
Theory and Implementation of Generating Arrays

Gabriel Lein
glein@marlboro.edu

December 12, 2005

1 Preamble

Latin squares have been used for centuries for purposes ranging from agriculture to re-
search. Squares with more (or in some cases, fewer) conditions can be applied, and are
essential to, other unique real world situations. But to do this, one must able to construct
a square of necessary form and adequate dimension efficiently. Unfortunately, brute force
methods quickly become infeasible due to the factorial growth of the problem. To com-
bat this, a variety of methods have been constructed to find the more complex squares
without trying all possible permutations. Our goals in this project were as follows:

• Explore and push the boundaries of the already known and implemented directed
terraces using a C++ implementation.

• Demonstrate the theory for generating arrays and their feasibility as a method for
effectively constructing Tuscan-k and Roman-k squares.

• Expand the directed terraces program to search for these generating arrays.

This paper assumes a casual knowledge of Latin squares and group theory, and some fa-
miliarity with the Unix environment, but should be readable to both non-mathematicians
and non-computer scientists as well.

1.1 Definitions

Before moving into the workings of directed terraces, let’s define the main terms we’ll be
using.

Definition 1.1 For an n×n Italian square, take a {a, b} pair to mean two distinct values
of a row. If for 1 ≤ m ≤ k, the symbol b appears at most once m places to the right of a,
we call this square Tuscan-k. If the square is Latin, it is called Roman-k.

1



Figure 1: A Roman-5 square of order 6

0 2 1 4 5 3
1 3 2 5 0 4
2 4 3 0 1 5
3 5 4 1 2 0
4 0 5 2 3 1
5 1 0 3 4 2

If k = 1 we will simply refer to the square as being Tuscan or Roman. If k = n−1 and the
square is Italian, we call it Florentine. If it is Latin, we call it Vatican. Tuscan-k and
Roman-k squares can be used to avoid bias in tests. For example, if we’re rating wines,
and wine α is particularly awful, then whatever wine is tasted immediately afterwards
will probably get a higher rating than it would were it tasted after a better wine. If wine
β always followed α in the test, it would leave an unresolved systematic error. Had we
arranged the tests as the rows of a Tuscan square however, each wine would recieve the
same bias adjustments and the systematic error would be eliminated.

An efficient method to find these squares is by finding directed terraces.

Definition 1.2 Take a sequence a = (a1, a2, a3, ..., an) containing all elements of Zn.
Create from this a second sequence, b = (b1, b2, b3, . . . , bn−1), where bi = ai+1 − ai. If
there are no repeats in b, then a is called a directed terrace, and b is its associated
sequencing.

A valid associated sequencing cannot contain zero, since this would mean two terms
of the terrace were identical.

Theorem 1.1 If a directed terrace exists for a given order, then a Roman square exists
for that order as well.

Proof: If we take a directed terrace of order n as row 0 of our square, and generate row
i, with 1 ≤ i ≤ n, by adding i to each element of the terrace, each column contains
all elements of Zn. Thus we have constructed a Latin square of order n that is also
Roman. 2

Conversely, if we simply use any directed terrace of order n for each row (including,
possibly, repeats), we can construct a Tuscan square of order n. Directed terraces are
part of a more open class of sequences called terraces, that do not require each element
of the associated sequencing to be unique.

To find Tuscan-k/Roman-k squares where k > 1, we most first generalize our definition
of a directed terrace.

Definition 1.3 Take a directed terrace a, as defined in Definition 1.2 with associated
sequencing b(1). Define b(m) as the sequence where bi = ai+m− ai. If we treat all b(m) for

2



1 ≤ m ≤ k as our associated sequencings, and all b(m) are valid up to k, then we have a
directed Tk terrace.

Example 1.1 Assume we are working in Z10.

a = {0, 3, 4, 6, 2, 7, 1, 9, 8, 5}

is a T2 terrace with associated sequencing b(1) such that

b(1) = {3, 1, 2, 6, 5, 1, 8, 9, 7}

and associated sequencing b(2) where

b(1) = {4, 3, 8, 1, 6, 9, 7, 6}

We’re now ready to continue on and explore some properties of these directed terraces.

2 Properties of Tk terraces and current knowledge

boundaries

While Tuscan and Roman squares exist for odd orders, directed terraces do not. Clearly
this means the absence of a Tk directed terrace is not enough to disprove the existence of
a Roman-k/Tuscan-k square (see Figure 2).

Theorem 2.1 There is no directed Tk terrace of odd order.

Proof: Assume we have a directed terrace a and associated sequencing b in Zn where
n is odd. We can say that:

an = a1 + b1 + b2 + b3 + ... + bn−1

Since b contains the non-zero elements of a, we can rearrange the values so that

an = a1 + (n− 1) + 1 + (n− 2) + 2 + ... + (n− (n/2 + 1)) + (n− (n/2))

an = a1

Which contradicts our definition. Since a directed Tk terrace must also be T1, no
directed Tk terrace exists. 2

Definition 2.1 The following terrace construction was used implicitly by E. Lucas in [2],
who gave credit to Walecki. It was also used explicitly by E. J. Williams in [4], and is
thus called the LWW terrace. In Z2r, let:

a = (0, 1, 2r − 1, 2, 2r − 2, 3, ..., r + 1, r)

Then a’s associated sequencing is:

b = (1, 2r − 2, 3, 2r − 4, 5, ..., 2, 2r − 1)

3



It then follows that

Theorem 2.2 There is a Roman square of every even order.

Proof: By example 2.1 and theorem 1.1, we can construct a directed terrace of even order
and use it to generate a Roman square. 2

Definition 2.2 Two directed Tk terraces with the same associated sequencing(s) are equiv-
alent.

Definition 2.2 stems from the fact that Zn is a cyclic group. A directed Tk terrace starting
with zero can generate one starting with x where x ∈ Zn simply by adding x to all
elements. This means if we find one terrace, we can extrapolate all terraces equivalent to
it.

The follow is a list of known facts prior to our investigation [3]:

• When n + 1, there is a directed Tn−1 terrace in Zn.

• There is a directed T2 terrace in Zn for all even n up to 50.

• There is no directed T3 terrace in Z8, Z14, or Z20

Z24 and Z26 were generally unexplored beforehand, and Z26 largely still is.

3 Implementation of a directed Tk terrace search pro-

gram in C++

Implementing a search for Tk terraces was certainly not new, but creating such a program
was essential before taking the step into generating arrays. C++ was chosen not only
because it is the language I am most familiar with, but because it is faster than most
other high level languages. In a situation where computer speed is the greatest limiting
factor, we want as much bang for our buck.

One downside of C/C++ is the static nature of arrays, and the inability to (easily)
declare an arbitrary number of variables or arbitrarily named variable at runtime. These
will be discussed more further on.

Figure 2: A Tuscan square of order 7

2 6 3 5 4 0 1
6 1 5 2 4 3 0
5 0 2 3 1 4 6
0 6 5 3 4 1 2
3 6 2 1 0 4 5
1 3 2 0 5 6 4
4 2 5 1 6 0 3

4



3.1 Using squares3

Squares3, the current version of the program, is designed to be easy to use and understand,
but not to be “idiot-proof”. Checks are not put in place to catch obvious typos, meaning
that entering mis-formatted or blatantly wrong data could cause the program to crash or
behave erratically. Also, it is worth noting that since the program is designed to run for
a long time, the user should be extra careful that they are looking for what they intend
to. Failing to do so could waste days or even weeks of computing time. Squares3 was
coded with execution on a Unix-based machine in mind, and has only been tested on such
machines, but should compile and run on other systems as well.

Figure 3: A sample execution of squares3
mdhcp5-248: /latinsquares gabe$ ./squares3
Enter length for the directed terrace:
10
And Tk value:
2
Made terrace array of length 10, and sequence array of length 17
Specify initial values? [y/n]y
Specify initial values, separated by spaces:
0 1
01-1-1-1-1-1-1-1-1
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Terrace Found!
Terrace Found!
mdhcp5-248: /latinsquares gabe$ cat terracefile.txt
0 1 3 7 4 9 2 8 6 5
0 1 8 2 4 9 7 3 6 5

One “feature” that actually affects speed is the specification of starting values. Follow-
ing from Definition 2.2, we know that by simply setting the first element, we can reduce
our search time by a factor of 1

n
. Through some mathematical trickery, we can eliminate

many options for consecutive elements, meaning we’ve drastically reduced our run-time
merely by narrowing the playing field. (This is both hard to code and time-consuming by
hand, and was decided not worth pursuing beyond two or three element places.)

As terraces are found, they are outputted to the file terracefile.txt, and the mes-
sage “terrace found” is outputted to the terminal. The save file is specified internally,
meaning it cannot be changed without modifying the code (this can be done easily by
modifying the name of the “FILENAME” global variable at the top of the code). This
also means that each time the code is run, it over-writes the file. To avoid this, the user
is advised to rename terracefile.txt or move it to another directory after each execu-
tion. Because the program only opens the file while it’s actually writing to it, it’s safe to
inspect the file while the program is running. For a sample execution, see figure 3. Future

5



versions of squares3 may include dynamic filenames and an option to quit after finding a
single terrace.

3.2 Underpinnings and development choices

At the core of squares3 is a simple backtrack permutation algorithm. The directed terrace
is stored in an array of length n, and all k sequences are stored in a single array of length
n+(n−1)+(n−2)+ ...+(n−k), where different sections correspond to different k values.
This is necessary since, as mentioned before, variables cannot be arbitrarily specified as
needed at run-time, and the Tk value is specified by the user. Since the arrays are only
“full” when we have a valid directed Tk terrace, we set the “unfilled” elements to -1. While
not as elegant as some other methods, this is quick and caters to the language’s needs.
The original squares1 was designed to store the data in linked lists. While this would
have been a lot easier to conceptualize and could simulate the effect of a dynamic-sized
array, it would have been unable to efficiently deal with Tk’s greater than 1, and been
horrendously slow regardless. (All elements of an array are stored in one solid block of
memory. To access one, we need merely add the proper amount to the array’s memory
address and access it directly. Linked lists on the other hand, are scattered throughout
memory, using memory address pointers to connect to others. This means if we wanted to
access the nth memory node in the list, we’d have to first access all (n− 1) nodes before
it. Needless to say, this takes a lot of time.)

3.3 Results

The program was run concurrently on three machines: a Macintosh G4 tower, a Macintosh
G5 tower, and a Saegar Pentium 4 laptop. Squares3 was compiled on each computer,
using several versions of the gcc compiler with hardware optimization at its highest. The
difference between the standard and the optimized compile was drastic on all machines,
but most so using Apple’s gcc version with G5 processor optimization. A task that took
over a day when un-optimized completed in under two hours, so fast in fact, that we were
obligated to investigate if it was still functioning fully.

Dividing up the task and specifying the first two elements at run-time, we were able to
completely search Z24 for T3 terraces in under two weeks (note that none of the computers
were running the entire time). Unfortunately we found nothing. Discouraging, after so
much work, but not entirely unexpected. We also did a few preliminary searches in Z26,
and while we haven’t found anything there yet, we haven’t ruled it out either.

4 Generating Arrays

Creating a program to find directed terrace of course was only the first step. Before
continuing into the next program however, we must define some more theory. Generating
arrays were used by Matt Ollis in 2005 in an attempt to circumvented some of the short-

6



Figure 4: A 2× 6 Italian generating array

(0, 0) (2, 0) (0, 1) (1, 0) (1, 1) (2, 1)
(0, 1) (2, 1) (2, 0) (1, 1) (0, 0) (1, 0)

comings of directed terraces, such as their uselessness in looking for Tuscan and Roman
squares of odd order (see Theorem 2.1).

4.1 Definitions and Theory

We are not limited to creating Latin and Italian squares solely out of Zn. Intuitively, we
might use letters as our symbols (as is often done when representing mutually orthogonal
Latin squares), with “addition” defined as a cycling through the alphabet. In fact, as long
as we have a cyclic group of correct order, we can create a square of its elements where
our previous definitions hold.

Definition 4.1 Let n be an integer where n = pq Let the pair (a, c) be an element of
Zp × Zq (meaning a ∈ Zp, c ∈ Zq), and let addition be defined as mod p in the first co-
ordinate and mod q in the second. Then an array of q rows and n columns is called a
q× n Italian generating array if every symbol of Zp × Zq appears in each row [3].

From this definition, it is easy to show that

Theorem 4.1 If there exists a q×n Italian generating array A, we can generate an n×n
Italian square.

Proof: Assume we have a q × n generating array. For each row of A, generate p rows of
the form

(a1 + i, c1) (a2 + i, c2) (a3 + i, c3) . . . (an + i, cn)

where 0 ≤ i ≤ p − 1. We then have n rows of length n, which we can use as our Italian
square. 2

It should be obvious that by making each column contain every element as well, we can
make a Latin square, and the array would then be a Latin generating array. To generate
the other rows of the array, we can just use the first row and cycle the value of the second
co-ordinate mod q. To create the square from this, we take each row of the array and
cycle the first co-ordinate mod q. The construction for a Tuscan/Roman generating array
is a close analog to its directed Tk terrace counterpart, but with a bit of a twist due to
the two co-ordinates.

Definition 4.2 Assume we have an Italian generating array with elements of the form
(ai, ci). Then for each pair of second co-ordinates (ci, ci+m), if ai+m − ai for the corre-
sponding first co-ordinates appears at most once in each row for 1 ≤ m ≤ k, then the
array is Tuscan-k. If the array is also Latin, then it is Roman-k.

7



Figure 5: A Z2 × Z3 Latin square generated from Figure 4 (that is also Roman)

(0, 0) (2, 0) (0, 1) (1, 0) (1, 1) (2, 1)
(1, 0) (0, 0) (1, 1) (2, 0) (2, 1) (0, 1)
(2, 0) (1, 0) (2, 1) (0, 0) (0, 1) (1, 1)
(0, 1) (2, 1) (2, 0) (1, 1) (0, 0) (1, 0)
(1, 1) (0, 1) (0, 0) (2, 1) (1, 0) (2, 0)
(2, 1) (1, 1) (1, 0) (0, 1) (2, 0) (0, 0)

Example 4.1 Using the generating array from Figure 4, we make a table of first co-
ordinate differences for each value of m.

(ci, ci+m) m = 1 m = 2 m = 3 m = 4 m = 5
(0, 0) 2, 1 2, 1 1, 2
(0, 1) 1, 0, 2 0, 2 2 0, 1 2
(1, 0) 1, 0, 2 2, 0 1 0, 2 1
(1, 1) 1, 2 1, 2 1, 2

There are no repeats in any cell of our m table up to m = 5, and the elements of all the
array’s columns are unique, so the array is Roman-5, or Vatican. If the array had been
Roman-4 and not Roman-5, then some cell(s) in the m = 5 column would have a repeat
(but the other columns would still be valid).

For each m column, we should have a total of 2n − m entries. However, we have no
guarantee as to the placement of those entries.

5 Implementation of the generating arrays program

Genarrays is designed to output Roman-k generating arrays. While the directed terraces
program created much of the framework for this next task, several notions had to be
thrown out due to the added complexity. Because of this complexity and time constraints
on development, genarrays in its current form only searches for 2×n arrays. This obviously
limits its applications significantly, and makes looking for odd ordered squares, one of the
motivators for its design, impossible. It is however, still capable of verifying the conceptual
soundness of the method.

5.1 Using genarrays

Most of the user interface – and thus flaws – of squares3 is identical in genarrays. The user
is still advised to check themself to avoid (accidentally) pursuing a nonsensical value. The
user can specify as many elements of each row as they desire, however for now they can
only specify sequencial values starting from the left. Future versions may include support

8



for arbitrary specification, but this is largely unneccessary, since the user can search the
whole range in (usually) very little time.

Once running, genarrays outputs the current associated sequencing (or “m”) array to
the console each time it modifies it. Found arrays are outputted to arrayfile.txt. As
before, this file is overwritten each time genarrays is run.

Figure 6: Abbreviated execution of genarrays
mdhcp5-248: /latinsquares gabe$ ./genarrays
Enter length of array:
4
And m value:
3
Made array of length 4, and sequence array of length 12
Specify initial values? [y/n]y
Specify initial values for row 0, pairs separated by spaces and values
separated by commas:
0,0
Specify initial values for row 1, pairs separated by spaces and values
separated by commas:

Made initial array:
(0,0) (-1,-1) (-1,-1) (-1,-1)
(-1,-1) (-1,-1) (-1,-1) (-1,-1)
Made initial sequence:
(-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1)
(-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1) (-1,-1,-1)
...mdhcp150: /latinsquares gabe$ cat arrayfile.txt
(0,0) (0,1) (1,1) (1,0)
(0,1) (1,0) (0,0) (1,1)

(0,0) (0,1) (1,1) (1,0)
(1,1) (0,0) (1,0) (0,1)

(0,0) (1,1) (0,1) (1,0)
(0,1) (0,0) (1,0) (1,1)

(0,0) (1,1) (0,1) (1,0)
(1,1) (1,0) (0,0) (0,1)

While checking the sequencing is helpful for debugging, it outputs a lot of text for
large arrays. To avoid this, the user is advised to set genarrays to run in the background
(but only after entering all data).

9



5.2 Implementation choices and obstacles

The biggest challenges in coding genarrays were coping with multiple rows, and using
different data structures for the generating array and the sequence array. By limiting
the rows to 2 for the time being, I was able to simplify my design process while still
investigating greater row numbers. The program generates one row at a time, meaning
it would take very little to extend this into a loop. The multiple rows also affects the
sequencing array however, which is more complicated to modify.

Translating the concept of one big sequencing array to genarrays is fairly intuitive but
messy. We’re still dividing the array into logical “sections” for each m value (only with
sections twice as long since we’re checking two rows). Since we now have to keep track
of the (ci, cj) pair as well, it was necessary to create a data structure for the sequencing
array. The array is still one dimensional, but now contains pair data and a value. Storing
data in a form closer to the table used in Example 4.1 would be possible, but slower and
more memory intensive since we don’t know how many entries per cell we’ll have (and
thus must allot potentially unnecessary space in each). By using the sequencing array,
we needn’t worry where in the array we place an element. This adds another dynamic
however. Elements in the generating array now have an a and a c value, but don’t have
pair data, meaning we don’t want to store them as the same data structure. Consequently,
using elements of one array to set elements of the other is no longer so straight forward.

Most other modifications were negligible or not related to the actual workings of the
algorithm. Future versions will undoubtedly include the option to look for non-Roman
Tuscan arrays.

5.3 Results

Tests of genarrays have been regulated mostly to small, known values for verification,
with only recent searches into new territory. Current results are promising. We have
already shown that there are no Roman-3 generating arrays for n = 10, 12 that are not
also Roman-4 (prior to this it was only known there were no T3 terraces that were not T4).
In fact, we may still discover a Tuscan/Roman T3 square of order 24, though there are still
plenty of smaller ranges to investigate first. Genarrays has not yet been bench-marked
against its predecessor. It’s safe to assume though that due to the extra calculation, it
will run slightly slower (while at the same time finding more solutions).

6 Conclusion

Squares3 has succeeded in its purpose to date. Further revisions can be made to enhance
efficiency and usability, but the greatest limiting factor now is hardware. It took three
computers (one being several years old) several days to tackle Z24, meaning it would take
them upwards of a month or more to find all or any solutions for Z26. If however we
used or developed some distributed computing software as a “shell”, such as the BOINC

10



project [1], and set a computer lab or the general populace to the problem, then Z26 and
even Z28 would be calculable in very little time.

It would probably be fair to call genarrays a success at this point. We haven’t yet
found anything of particular merit but have demonstrated the feasibility and execution of
a generating array finding program and raised the bar slightly for what is known. With
just a little more work, we will have a tool for finding odd composite order arrays as well.
Because of its promise, let us call genarrays a tentative victory, as future versions will put
even more new results within our reach.

References

[1] http://boinc.berkeley.edu/.

[2] E. Lucas. Récréations Mathmatiques, Tôme II. Albert Blanchard, Paris, 1892.

[3] M. A. Ollis. Notes on italian squares and generating arrays. 2005.

[4] E. J. Williams. Experimental designs balanced for the estimation of residual effects
of treatments. Aust. J. Scient. Res. A, 2:149–168, 1949.

11


