/* * @(#)InputStream.java 1.36 00/02/02 * * Copyright 1994-2000 Sun Microsystems, Inc. All Rights Reserved. * * This software is the proprietary information of Sun Microsystems, Inc. * Use is subject to license terms. * */ package java.io; /** * This abstract class is the superclass of all classes representing * an input stream of bytes. * *

Applications that need to define a subclass of InputStream * must always provide a method that returns the next byte of input. * * @author Arthur van Hoff * @version 1.36, 02/02/00 * @see java.io.BufferedInputStream * @see java.io.ByteArrayInputStream * @see java.io.DataInputStream * @see java.io.FilterInputStream * @see java.io.InputStream#read() * @see java.io.OutputStream * @see java.io.PushbackInputStream * @since JDK1.0 */ public abstract class InputStream { // SKIP_BUFFER_SIZE is used to determine the size of skipBuffer // private static final int SKIP_BUFFER_SIZE = 2048; private static final int SKIP_BUFFER_SIZE = 32; // skipBuffer is initialized in skip(long), if needed. private static byte[] skipBuffer; /** * Reads the next byte of data from the input stream. The value byte is * returned as an int in the range 0 to * 255. If no byte is available because the end of the stream * has been reached, the value -1 is returned. This method * blocks until input data is available, the end of the stream is detected, * or an exception is thrown. * *

A subclass must provide an implementation of this method. * * @return the next byte of data, or -1 if the end of the * stream is reached. * @exception IOException if an I/O error occurs. */ public abstract int read() throws IOException; /** * Reads some number of bytes from the input stream and stores them into * the buffer array b. The number of bytes actually read is * returned as an integer. This method blocks until input data is * available, end of file is detected, or an exception is thrown. * *

If b is null, a * NullPointerException is thrown. If the length of * b is zero, then no bytes are read and 0 is * returned; otherwise, there is an attempt to read at least one byte. If * no byte is available because the stream is at end of file, the value * -1 is returned; otherwise, at least one byte is read and * stored into b. * *

The first byte read is stored into element b[0], the * next one into b[1], and so on. The number of bytes read is, * at most, equal to the length of b. Let k be the * number of bytes actually read; these bytes will be stored in elements * b[0] through b[k-1], * leaving elements b[k] through * b[b.length-1] unaffected. * *

If the first byte cannot be read for any reason other than end of * file, then an IOException is thrown. In particular, an * IOException is thrown if the input stream has been closed. * *

The read(b) method for class InputStream * has the same effect as:

 read(b, 0, b.length) 
* * @param b the buffer into which the data is read. * @return the total number of bytes read into the buffer, or * -1 is there is no more data because the end of * the stream has been reached. * @exception IOException if an I/O error occurs. * @see java.io.InputStream#read(byte[], int, int) */ public int read(byte b[]) throws IOException { return read(b, 0, b.length); } /** * Reads up to len bytes of data from the input stream into * an array of bytes. An attempt is made to read as many as * len bytes, but a smaller number may be read, possibly * zero. The number of bytes actually read is returned as an integer. * *

This method blocks until input data is available, end of file is * detected, or an exception is thrown. * *

If b is null, a * NullPointerException is thrown. * *

If off is negative, or len is negative, or * off+len is greater than the length of the array * b, then an IndexOutOfBoundsException is * thrown. * *

If len is zero, then no bytes are read and * 0 is returned; otherwise, there is an attempt to read at * least one byte. If no byte is available because the stream is at end of * file, the value -1 is returned; otherwise, at least one * byte is read and stored into b. * *

The first byte read is stored into element b[off], the * next one into b[off+1], and so on. The number of bytes read * is, at most, equal to len. Let k be the number of * bytes actually read; these bytes will be stored in elements * b[off] through b[off+k-1], * leaving elements b[off+k] through * b[off+len-1] unaffected. * *

In every case, elements b[0] through * b[off] and elements b[off+len] through * b[b.length-1] are unaffected. * *

If the first byte cannot be read for any reason other than end of * file, then an IOException is thrown. In particular, an * IOException is thrown if the input stream has been closed. * *

The read(b, off, len) method * for class InputStream simply calls the method * read() repeatedly. If the first such call results in an * IOException, that exception is returned from the call to * the read(b, off, len) method. If * any subsequent call to read() results in a * IOException, the exception is caught and treated as if it * were end of file; the bytes read up to that point are stored into * b and the number of bytes read before the exception * occurred is returned. Subclasses are encouraged to provide a more * efficient implementation of this method. * * @param b the buffer into which the data is read. * @param off the start offset in array b * at which the data is written. * @param len the maximum number of bytes to read. * @return the total number of bytes read into the buffer, or * -1 if there is no more data because the end of * the stream has been reached. * @exception IOException if an I/O error occurs. * @see java.io.InputStream#read() */ public int read(byte b[], int off, int len) throws IOException { if (b == null) { throw new NullPointerException(); } else if ((off < 0) || (off > b.length) || (len < 0) || ((off + len) > b.length) || ((off + len) < 0)) { throw new RuntimeException(); } else if (len == 0) { return 0; } int c = read(); if (c == -1) { return -1; } b[off] = (byte)c; int i = 1; try { for (; i < len ; i++) { c = read(); if (c == -1) { break; } if (b != null) { b[off + i] = (byte)c; } } } catch (IOException ee) { } return i; } /** * Skips over and discards n bytes of data from this input * stream. The skip method may, for a variety of reasons, end * up skipping over some smaller number of bytes, possibly 0. * This may result from any of a number of conditions; reaching end of file * before n bytes have been skipped is only one possibility. * The actual number of bytes skipped is returned. If n is * negative, no bytes are skipped. * *

The skip method of InputStream creates a * byte array and then repeatedly reads into it until n bytes * have been read or the end of the stream has been reached. Subclasses are * encouraged to provide a more efficient implementation of this method. * * @param n the number of bytes to be skipped. * @return the actual number of bytes skipped. * @exception IOException if an I/O error occurs. */ public long skip(long n) throws IOException { /* long remaining = n; int nr; if (skipBuffer == null) skipBuffer = new byte[SKIP_BUFFER_SIZE]; byte[] localSkipBuffer = skipBuffer; if (n <= 0) { return 0; } while (remaining > 0) { nr = read(localSkipBuffer, 0, (int) Math.min(SKIP_BUFFER_SIZE, remaining)); if (nr < 0) { break; } remaining -= nr; } */ return n; } /** * Returns the number of bytes that can be read (or skipped over) from * this input stream without blocking by the next caller of a method for * this input stream. The next caller might be the same thread or or * another thread. * *

The available method for class InputStream * always returns 0. * *

This method should be overridden by subclasses. * * @return the number of bytes that can be read from this input stream * without blocking. * @exception IOException if an I/O error occurs. */ public int available() throws IOException { return 0; } /** * Closes this input stream and releases any system resources associated * with the stream. * *

The close method of InputStream does * nothing. * * @exception IOException if an I/O error occurs. */ public void close() throws IOException {} /** * Marks the current position in this input stream. A subsequent call to * the reset method repositions this stream at the last marked * position so that subsequent reads re-read the same bytes. * *

The readlimit arguments tells this input stream to * allow that many bytes to be read before the mark position gets * invalidated. * *

The general contract of mark is that, if the method * markSupported returns true, the stream somehow * remembers all the bytes read after the call to mark and * stands ready to supply those same bytes again if and whenever the method * reset is called. However, the stream is not required to * remember any data at all if more than readlimit bytes are * read from the stream before reset is called. * *

The mark method of InputStream does * nothing. * * @param readlimit the maximum limit of bytes that can be read before * the mark position becomes invalid. * @see java.io.InputStream#reset() */ public synchronized void mark(int readlimit) {} /** * Repositions this stream to the position at the time the * mark method was last called on this input stream. * *

The general contract of reset is: * *

* *

The method reset for class InputStream * does nothing and always throws an IOException. * * @exception IOException if this stream has not been marked or if the * mark has been invalidated. * @see java.io.InputStream#mark(int) * @see java.io.IOException */ public synchronized void reset() throws IOException { throw new IOException("mark/reset not supported"); } /** * Tests if this input stream supports the mark and * reset methods. The markSupported method of * InputStream returns false. * * @return true if this true type supports the mark and reset * method; false otherwise. * @see java.io.InputStream#mark(int) * @see java.io.InputStream#reset() */ public boolean markSupported() { return false; } }