12 from [1]. Show that every graph with 2 or more nodes contains two nodes that have equal degree.

If a graph has n nodes, the minimum degree that it can have is 0. A node can touch at maximum the n-1 other nodes, so the maximum degree is n-1. There are n possible degrees. We now break into two separate cases:

- If no node has degree 0, then there are only n-1 possible degrees. Because there are n nodes, two nodes must have the same degree.
- If, on the other hand, one of the nodes of the graph has degree 0, the maximum degree is n-2 instead of n-1. This is because a degree of n-1 only happens when a node touches ever other node. Because no node touches the node with degree 0, the maximum must be n-2. Therefore, there are only n-1 possible degrees and we can again conclude that two nodes must have the same degree.

Problem 1.5 Show that $1 \times 2 + 2 \times 3 + \ldots + n(n+1) = n(n+1)(n+2)/3$ for all positive integer n.

We can prove this with induction on n. Our base case is n = 1. We can easily verify that 1(1+1) = 1(1+1)(1+2)/3. We then proceed to the induction step, where we assume that

$$1 \times 2 + \ldots + n(n+1) = n(n+1)(n+2)/3$$

and attempt to show that

$$1 \times 2 + \ldots + n(n+1) + (n+1)(n+2) = (n+1)(n+2)(n+3)/3,$$

or that the series is true for n + 1. We can do so as follows:

$$1 \times 2 + \ldots + n(n+1) = n(n+1)(n+2)/3$$

$$1 \times 2 + \ldots + n(n+1) + (n+1)(n+2) = n(n+1)(n+2)/3 + (n+1)(n+2)$$

$$= (n+1)(n+2)\frac{n}{3} + (n+1)(n+2)\frac{3}{3}$$

$$= (n+1)(n+2)(n+3)/3$$

Which is precisely what we wanted to show.

References

[1] M. Sipser. Introduction to the Theory of Computation. Thomson Learning, Inc., Massachusetts, 2006.