

Classes and Objects

bject

h

e

assem

 does

pro

nd ho

m

ng,

urpose;

he

t

Classes and Objects Chapter Ten

10.1 Chapter Overview

Many modern imperative high level languages support the notion of classes and objects. C++ (an o
version of C), Java, and Delphi (an object version of Pascal) are two good examples. Of course, these hig
level language compilers translate their high level source code into low-level machine code, so it should b
pretty obvious that some mechanism exists in machine code for implementing classes and objects.

Although it has always been possible to implement classes and objects in machine code, most -
blers provide poor support for writing object-oriented assembly language programs. Of course, HLA
not suffer from this drawback as it provides good support for writing object-oriented assembly language -
grams. This chapter discusses the general principles behind object-oriented programming (OOP) aw
HLA supports OOP.

10.2 General Principles

Before discussing the mechanisms behind OOP, it is probably a good idea to take a step back and
explore the benefits of using OOP (especially in assembly language programs). Most texts describing the
benefits of OOP will mention buzz-words like “code reuse,” “abstract data types,” “improved development
efficiency,” and so on. While all of these features are nice and are good attributes for a programming para-
digm, a good software engineer would question the use of assembly language in an environment where
“improved development efficiency” is an important goal. After all, you can probably obtain far better effi-
ciency by using a high level language (even in a non-OOP fashion) than you can by using objects in asse-
bly language. If the purported features of OOP don’t seem to apply to assembly language programmi
why bother using OOP in assembly? This section will explore some of those reasons.

The first thing you should realize is that the use of assembly language does not negate the aforemen-
tioned OOP benefits. OOP in assembly language does promote code reuse, it provides a good method for
implementing abstract data types, and it can improve development efficiency in assembly language. In other
words, if you’re dead set on using assembly language, there are benefits to using OOP.

To understand one of the principle benefits of OOP, consider the concept of a global variable. Most pro-
gramming texts strongly recommend against the use of global variables in a program (as does this text).
Interprocedural communication through global variables is dangerous because it is difficult to keep track of
all the possible places in a large program that modify a given global object. Worse, it is very easy when
making enhancements to accidentally reuse a global object for something other than its intended p
this tends to introduce defects into the system.

Despite the well-understood problems with global variables, the semantics of global objects (extended
lifetimes and accessibility from different procedures) are absolutely necessary in various situations. Objects
solve this problem by letting the programmer decide on the lifetime of an object1 as well as allow access to
data fields from different procedures. Objects have several advantages over simple global variables insofar
as objects can control access to their data fields (making it difficult for procedures to accidentally access t
data) and you can also create multiple instances of an object allowing two separate sections of your program
to use their own unique “global” object without interference from the other section.

Of course, objects have many other valuable attributes. One could write several volumes on the benefits
of objects and OOP; this single chapter cannot do this subject justice. The following subsections presen
objects with an eye towards using them in HLA/assembly programs. However, if you are a beginning to

1. That is, the time during which the system allocates memory for an object.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1059

Chapter Ten Volume Five

re

informa

 able

od

n

y virtue

tion

am,

c

,

is
OOP or wish more information about the object-oriented paradigm, you should consult other texts on this
subject.

An important use for classes and objects is to create abstract data types (ADTs). An abstract data type
is a collection of data objects and the functions (which we’ll call methods) that operate on the data. In a pu
abstract data type, the ADT’s methods are the only code that has access to the data fields of the ADT; exter-
nal code may only access the data using function calls to get or set data field values (these are the ADT’s
accessor methods). In real life, for efficiency reasons, most languages that support ADTs allow, at least,
limited access to the data fields of an ADT by external code.

Assembly language is not a language most people associate with ADTs. Nevertheless, HLA provides
several features to allow the creation of rudimentary ADTs. While some might argue that HLA’s facilities
are not as complete as those in a language such as C++ or Java, keep in mind that these differences exist
because HLA is assembly language.

True ADTs should support information hiding. This means that the ADT does not allow the user of an
ADT access to internal data structures and routines which manipulate those structures. In essence, -
tion hiding restricts access to an ADT to only the accessor methods provided by the ADT. Assembly lan-
guage, of course, provides very few restrictions. If you are dead set on accessing an object directly, there is
very little HLA can do to prevent you from doing this. However, HLA has some facilities which will provide
a small amount of information hiding capabilities. Combined with some care on your part, you will be
to enjoy many of the benefits of information hiding within your programs.

The primary facility HLA provides to support information hiding is separate compilation, linkable m-
ules, and the #INCLUDE/#INCLUDEONCE directives. For our purposes, an abstract data type definition
will consist of two sections: an interface section and an implementation section.

The interface section contains the definitions which must be visible to the application program. In ge-
eral, it should not contain any specific information which would allow the application program to violate the
information hiding principle, but this is often impossible given the nature of assembly language. Neverthe-
less, you should attempt to only reveal what is absolutely necessary within the interface section.

The implementation section contains the code, data structures, etc., to actually implement theADT.
While some of the methods and data types appearing in the implementation section may be public (b
of appearance within the interface section), many of the subroutines, data items, and so on will be private to
the implementation code. The implementation section is where you hide all the details from the applica
program.

If you wish to modify the abstract data type at some point in the future, you will only have to change the
interface and implementation sections. Unless you delete some previously visible object which the applica-
tions use, there will be no need to modify the applications at all.

Although you could place the interface and implementation sections directly in an application progr
this would not promote information hiding or maintainability, especially if you have to include the code in
several different applications. The best approach is to place the implementation section in an include file that
any interested application reads using the HLA #INCLUDE directive and to place the implementation se-
tion in a separate module that you link with your applications.

The include file would contain EXTERNAL directives, any necessary macros, and other definitions you
want made public. It generally would not contain 80x86 code except, perhaps, in some macros. When an
application wants to make use of an ADT it would include this file.

The separate assembly file containing the implementation section would contain all the procedures
functions, data objects, etc., to actually implement the ADT. Those names which you want to be public
should appear in the interface include file and have the EXTERNAL attribute. You should also include the
interface include file in the implementation file so you do not have to maintain two sets of EXTERNAL
directives.

One problem with using procedures for data access methods is the fact that many accessor methods are
especially trivial (typically just a MOV instruction) and the overhead of the call and return instructions
expensive for such trivial operations. For example, suppose you have an ADT whose data object is a struc-
ture, but you do not want to make the field names visible to the application and you really do not want to
Page 1060 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

ange

ta

aps,

es).

in HLA

ther
s are

t is to

bject-ori-
allow the application to access the fields of the data structure directly (because the data structure may ch
in the future). The normal way to handle this is to supply a method GetField which returns the desired field
of the object. However, as pointed out above, this can be very slow. An alternative, for simple access meth-
ods is to use a macro to emit the code to access the desired field. Although code to directly access the da
object appears in the application program (via macro expansion), it will be automatically updated if you ever
change the macro in the interface section by simply assembling your application.

Although it is quite possible to create ADTs using nothing more than separate compilation and, perh
RECORDs, HLA does provide a better solution: the class. Read on to find out about HLA’s support for
classes and objects as well as how to use these to create ADTs.

10.3 Classes in HLA

HLA’s classes provide a good mechanism for creating abstract data types. Fundamentally, a class is little
more than a RECORD declaration that allows the definition of fields other than data fields (e.g., procedures,
constants, and macros). The inclusion of other program declaration objects in the class definition dramati-
cally expands the capabilities of a class over that of a record. For example, with a class it is now possible to
easily define an ADT since classes may include data and methods that operate on that data (procedur

The principle way to create an abstract data type in HLA is to declare a class data type. Classes
always appear in the TYPE section and use the following syntax:

classname : class

<< Class declaration section >>

endclass;

The class declaration section is very similar to the local declaration section for a procedure insofar as it
allows CONST, VAL, VAR, and STATIC variable declaration sections. Classes also let you define macros
and specify procedure, iterator, and method prototypes (method declarations are legal only in classes). Con-
spicuously absent from this list is the TYPE declaration section. You cannot declare new types within a
class.

A method is a special type of procedure that appears only within a class. A little later you will see the
difference between procedures and methods, for now you can treat them as being one and the same. O
than a few subtle details regarding class initialization and the use of pointers to classes, their semantic
identical2. Generally, if you don’t know whether to use a procedure or method in a class, the safest be
use a method.

You do not place procedure/iterator/method code within a class. Instead you simply supply prototypes
for these routines. A routine prototype consists of the PROCEDURE, ITERATOR, or METHOD reserved
word, the routine name, any parameters, and a couple of optional procedure attributes (@USE, RETURNS,
and EXTERNAL). The actual routine definition (i.e., the body of the routine and any local declarations it
needs) appears outside the class.

The following example demonstrates a typical class declaration appearing in the TYPE section:

TYPE
TypicalClass: class

const
TCconst := 5;

val

2. Note, however, that the difference between procedures and methods makes all the difference in the world to the o
ented programming paradigm. Hence the inclusion of methods in HLA’s class definitions.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1061

Chapter Ten Volume Five

g a

has a

o

le.

 source
TCval := 6;

var
TCvar : uns32; // Private field used only by TCproc.

static
TCstatic : int32;

procedure TCproc(u:uns32); returns("eax");
iterator TCiter(i:int32); external;
method TCmethod(c:char);

endclass;

As you can see, classes are very similar to records in HLA. Indeed, you can think of a record as bein
class that only allows VAR declarations. HLA implements classes in a fashion quite similar to records inso-
far as it allocates sequential data fields in sequential memory locations. In fact, with only one minor excep-
tion, there is almost no difference between a RECORD declaration and a CLASS declaration that only
VAR declaration section. Later you’ll see exactly how HLA implements classes, but for now you can
assume that HLA implements them the same as it does records and you won’t be too far off the mark.

You can access the TCvar and TCstatic fields (in the class above) just like a record’s fields. You access
the CONST and VAL fields in a similar manner. If a variable of type TypicalClass has the name obj, you
can access the fields of obj as follows:

mov (obj.TCconst, eax);
mov(obj.TCval, ebx);
add(obj.TCvar, eax);
add(obj.TCstatic, ebx);
obj.TCproc(20); // Calls the TCproc procedure in TypicalClass.
etc.

If an application program includes the class declaration above, it can create variables using the Typical-
Class type and perform operations using the above methods. Unfortunately, the application program can als
access the fields of the ADT data type with impunity. For example, if a program created a variable MyClass
of type TypicalClass, then it could easily execute instructions like “MOV(MyClass.TCvar, eax);” even
though this field might be private to the implementation section. Unfortunately, if you are going to allow an
application to declare a variable of type TypicalClass, the field names will have to be visible. While there are
some tricks we could play with HLA’s class definitions to help hide the private fields, the best solution is to
thoroughly comment the private fields and then exercise some restraint when accessing the fields of that
class. Specifically, this means that ADTs you create using HLA’s classes cannot be “pure” ADTs since HLA
allows direct access to the data fields. However, with a little discipline, you can simulate a pure ADT by
simply electing not to access such fields outside the class’ methods, procedures, and iterators.

Prototypes appearing in a class are effectively FORWARD declarations. Like normal forward declara-
tions, all procedures, iterators, and methods you define in a class must have an actual implementation later in
the code. Alternately, you may attach the EXTERNAL keyword to the end of a procedure, iterator, or
method declaration within a class to inform HLA that the actual code appears in a separate moduAs a
general rule, class declarations appear in header files and represent the interface section of an ADT. The pro-
cedure, iterator, and method bodies appear in the implementation section which is usually a separate
file that you compile separately and link with the modules that use the class.

The following is an example of a sample class procedure implementation:

procedure TypicalClass.TCproc(u:uns32); nodisplay;
<< Local declarations for this procedure >>

begin TCproc;

<< Code to implement whatever this procedure does >>

end TCProc;
Page 1062 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

eclara

 the

 you

’

in

a

ue

s con-
There are several differences between a standard procedure declaration and a class procedure d-
tion. First, and most obvious, the procedure name includes the class name (e.g., TypicalClass.TCproc). This
differentiates this class procedure definition from a regular procedure that just happens to have the name
TCproc. Note, however, that you do not have to repeat the class name before the procedure name in
BEGIN and END clauses of the procedure (this is similar to procedures you define in HLA NAMESPACEs).

A second difference between class procedures and non-class procedures is not obvious. Some proce-
dure attributes (@USE, EXTERNAL, RETURNS, @CDECL, @PASCAL, and @STDCALL) are legal only
in the prototype declaration appearing within the class while other attributes (@NOFRAME, @NODIS-
PLAY, @NOALIGNSTACK, and ALIGN) are legal only within the procedure definition and not within the
class. Fortunately, HLA provides helpful error messages if you stick the option in the wrong place, so
don’t have to memorize this rule.

If a class routine’s prototype does not have the EXTERNAL option, the compilation unit (that is, the
PROGRAM or UNIT) containing the class declaration must also contain the routine’s definition or HLA will
generate an error at the end of the compilation. For small, local, classes (i.e., when you’re embedding the
class declaration and routine definitions in the same compilation unit) the convention is to place the class
procedure, iterator, and method definitions in the source file shortly after the class declaration. For larger
systems (i.e., when separately compiling a class’ routines), the convention is to place the class declaration
a header file by itself and place all the procedure, iterator, and method definitions in a separate HLA unit and
compile them by themselves.

10.4 Objects

Remember, a class definition is just a type. Therefore, when you declare a class type you haven’t cre-
ated a variable whose fields you can manipulate. An object is an instance of a class; that is, an object is
variable that is some class type. You declare objects (i.e., class variables) the same way you declare other
variables: in a VAR, STATIC, or STORAGE section3. A pair of sample object declarations follow:

var
T1: TypicalClass;
T2: TypicalClass;
For a given class object, HLA allocates storage for each variable appearing in the VAR section of the

class declaration. If you have two objects, T1 and T2, of type TypicalClass then T1.TCvar is unique as is
T2.TCvar. This is the intuitive result (similar to RECORD declarations); most data fields you define in a
class will appear in the VAR declaration section.

Static data objects (e.g., those you declare in the STATIC section of a class declaration) are not uniq
among the objects of that class; that is, HLA allocates only a single static variable that all variables of that
class share. For example, consider the following (partial) class declaration and object declarations:

type
sc: class

var
i:int32;

static
s:int32;
.
.
.

endclass;

var

3. Technically, you could also declare an object in a READONLY section, but HLA does not allow you to define clas
stants, so there is little utility in declaring class objects in the READONLY section.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1063

Chapter Ten Volume Five

r
i
forma
bably

. In fact,
 to cre-
s1: sc;
s2: sc;

In this example, s1.i and s2.i are different variables. However, s1.s and s2.s are aliases of one anothe
Therefore, an instruction like “mov(5, s1.s);” also stores five into s2.s. Generally you use static class var-
ables to maintain information about the whole class while you use class VAR objects to maintain in-
tion about the specific object. Since keeping track of class information is relatively rare, you will pro
declare most class data fields in a VAR section.

You can also create dynamic instances of a class and refer to those dynamic objects via pointers
this is probably the most common form of object storage and access. The following code shows how
ate pointers to objects and how you can dynamically allocate storage for an object:

var
pSC: pointer to sc;

.

.

.
malloc(@size(sc));
mov(eax, pSC);

.

.

.
mov(pSC, ebx);
mov((type sc [ebx]).i, eax);

Note the use of type coercion to cast the pointer in EBX as type sc.

10.5 Inheritance

Inheritance is one of the most fundamental ideas behind object-oriented programming. The basic idea
behind inheritance is that a class inherits, or copies, all the fields from some class and then possibly expands
the number of fields in the new data type. For example, suppose you created a data type point which
describes a point in the planar (two dimensional) space. The class for this point might look like the follow-
ing:

type
point: class

var
x:int32;
y:int32;

method distance;

endclass;

Suppose you want to create a point in 3D space rather than 2D space. You can easily build such a data
type as follows:

type
point3D: class inherits(point);

var
z:int32;

endclass;
Page 1064 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

e
nce of

ble

e

he
The INHERITS option on the CLASS declaration tells HLA to insert the fields of point at the beginning of
the class. In this case, point3D inherits the fields of point. HLA always places the inherited fields at th
beginning of a class object. The reason for this will become clear a little later. If you have an insta
point3D which you call P3, then the following 80x86 instructions are all legal:

mov(P3.x, eax);
add(P3.y, eax);
mov(eax, P3.z);
P3.distance();

Note that the P3.distance method invocation in this example calls the point.distance method. You do
not have to write a separate distance method for the point3D class unless you really want to do so (see the
next section for details). Just like the x and y fields, point3D objects inherit point’s methods.

10.6 Overriding

Overriding is the process of replacing an existing method in an inherited class with one more suita
for the new class. In the point and point3D examples appearing in the previous section, the distance method
(presumably) computes the distance from the origin to the specified point. For a point on a two-dimensional
plane, you can compute the distance using the function:

However, the distance for a point in 3D space is given by the equation:

Clearly, if you call the distance function for point for a point3D object you will get an incorrect answer. In
the previous section, however, you saw that the P3 object calls the distance function inherited from the point
class. Therefore, this would produce an incorrect result.

In this situation the point3D data type must override the distance method with one that computes th
correct value. You cannot simply redefine the point3D class by adding a distance method prototype:

type
point3D: class inherits(point)

var
z:int32;

method distance; // This doesn’t work!

endclass;

The problem with the distance method declaration above is that point3D already has a distance method – the
one that it inherits from the point class. HLA will complain because it doesn’t like two methods with t
same name in a single class.

To solve this problem, we need some mechanism by which we can override the declaration of point.dis-
tance and replace it with a declaration for point3D.distance. To do this, you use the OVERRIDE keyword
before the method declaration:

type
point3D: class inherits(point)

var
z:int32;

override method distance; // This will work!

endclass;

dist = x2+y2

dist = x2+y2+z2
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1065

Chapter Ten Volume Five

e

ust

e same.

or
ll
at

of

s the

ns that

g by the
The OVERRIDE prefix tells HLA to ignore the fact that point3D inherits a method named distance from th
point class. Now, any call to the distance method via a point3D object will call the point3D.distance method
rather than point.distance. Of course, once you override a method using the OVERRIDE prefix, you m
supply the method in the implementation section of your code, e.g.,

method point3D.distance; nodisplay;

<< local declarations for the distance function>>

begin distance;

<< Code to implement the distance function >>

end distance;

10.7 Virtual Methods vs. Static Procedures

A little earlier, this chapter suggested that you could treat class methods and class procedures th
There are, in fact, some major differences between the two (after all, why have methods if they’re the same
as procedures?). As it turns out, the differences between methods and procedures is crucial if you want to
develop object-oriented programs. Methods provide the second feature necessary to support true polym-
phism: virtual procedure calls4. A virtual procedure call is just a fancy name for an indirect procedure ca
(using a pointer associated with the object). The key benefit of virtual procedures is that the system autom-
ically calls the right method when using pointers to generic objects.

Consider the following declarations using the point class from the previous sections:

var
P2: point;
P: pointer to point;

Given the declarations above, the following assembly statements are all legal:

mov(P2.x, eax);
mov(P2.y, ecx);
P2.distance(); // Calls point3D.distance.

lea(ebx, P2); // Store address of P2 into P.
mov(ebx, P);
P.distance(); // Calls point.distance.

Note that HLA lets you call a method via a pointer to an object rather than directly via an object variable.
This is a crucial feature of objects in HLA and a key to implementing virtual method calls.

The magic behind polymorphism and inheritance is that object pointers are generic. In general, when
your program references data indirectly through a pointer, the value of the pointer should be the address
the underlying data type associated with that pointer. For example, if you have a pointer to a 16-bit unsigned
integer, you wouldn’t normally use that pointer to access a 32-bit signed integer value. Similarly, if you have
a pointer to some record, you would not normally cast that pointer to some other record type and acces
fields of that other type5. With pointers to class objects, however, we can lift this restriction a bit. Pointers
to objects may legally contain the address of the object’s type or the address of any object that inherits the
fields of that type. Consider the following declarations that use the point and point3D types from the previ-
ous examples:

var

4. Polymorphism literally means “many-faced.” In the context of object-oriented programming polymorphism mea
the same method name, e.g., distance, and refer to one of several different methods.
5. Of course, assembly language programmers break rules like this all the time. For now, let’s assume we’re playin
rules and only access the data using the data type associated with the pointer.
Page 1066 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

od
t,

i
a

seman

s the
he

ng
claration
P2: point;
P3: point3D;
p: pointer to point;

.

.

.
lea(ebx, P2);
mov(ebx, p);
p.distance(); // Calls the point.distance method.

.

.

.
lea(ebx, P3);
mov(ebx, p); // Yes, this is semantically legal.
p.distance(); // Surprise, this calls point3D.distance.

Since p is a pointer to a point object, it might seem intuitive for p.distance to call the point.distance
method. However, methods are polymorphic. If you’ve got a pointer to an object and you call a meth
associated with that object, the system will call the actual (overridden) method associated with the objec
not the method specifically associated with the pointer’s class type.

Class procedures behave differently than methods with respect to overridden procedures. When you
call a class procedure indirectly through an object pointer, the system will always call the procedure assoc-
ated with the underlying class associated with the pointer. So had distance been a procedure rather than
method in the previous examples, the “p.distance();” invocation would always call point.distance, even if p
is pointing at a point3D object. The section on Object Initialization, later in this chapter, explains why meth-
ods and procedures are different (see “Object Implementation” on page 1071).

Note that iterators are also virtual; so like methods an object iterator invocation will always call the
(overridden) iterator associated with the actual object whose address the pointer contains. To differentiate
the semantics of methods and iterators from procedures, we will refer to the method/iterator calling -
tics as virtual procedures and the calling semantics of a class procedure as a static procedure.

10.8 Writing Class Methods, Iterators, and Procedures

For each class procedure, method, and iterator prototype appearing in a class definition, there must be a
corresponding procedure, method, or iterator appearing within the program (for the sake of brevity, this sec-
tion will use the term routine to mean procedure, method, or iterator from this point forward). If the proto-
type does not contain the EXTERNAL option, then the code must appear in the same compilation unit a
class declaration. If the EXTERNAL option does follow the prototype, then the code may appear in t
same compilation unit or a different compilation unit (as long as you link the resulting object file with the
code containing the class declaration). Like external (non-class) procedures and iterators, if you fail to pro-
vide the code the linker will complain when you attempt to create an executable file. To reduce the size of
the following examples, they will all define their routines in the same source file as the class declaration.

HLA class routines must always follow the class declaration in a compilation unit. If you are compili
your routines in a separate unit, the class declarations must still precede the code with the class de
(usually via an #INCLUDE file). If you haven’t defined the class by the time you define a routine like
point.distance, HLA doesn’t know that point is a class and, therefore, doesn’t know how to handle the rou-
tine’s definition.

Consider the following declarations for a point2D class:

type
point2D: class

const
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1067

Chapter Ten Volume Five

e

nt
UnitDistance: real32 := 1.0;

var
x: real32;
y: real32;

static
LastDistance: real32;

method distance(fromX: real32; fromY:real32); returns("st0");
procedure InitLastDistance;

endclass;

The distance function for this class should compute the distance from the object’s point to
(fromX,fromY). The following formula describes this computation:

A first pass at writing the distance method might produce the following code:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(x); // Note: this doesn’t work!
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(y); // This doesn’t work either.
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

This code probably looks like it should work to someone who is familiar with an object-oriented pro-
gramming language like C++ or Delphi. However, as the comments indicate, the instructions that push thx
and y variables onto the FPU stack don’t work – HLA doesn’t automatically define the symbols associated
with the data fields of a class within that class’ routines.

To learn how to access the data fields of a class within that class’ routines, we need to back up a mome
and discover some very important implementation details concerning HLA’s classes. To do this, consider
the following variable declarations:

var
Origin: point2D;
PtInSpace: point2D;

Remember, whenever you create two objects like Origin and PtInSpace, HLA reserves storage for the x
and y data fields for both of these objects. However, there is only one copy of the point2D.distance method
in memory. Therefore, were you to call Origin.distance and PtInSpace.distance, the system would call the
same routine for both method invocations. Once inside that method, one has to wonder what an instruction
like “fld(x);” would do. How does it associate x with Origin.x or PtInSpace.x? Worse still, how would this
code differentiate between the data field x and a global object x? In HLA, the answer is “it doesn’t.” You do

x fromX–()2
y fromY–()2

+

Page 1068 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

 to

ss rou

 out

ue
lds after
method
le, which

A pro-
LA, the

e

not specify the data field names within a class routine by simply using their names as though they were com-
mon variables.

To differentiate Origin.x from PtInSpace.x within class routines, HLA automatically passes a pointer
an object’s data fields whenever you call a class routine. Therefore, you can reference the data fields indi-
rectly off this pointer. HLA passes this object pointer in the ESI register. This is one of the few places where
HLA-generated code will modify one of the 80x86 registers behind your back: anytime you call a class
routine, HLA automatically loads the ESI register with the object’s address. Obviously, you cannot
count on ESI’s value being preserved across class routine class nor can you pass parameters to the cla-
tine in the ESI register (though it is perfectly reasonable to specify "@USE ESI;" to allow HLA to use the
ESI register when setting up other parameters). For class methods and iterators (but not procedures), HLA
will also load the EDI register with the address of the class’ virtual method table (see “Virtual Method
Tables” on page 1073). While the virtual method table address isn’t as interesting as the object address, keep
in mind that HLA-generated code will overwrite any value in the EDI register when you call a method
or an iterator. Again, "EDI" is a good choice for the @USE operand for methods since HLA will wipe
the value in EDI anyway.

Upon entry into a class routine, ESI contains a pointer to the (non-static) data fields associated with the
class. Therefore, to access fields like x and y (in our point2D example), you could use an address expression
like the following:

(type point2D [esi].x

Since you use ESI as the base address of the object’s data fields, it’s a good idea not to disturb ESI’s val
within the class routines (or, at least, preserve ESI’s value if you need to access the objects data fie
some point where you must use ESI for some other purpose). Note that if you call an iterator or a
you do not have to preserve EDI (unless, for some reason, you need access to the virtual method tab
is unlikely).

Accessing the fields of a data object within a class’ routines is such a common operation that HL
vides a shorthand notation for casting ESI as a pointer to the class object: THIS. Within a class in H
reserved word THIS automatically expands to a string of the form “(type classname [esi])” substituting, of
course, the appropriate class name for classname. Using the THIS keyword, we can (correctly) rewrite the
previous distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

Don’t forget that calling a class routine wipes out the value in the ESI register. This isn’t obvious from
the syntax of the routine’s invocation. It is especially easy to forget this when calling some class routin
from inside some other class routine; don’t forget that if you do this the internal call wipes out the value in
ESI and on return from that call ESI no longer points at the original object. Always push and pop ESI (or
otherwise preserve ESI’s value) in this situation, e.g.,

.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1069

Chapter Ten Volume Five

 THIS to

the class

ds ESI

oesn’t
.

.
fld(this.x); // ESI points at current object.
.
.
.
push(esi); // Preserve ESI across this method call.
SomeObject.SomeMethod();
pop(esi);
.
.
.
lea(ebx, this.x); // ESI points at original object here.

The THIS keyword provides access to the class variables you declare in the VAR section of a class. You
can also use THIS to call other class routines associated with the current object, e.g.,

this.distance(5.0, 6.0);

To access class constants and STATIC data fields you generally do not use the THIS pointer. HLA asso-
ciates constant and static data fields with the whole class, not a specific object. To access these class mem-
bers, just use the class name in place of the object name. For example, to access the UnitDistance constant
in the point2D class you could use a statement like the following:

fld(point2D.UnitDistance);

As another example, if you wanted to update the LastDistance field in the point2D class each time you com-
puted a distance, you could rewrite the point2D.distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

fst(point2D.LastDistance); // Update shared (STATIC) field.

end distance;

To understand why you use the class name when referring to constants and static objects but you use
access VAR objects, check out the next section.

Class procedures are also static objects, so it is possible to call a class procedure by specifying
name rather than an object name in the procedure invocation, e.g., both of the following are legal:

Origin.InitLastDistance();
point2D.InitLastDistance();

There is, however, a subtle difference between these two class procedure calls. The first call above loa
with the address of the Origin object prior to actually calling the InitLastDistance procedure. The second
call, however, is a direct call to the class procedure without referencing an object; therefore, HLA d
Page 1070 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

I prior
lways
object

. Later,
 proce

 of
ning

CORD
:

know what object address to load into the ESI register. In this case, HLA loads NULL (zero) into ES
to calling the InitLastDistance procedure. Because you can call class procedures in this manner, it’s a
a good idea to check the value in ESI within your class procedures to verify that HLA contains an
address. Checking the value in ESI is a good way to determine which calling mechanism is in use
this chapter will discuss constructors and object initialization; there you will see a good use for static-
dures and calling those procedures directly (rather than through the use of an object).

10.9 Object Implementation

In a high level object-oriented language like C++ or Delphi, it is quite possible to master the use
objects without really understanding how the machine implements them. One of the reasons for lear
assembly language programming is to fully comprehend low-level implementation details so one can make
educated decisions concerning the use of programming constructs like objects. Further, since assembly lan-
guage allows you to poke around with data structures at a very low-level, knowing how HLA implements
objects can help you create certain algorithms that would not be possible without a detailed knowledge of
object implementation. Therefore, this section, and its corresponding subsections, explains the low-level
implementation details you will need to know in order to write object-oriented HLA programs.

HLA implements objects in a manner quite similar to records. In particular, HLA allocates storage for
all VAR objects in a class in a sequential fashion, just like records. Indeed, if a class consists of only VAR
data fields, the memory representation of that class is nearly identical to that of a corresponding RE
declaration. Consider the Student record declaration taken from Volume Three and the corresponding class

type
student: record

Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endrecord;

student2: class
Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endclass;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1071

Chapter Ten Volume Five

d

Figure 10.1 Student RECORD Implementation in Memory

Figure 10.2 Student CLASS Implementation in Memory

If you look carefully at these two figures, you’ll discover that the only difference between the class an
the record implementations is the inclusion of the VMT (virtual method table) pointer field at the beginning
of the class object. This field, which is always present in a class, contains the address of the class’ virtual
method table which, in turn, contains the addresses of all the class’ methods and iterators. The VMT fi eld,
by the way, is present even if a class doesn’t contain any methods or iterators.

As pointed out in previous sections, HLA does not allocate storage for STATIC objects within the
object’s storage. Instead, HLA allocates a single instance of each static data field that all objects share. As
an example, consider the following class and object declarations:

type
tHasStatic: class

var
i:int32;
j:int32;
r:real32;

static
c:char[2];
b:byte;

endclass;

var
hs1: tHasStatic;
hs2: tHasStatic;

Figure 10.3 shows the storage allocation for these two objects in memory.

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

VMT
Pointer

(4 Bytes)
Page 1072 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

i

rators,
tructions
 is

t lik

d itera
Figure 10.3 Object Allocation with Static Data Fields

Of course, CONST, VAL, and #MACRO objects do not have any run-time memory requirements assoc-
ated with them, so HLA does not allocate any storage for these fields. Like the STATIC data fields, you may
access CONST, VAL, and #MACRO fields using the class name as well as an object name. Hence, even if
tHasStatic has these types of fields, the memory organization for tHasStatic objects would still be the same
as shown in Figure 10.3.

Other than the presence of the virtual method table pointer (VMT), the presence of methods, ite
and procedures has no impact on the storage allocation of an object. Of course, the machine ins
associated with these routines does appear somewhere in memory. So in a sense the code for the routines
quite similar to static data fields insofar as all the objects share a single instance of the routine.

10.9.1 Virtual Method Tables

When HLA calls a class procedure, it directly calls that procedure using a CALL instruction, juse
any normal non-class procedure call. Methods and iterators are another story altogether. Each object in the
system carries a pointer to a virtual method table which is an array of pointers to all the methods an-
tors appearing within the object’s class.

VMT

i

j

r

hs1

VMT

i

j

r

hs2

c[0]
c[1]

tHasStatic.c

tHasStatic.b
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1073

Chapter Ten Volume Five

d table.

tion

a

lass,
Figure 10.4 Virtual Method Table Organization

Each iterator or method you declare in a class has a corresponding entry in the virtual metho
That dword entry contains the address of the first instruction of that iterator or method. To call a class
method or iterator is a bit more work than calling a class procedure (it requires one additional instruc
plus the use of the EDI register). Here is a typical calling sequence for a method:

mov(ObjectAdrs, ESI); // All class routines do this.
mov([esi], edi); // Get the address of the VMT into EDI
call((type dword [edi+n])); // "n" is the offset of the method’s entry

// in the VMT.

For a given class there is only one copy of the VMT in memory. This is a static object so all objects of
given class type share the same VMT. This is reasonable since all objects of the same class type have exactly
the same methods and iterators (see Figure 10.5).

Figure 10.5 All Objects That are the Same Class Type Share the Same VMT

Although HLA builds the VMT record structure as it encounters methods and iterators within a c
HLA does not automatically create the actual run-time virtual method table for you. You must explicitly

VMT

field1

field2

...

SomeObject

Method/ Iterator #1

Method/ Iterator #2

...

Method/ Iterator #n

fieldn

Object1

Object2

Object3

VMT

Note:Objects are all the same class type
Page 1074 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

nging
lly not

t

le.

 a
ely that

ss in a
 iterator,
 in the

ility of

ass to
declare this table in your program. To do this, you include a statement like the following in a STATIC or
READONLY declaration section of your program, e.g.,

readonly
VMT(classname);

Since the addresses in a virtual method table should never change during program execution, the REA-
DONLY section is probably the best choice for declaring VMTs. It should go without saying that cha
the pointers in a VMT is, in general, a really bad idea. So putting VMTs in a STATIC section is usua
a good idea.

A declaration like the one above defines the variable classname._VMT_. In section 10.10 (see “Con-
structors and Object Initialization” on page 1079) you see that you’ll need this name when initializing objec
variables. The class declaration automatically defines the classname._VMT_ symbol as an external static
variable. The declaration above just provides the actual definition of this external symbol.

The declaration of a VMT uses a somewhat strange syntax because you aren’t actually declaring a new
symbol with this declaration, you’re simply supplying the data for a symbol that you previously declared
implicitly by defining a class. That is, the class declaration defines the static table variable class-
name._VMT_, all you’re doing with the VMT declaration is telling HLA to emit the actual data for the tab
If, for some reason, you would like to refer to this table using a name other than classname._VMT_, HLA
does allow you to prefix the declaration above with a variable name, e.g.,

readonly
myVMT: VMT(classname);

In this declaration, myVMT is an alias of classname._VMT_. As a general rule, you should avoid aliases in
program because they make the program more difficult to read and understand. Therefore, it is unlik
you would ever really need to use this type of declaration.

Like any other global static variable, there should be only one instance of a VMT for a given cla
program. The best place to put the VMT declaration is in the same source file as the class’ method,
and procedure code (assuming they all appear in a single file). This way you will automatically link
VMT whenever you link in the routines for a given class.

10.9.2 Object Representation with Inheritance

Up to this point, the discussion of the implementation of class objects has ignored the possib
inheritance. Inheritance only affects the memory representation of an object by adding fields that are not
explicitly stated in the class declaration.

Adding inherited fields from a base class to another class must be done carefully. Remember, an impor-
tant attribute of a class that inherits fields from a base class is that you can use a pointer to the base cl
access the inherited fields from that base class in another class. As an example, consider the following
classes:

type
tBaseClass: class

var
i:uns32;
j:uns32;
r:real32;

method mBase;
endclass;

tChildClassA: class inherits(tBaseClass);
var

c:char;
b:boolean;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1075

Chapter Ten Volume Five
w:word;

method mA;
endclass;

tChildClassB: class inherits(tBaseClass);
var

d:dword;
c:char;
a:byte[3];

endclass;

Since both tChildClassA and tChildClassB inherit the fields of tBaseClass, these two child classes
include the i, j, and r fields as well as their own specific fields. Furthermore, whenever you have a pointer
variable whose base type is tBaseClass, it is legal to load this pointer with the address of any child class of
tBaseClass; therefore, it is perfectly reasonable to load such a pointer with the address of a tChildClassA or
tChildClassB variable, e.g.,

var
B1: tBaseClass;
CA: tChildClassA;
CB: tChildClassB;
ptr: pointer to tBaseClass;

.

.

.
lea(ebx, B1);
mov(ebx, ptr);
<< Use ptr >>

.

.

.
lea(eax, CA);
mov(ebx, ptr);
<< Use ptr >>

.

.

.
lea(eax, CB);
mov(eax, ptr);
<< Use ptr >>

Since ptr points at an object of tBaseClass, you may legally (from a semantic sense) access the i, j, and
r fields of the object where ptr is pointing. It is not legal to access the c, b, w, or d fields of the tChildClassA
or tChildClassB objects since at any one given moment the program may not know exactly what object type
ptr references.

In order for inheritance to work properly, the i, j, and r fields must appear at the same offsets all child
classes as they do in tBaseClass. This way, an instruction of the form “mov((type tBaseClass [ebx]).i, eax);”
will correct access the i field even if EBX points at an object of type tChildClassA or tChildClassB. Figure
10.6 shows the layout of the child and base classes:
Page 1076 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

le at
Figure 10.6 Layout of Base and Child Class Objects in Memory

Note that the new fields in the two child classes bear no relation to one another, even if they have the
same name (e.g., field c in the two child classes does not lie at the same offset). Although the two child
classes share the fields they inherit from their common base class, any new fields they add are unique and
separate. Two fields in different classes share the same offset only by coincidence.

All classes (even those that aren’t related to one another) place the pointer to the virtual method tab
offset zero within the object. There is a single VMT associated with each class in a program; even classes
that inherit fields from some base class have a VMT that is (generally) different than the base class’ VMT.
shows how objects of type tBaseClass, tChildClassA and tChildClassB point at their specific VMTs:

VMT

i

j

r

VMT

i

j

r

VMT

i

j

r

b
c

w

d

c

a

Derived (child) classes locate their inherited fields at the same offsets as
those fields in the base class.

tBaseClass tChildClassA tChildClassB
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1077

Chapter Ten Volume Five

ociated
f

han

 code
 of the

s. The
 (like
eneral

ion that
Figure 10.7 Virtual Method Table References from Objects

A virtual method table is nothing more than an array of pointers to the methods and iterators ass
with a class. The address of the first method or iterator appearing in a class is at offset zero, the address o
the second appears at offset four, etc. You can determine the offset value for a given iterator or method by
using the @offset function. If you want to call a method or iterator directly (using 80x86 syntax rather t
HLA’s high level syntax), you code use code like the following:

var
sc: tBaseClass;

.

.

.
lea(esi, sc); // Get the address of the object (& VMT).
mov([esi], edi); // Put address of VMT into EDI.
call((type dword [edi+@offset(tBaseClass.mBase)]);

Of course, if the method has any parameters, you must push them onto the stack before executing the
above. Don’t forget, when making direct calls to a method, that you must load ESI with the address
object. Any field references within the method will probably depend upon ESI containing this addres
choice of EDI to contain the VMT address is nearly arbitrary. Unless you’re doing something tricky
using EDI to obtain run-time type information), you could use any register you please here. As a g
rule, you should use EDI when simulating class iterator/method calls because this is the convent
HLA employs and most programmers will expect this.

B1
tBaseClass:VMT

CA

tChildClassA:VMT

tChildClassB:VMT

CB

var
 B1: tBaseClass;
 CA: tChildClassA;
 CB: tChildClassB;
 CB2: tChildClassB;
 CA2: tChildClassA;

CA2

CB2

VMT Pointer
Page 1078 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

ym

int,

 –
Whenever a child class inherits fields from some base class, the child class’ VMT also inherits entries
from the base class’ VMT. For example, the VMT for class tBaseClass contains only a single entry – a
pointer to method tBaseClass.mBase. The VMT for class tChildClassA contains two entries: a pointer to
tBaseClass.mBase and tChildClassA.mA. Since tChildClassB doesn’t define any new methods or iterators,
tChildClassB’s VMT contains only a single entry, a pointer to the tBaseClass.mBase method. Note that tCh-
ildClassB’s VMT is identical to tBaseClass’ VMT. Nevertheless, HLA produces two distinct VMTs. This is
a critical fact that we will make use of a little later. Figure 10.8 shows the relationship between these VMTs:

Figure 10.8 Virtual Method Tables for Inherited Classes

Although the VMT always appears at offset zero in an object (and, therefore, you can access the VMT
using the address expression “[ESI]” if ESI points at an object), HLA actually inserts a symbol into the s-
bol table so you may refer to the VMT symbolically. The symbol _pVMT_ (pointer to Virtual Method Table)
provides this capability. So a more readable way to access the VMT pointer (as in the previous code exam-
ple) is

lea(esi, sc);
mov((type tBaseClass [esi])._pVMT_, edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

If you need to access the VMT directly, there are a couple ways to do this. Whenever you declare a
class object, HLA automatically includes a field named _VMT_ as part of that class. _VMT_ is a static array
of double word objects. Therefore, you may refer to the VMT using an identifier of the form class-
name._VMT_. Generally, you shouldn’t access the VMT directly, but as you’ll see shortly, there are some
good reasons why you need to know the address of this object in memory.

10.10 Constructors and Object Initialization

If you’ve tried to get a little ahead of the game and write a program that uses objects prior to this po
you’ve probably discovered that the program inexplicably crashes whenever you attempt to run it. We’ve
covered a lot of material in this chapter thus far, but you are still missing one crucial piece of information
how to properly initialize objects prior to use. This section will put the final piece into the puzzle and allow
you to begin writing programs that use classes.

Consider the following object declaration and code fragment:

var
bc: tBaseClass;

.

.

.
bc.mBase();

mBase mBase

mA

mBase

tBaseClass tChildClassA tChildClassB

Virtual Method Tables for Derived (inherited) Classes

Offset Zero

Offset Four
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1079

Chapter Ten Volume Five

t

i
ddress
t, you
 the

e the
pecific
 same
ct from

 such a
special

ode

s.
o

of
thod or

 E.g., if

ct
Remember that variables you declare in the VAR section are uninitialized at run-time. Therefore, when
the program containing these statements gets around to executing bc.mBase, it executes the three-statemen
sequence you’ve seen several times already:

lea(esi, bc);
mov([esi], edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

The problem with this sequence is that it loads EDI with an undefined value assuming you haven’t prev-
ously initialized the bc object. Since EDI contains a garbage value, attempting to call a subroutine at a
“[EDI+@offset(tBaseClass.mBase)]” will likely crash the system. Therefore, before using an objec
must initialize the _pVMT_ field with the address of that object’s VMT. One easy way to do this is with
following statement:

mov(&tBaseClass._VMT_, bc._pVMT_);

Always remember, before using an object, be sure to initialize the virtual method table pointer for that
field.

Although you must initialize the virtual method table pointer for all objects you use, this may not b
only field you need to initialize in those objects. Each specific class may have its own application-s
initialization that is necessary. Although the initialization may vary by class, you need to perform the
initialization on each object of a specific class that you use. If you ever create more than a single obje
a given class, it is probably a good idea to create a procedure to do this initialization for you. This is
common operation that object-oriented programmers have given these initialization procedures a
name: constructors.

Some object-oriented languages (e.g., C++) use a special syntax to declare a constructor. Others (e.g.,
Delphi) simply use existing procedure declarations to define a constructor. One advantage to employing a
special syntax is that the language knows when you define a constructor and can automatically generate c
to call that constructor for you (whenever you declare an object). Languages, like Delphi, require that you
explicitly call the constructor; this can be a minor inconvenience and a source of defects in your program
HLA does not use a special syntax to declare constructors – you define constructors using standard class pr-
cedures. As such, you will need to explicitly call the constructors in your program; however, you’ll see an
easy method for automating this in a later section of this chapter.

Perhaps the most important fact you must remember is that constructors must be class procedures.
You must not define constructors as methods (or iterators). The reason is quite simple: one of the tasks
the constructor is to initialize the pointer to the virtual method table and you cannot call a class me
iterator until after you’ve initialized the VMT pointer. Since class procedures don’t use the virtual method
table, you can call a class procedure prior to initializing the VMT pointer for an object.

By convention, HLA programmers use the name Create for the class constructor. There is no require-
ment that you use this name, but by doing so you will make your programs easier to read and follow by
other programmers.

As you may recall, you can call a class procedure via an object reference or a class reference.
clsProc is a class procedure of class tClass and Obj is an object of type tClass, then the following two class
procedure invocations are both legal:

tClass.clsProc();
Obj.clsProc();

There is a big difference between these two calls. The first one calls clsProc with ESI containing zero
(NULL) while the second invocation loads the address of Obj into ESI before the call. We can use this fa
to determine within a method the particular calling mechanism.
Page 1080 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

bject.

s the

 entry

d on

a

10.10.1Dynamic Object Allocation Within the Constructor

As it turns out, most programs allocate objects dynamically using malloc and refer to those objects indi-
rectly using pointers. This adds one more step to the initialization process – allocating storage for the o
The constructor is the perfect place to allocate this storage. Since you probably won’t need to allocate all
objects dynamically, you’ll need two types of constructors: one that allocates storage and then initialize
object, and another that simply initializes an object that already has storage.

Another constructor convention is to merge these two constructors into a single constructor and differ-
entiate the type of constructor call by the value in ESI. On entry into the class’ Create procedure, the pro-
gram checks the value in ESI to see if it contains NULL (zero). If so, the constructor calls malloc to allocate
storage for the object and returns a pointer to the object in ESI. If ESI does not contain NULL upon
into the procedure, then the constructor assumes that ESI points at a valid object and skips over the memory
allocation statements. At the very least, a constructor initializes the pointer to the VMT; therefore, the min-
imalist constructor will look like the following:

procedure tBaseClass.mBase; nodisplay;
begin mBase;

if(ESI = 0) then

push(eax); // Malloc returns its result here, so save it.
malloc(@size(tBaseClass));
mov(eax, esi); // Put pointer into ESI;
pop(eax);

endif;

// Initialize the pointer to the VMT:
// (remember, "this" is shorthand for (type tBaseClass [esi])"

mov(&tBaseClass._VMT_, this._pVMT_);

// Other class initialization would go here.

end mBase;

After you write a constructor like the one above, you choose an appropriate calling mechanism base
whether your object’s storage is already allocated. For pre-allocated objects (i.e., those you’ve declared in
VAR, STATIC, or STORAGE sections6 or those you’ve previously allocated storage for via malloc) you
simply load the address of the object into ESI and call the constructor. For those objects you declare as
variable, this is very easy – just call the appropriate Create constructor:

var
bc0: tBaseClass;
bcp: pointer to tBaseClass;

.

.

.
bc0.Create(); // Initializes pre-allocated bc0 object.

.

.

.
malloc(@size(tBaseClass)); // Allocate storage for bcp object.
mov(eax, bcp);

.

.

6. You generally do not declare objects in READONLY sections because you cannot initialize them.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1081

Chapter Ten Volume Five

SI,

t con

ter.
riable;

se.

 and,
t.

ll

o vio

se
.
bcp.Create(); // Initializes pre-allocated bcp object.

Note that although bcp is a pointer to a tBaseClass object, the Create method does not automatically
allocate storage for this object. The program already allocates the storage earlier. Therefore, when the pro-
gram calls bcp.Create it loads ESI with the address contained within bcp; since this is not NULL, the tBase-
Class.Create procedure does not allocate storage for a new object. By the way, the call to bcp.Create emits
the following sequence of machine instructions:

mov(bcp, esi);
call tBaseClass.Create;

Until now, the code examples for a class procedure call always began with an LEA instruction. This is
because all the examples to this point have used object variables rather than pointers to object variables.
Remember, a class procedure (method/iterator) call passes the address of the object in the ESI register. For
object variables HLA emits an LEA instruction to obtain this address. For pointers to objects, however, the
actual object address is the value of the pointer variable; therefore, to load the address of the object into E
HLA emits a MOV instruction that copies the value of the pointer into the ESI register.

In the example above, the program preallocates the storage for an object prior to calling the objec-
structor. While there are several reasons for preallocating object storage (e.g., you’re creating a dynamic
array of objects), you can achieve most simple object allocations like the one above by calling a standard
Create method (i.e., one that allocates storage for an object if ESI contains NULL). The following example
demonstrates this:

var
bcp2: pointer to tBaseClass;

.

.

.
tBaseClass.Create(); // Calls Create with ESI=NULL.
mov(esi, bcp2); // Save pointer to new class object in bcp2.

Remember, a call to a tBaseClass.Create constructor returns a pointer to the new object in the ESI regis
It is the caller’s responsibility to save the pointer this function returns into the appropriate pointer va
the constructor does not automatically do this for you.

10.10.2Constructors and Inheritance

Constructors for derived (child) classes that inherit fields from a base class represent a special ca
Each class must have its own constructor but needs the ability to call the base class constructor. This section
explains the reasons for this and how to do this.

A derived class inherits the Create procedure from its base class. However, you must override this pro-
cedure in a derived class because the derived class probably requires more storage than the base class
therefore, you will probably need to use a different call to malloc to allocate storage for a dynamic objec
Hence, it is very unusual for a derived class not to override the definition of the Create procedure.

However, overriding a base class’ Create procedure has problems of its own. When you override the
base class’ Create procedure, you take the full responsibility of initializing the (entire) object, including a
the initialization required by the base class. At the very least, this involves putting duplicate code in the
overridden procedure to handle the initialization usually done by the base class constructor. In addition to
make your program larger (by duplicating code already present in the base class constructor), this als-
lates information hiding principles since the derived class must be aware of all the fields in the base class
(including those that are logically private to the base class). What we need here is the ability to call a ba
class’ constructor from within the derived class’ destructor and let that call do the lower-level initialization
of the base class’ fields. Fortunately, this is an easy thing to do in HLA.

Consider the following class declarations (which does things the hard way):
Page 1082 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

a

type
tBase: class

var
i:uns32;
j:int32;

procedure Create(); returns("esi");
endclass;

tDerived: class inherits(tBase);
var

r: real64;

override procedure Create(); returns("esi");
endclass;

procedure tBase.Create; @nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tBase)), esi);
pop(eax);

endif;
mov(&tBase._VMT_, this._pVMT_);
mov(0, this.i);
mov(-1, this.j);

end Create;

procedure tDerived.Create; @nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tDerived)), esi);
pop(eax);

endif;

// Initialize the VMT pointer for this object:

mov(&tDerived._VMT_, this._pVMT_);

// Initialize the "r" field of this particular object:

fldz();
fstp(this.r);

// Duplicate the initialization required by tBase.Create:

mov(0, this.i);
mov(-1, this.j);

end Create;

Let’s take a closer look at the tDerived.Create procedure above. Like a conventional constructor, it
begins by checking ESI and allocates storage for a new object if ESI contains NULL. Note that the size of
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1083

Chapter Ten Volume Five

ry

he
ent

f

o

i
 could

l
ss

uired for

nside

the
t it
tDerived object includes the size required by the inherited fields, so this properly allocates the necessa
storage for all fields in a tDerived object.

Next, the tDerived.Create procedure initializes the VMT pointer field of the object. Remember, each
class has its own VMT and, specifically, derived classes do not use the VMT of their base class. Therefore,
this constructor must initialize the _pVMT_ field with the address of the tDerived VMT.

After initializing the VMT pointer, the tDerived constructor initializes the value of the r field to 0.0
(remember, FLDZ loads zero onto the FPU stack). This concludes the tDerived-specific initialization.

The remaining instructions in tDerived.Create are the problem. These statements duplicate some of t
code appearing in the tBase.Create procedure. The problem with code duplication becomes really appar
when you decide to modify the initial values of these fields; if you’ve duplicated the initialization code in
derived classes, you will need to change the initialization code in more than one Create procedure. More
often than not, this results in defects in the derived class Create procedures, especially if those derived
classes appear in different source files than the base class.

Another problem with burying base class initialization in derived class constructors is the violation o
the information hiding principle. Some fields of the base class may be logically private. Although HLA
does not explicitly support the concept of public and private fields in a class (as, say, C++ does), well-disci-
plined programmers will still partition the fields as private or public and then only use the private fields in
class routines belonging to that class. Initializing these private fields in derived classes is not acceptable t
such programmers. Doing so will make it very difficult to change the definition and implementation of some
base class at a later date.

 Fortunately, HLA provides an easy mechanism for calling the inherited constructor within a derved
class’ constructor. All you have to do is call the base constructor using the classname syntax, e.g., you
call tBase.Create directly from within tDerived.Create. By calling the base class constructor, your derived
class constructors can initialize the base class fields without worrying about the exact implementation (or
initial values) of the base class.

Unfortunately, there are two types of initialization that every (conventional) constructor does that wil
affect the way you call a base class constructor: all conventional constructors allocate memory for the cla
if ESI contains zero and all conventional constructors initialize the VMT pointer. Fortunately, it is very easy
to deal with these two problems

The memory required by an object of some most base class is usually less than the memory req
an object of a class you derive from that base class (because the derived classes usually add more fields).
Therefore, you cannot allow the base class constructor to allocate the storage when you call it from i
the derived class’ constructor. This problem is easily solved by checking ESI within the derived class con-
structor and allocating any necessary storage for the object before calling the base class constructor.

The second problem is the initialization of the VMT pointer. When you call the base class’ constructor,
it will initialize the VMT pointer with the address of the base class’ virtual method table. A derived class
object’s _pVMT_ field, however, must point at the virtual method table for the derived class. Calling the
base class constructor will always initialize the _pVMT_ field with the wrong pointer; to properly initialize
the _pVMT_ field with the appropriate value, the derived class constructor must store the address of
derived class’ virtual method table into the _pVMT_ field after the call to the base class constructor (so tha
overwrites the value written by the base class constructor).

The tDerived.Create constructor, rewritten to call the tBase.Create constructors, follows:

procedure tDerived.Create; @nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tDerived)), esi);
pop(eax);

endif;
Page 1084 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

u can

m
d

tine

r refer-
 drastic,

dures with
// Call the base class constructor to do any initialization
// needed by the base class. Note that this call must follow
// the object allocation code above (so ESI will always contain
// a pointer to an object at this point and tBase.Create will
// never allocate storage).

tBase.Create();

// Initialize the VMT pointer for this object. This code
// must always follow the call to the base class constructor
// because the base class constructor also initializes this
// field and we don’t want the initial value supplied by
// tBase.Create.

mov(&tDerived._VMT_, this._pVMT_);

// Initialize the "r" field of this particular object:

fldz();
fstp(this.r);

end Create;

This solution solves all the above concerns with derived class constructors.

10.10.3Constructor Parameters and Procedure Overloading

All the constructor examples to this point have not had any parameters. However, there is nothing spe-
cial about constructors that prevent the use of parameters. Constructors are procedures therefore yo
specify any number and types of parameters you choose. You can use these parameter values to initialize
certain fields or control how the constructor initializes the fields. Of course, you may use constructor para-
eters for any purpose you’d use parameters in any other procedure. In fact, about the only issue you nee
concern yourself with is the use of parameters whenever you have a derived class. This section deals with
those issues.

The first, and probably most important, problem with parameters in derived class constructors actually
applies to all overridden procedures, iterators, and methods: the parameter list of an overridden routine must
exactly match the parameter list of the corresponding routine in the base class. In fact, HLA doesn’t even
give you the chance to violate this rule because OVERRIDE routine prototypes don’t allow parameter list
declarations – they automatically inherit the parameter list of the base routine. Therefore, you cannot use a
special parameter list in the constructor prototype for one class and a different parameter list for the con-
structors appearing in base or derived classes. Sometimes it would be nice if this weren’t the case, but there
are some sound and logical reasons why HLA does not support this7.

Some languages, like C++, support function overloading letting you specify several different construc-
tors whose parameter list specifies which constructor to use. HLA does not directly support procedure over-
loading in this manner, but you can use macros to simulate this language feature (see “Simulating Function
Overloading with Macros” on page 990). To use this trick with constructors you would create a macro with
the name Create. The actual constructors could have names that describe their differences (e.g., CreateDe-
fault, CreateSetIJ, etc.). The Create macro would parse the actual parameter list to determine which rou
to call.

7. Calling virtual methods and iterators would be a real problem since you don’t really know which routine a pointe
ences. Therefore, you couldn’t know the proper parameter list. While the problems with procedures aren’t quite as
there are some subtle problems that could creep into your code if base or derived classes allowed overridden proce
different parameter lists.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1085

Chapter Ten Volume Five

ro
ass, the

ally
virtual

 use

t

m orig
I

HLA does not support macro overloading. Therefore, you cannot override a macro in a derived class to
call a constructor unique to that derived class. In certain circumstances you can create a small workaround
by defining empty procedures in your base class that you intend to override in some derived class (this is
similar to an abstract method, see “Abstract Methods” on page 1091). Presumably, you would never call the
procedure in the base class (in fact, you would probably want to put an error message in the body of the p-
cedure just in case you accidentally call it). By putting the empty procedure declaration in the base cl
macro that simulates function overloading can refer to that procedure and you can use that in derived classes
later on.

10.11 Destructors

A destructor is a class routine that cleans up an object once a program finishes using that object. Like
constructors, HLA does not provide a special syntax for creating destructors nor does HLA automatic
call a destructor; unlike constructors, a destructor is usually a method rather than a procedure (since
destructors make a lot of sense while virtual constructors do not).

A typical destructor will close any files opened by the object, free the memory allocated during the
of the object, and, finally, free the object itself if it was created dynamically. The destructor also handles any
other clean-up chores the object may require before it ceases to exist.

By convention, most HLA programmers name their destructors Destroy. Destructors generally do no
have any parameters, so the issue of overloading the parameter list rarely arises. About the only code that
most destructors have in common is the code to free the storage associated with the object. The following
destructor demonstrates how to do this:

procedure tBase.Destroy; nodisplay;
begin Destroy;

push(eax); // isInHeap uses this

// Place any other clean up code here.
// The code to free dynamic objects should always appear last
// in the destructor.

/*************/

// The following code assumes that ESI still contains the address
// of the object.

if(isInHeap(esi)) then

free(esi);

endif;
pop(eax);

end Destroy;

The HLA Standard Library routine isInHeap returns true if its parameter is an address that malloc
returned. Therefore, this code automatically frees the storage associated with the object if the progra-
inally allocated storage for the object by calling malloc. Obviously, on return from this method call, ES
will no longer point at a legal object in memory if you allocated it dynamically. Note that this code will not
affect the value in ESI nor will it modify the object if the object wasn’t one you’ve previously allocated via a
call to malloc.
Page 1086 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

asses,
ing the

tring

the

ese
use

10.12 HLA’s “_initialize_” and “_finalize_” Strings

Although HLA does not automatically call constructors and destructors associated with your cl
HLA does provide a mechanism whereby you can cause these calls to happen automatically: by us
initialize and _finalize_ compile-time string variables (i.e., VAL constants) HLA automatically declares in
every procedure.

Whenever you write a procedure, iterator, or method, HLA automatically declares several local symbols
in that routine. Two such symbols are _initialize_ and _finalize_. HLA declares these symbols as follows:

val
initialize: string := "";
finalize: string := "";

HLA emits the _initialize_ string as text at the very beginning of the routine’s body, i.e., immediately
after the routine’s BEGIN clause8. Similarly, HLA emits the _finalize_ string at the very end of the routine’s
body, just before the END clause. This is comparable to the following:

procedure SomeProc;
<< declarations >>

begin SomeProc;

@text(_initialize_);

<< procedure body >>

@text(_finalize_);

end SomeProc;

Since _initialize_ and _finalize_ initially contain the empty string, these expansions have no effect on
the code that HLA generates unless you explicitly modify the value of _initialize_ prior to the BEGIN clause
or you modify _finalize_ prior to the END clause of the procedure. So if you modify either of these s
objects to contain a machine instruction, HLA will compile that instruction at the beginning or end of the
procedure. The following example demonstrates how to use this technique:

procedure SomeProc;
?_initialize_ := "mov(0, eax);";
?_finalize_ := "stdout.put(eax);"

begin SomeProc;

// HLA emits "mov(0, eax);" here in response to the _initialize_
// string constant.

add(5, eax);

// HLA emits "stdout.put(eax);" here.

end SomeProc;

Of course, these examples don’t save you much. It would be easier to type the actual statements at
beginning and end of the procedure than assign a string containing these statements to the _initialize_ and
finalize compile-time variables. However, if we could automate the assignment of some string to th
variables, so that you don’t have to explicitly assign them in each procedure, then this feature might be -
ful. In a moment, you’ll see how we can automate the assignment of values to the _initialize_ and _finalize_
strings. For the time being, consider the case where we load the name of a constructor into the _initialize_

8. If the routine automatically emits code to construct the activation record, HLA emits _initialize_’s text after the code that
builds the activation record.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1087

Chapter Ten Volume Five

he

e

ly

se

es an
string and we load the name of a destructor in to the _finalize_ string. By doing this, the routine will “auto-
matically” call the constructor and destructor for that particular object.

The example above has a minor problem. If we can automate the assignment of some value to
initialize or _finalize_, what happens if these variables already contain some value? For example, suppose
we have two objects we use in a routine and the first one loads the name of its constructor into t
initialize string; what happens when the second object attempts to do the same thing? The solution is
simple: don’t directly assign any string to the _initialize_ or _finalize_ compile-time variables, instead,
always concatenate your strings to the end of the existing string in these variables. The following is a modi-
fication to the above example that demonstrates how to do this:

procedure SomeProc;
?_initialize_ := _initialize_ + "mov(0, eax);";
?_finalize_ := _finalize_ + "stdout.put(eax);"

begin SomeProc;

// HLA emits "mov(0, eax);" here in response to the _initialize_
// string constant.

add(5, eax);

// HLA emits "stdout.put(eax);" here.

end SomeProc;

When you assign values to the _initialize_ and _finalize_ strings, HLA almost guarantees that th
initialize sequence will execute upon entry into the routine. Sadly, the same is not true for the _finalize_
string upon exit. HLA simply emits the code for the _finalize_ string at the end of the routine, immediate
before the code that cleans up the activation record and returns. Unfortunately, “falling off the end of the
routine” is not the only way that one could return from that routine. One could explicitly return from some-
where in the middle of the code by executing a RET instruction. Since HLA only emits the _finalize_ string
at the very end of the routine, returning from that routine in this manner bypassing the _finalize_ code.
Unfortunately, other than manually emitting the _finalize_ code, there is nothing you can do about this9.
Fortunately, this mechanism for exiting a routine is completely under your control; if you never exit a rou-
tine except by “falling off the end” then you won’t have to worry about this problem (note that you can u
the EXIT control structure to transfer control to the end of a routine if you really want to return from that
routine from somewhere in the middle of the code).

Another way to prematurely exit a routine which, unfortunately, you have no control over, is by raising
an exception. Your routine could call some other routine (e.g., a standard library routine) that rais
exception and then transfers control immediately to whomever called your routine. Fortunately, you can
easily trap and handle exceptions by putting a TRY..ENDTRY block in your procedure. Here is an example
that demonstrates this:

procedure SomeProc;
<< declarations that modify _initialize_ and _finalize_ >>

begin SomeProc;

<< HLA emits the code for the _initialize_ string here. >>

try // Catch any exceptions that occur:

<< Procedure Body Goes Here >>

 anyexception

push(eax); // Save the exception #.
@text(_finalize_); // Execute the _finalize_ code here.

9. Note that you can manually emit the _finalize_ code using the statement “@text(_finalize_);”.
Page 1088 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

tor

f

whose

uc
e

ee

. The
 allow-
the fol-
pop(eax); // Restore the exception #.
raise(eax); // Reraise the exception.

endtry;

// HLA automatically emits the _finalize_ code here.

end SomeProc;

Although the code above handles some problems that exist with _finalize_, by no means that this handle
every possible case. Always be on the look out for ways your program could inadvertently exit a routine
without executing the code found in the _finalize_ string. You should explicitly expand _finalize_ if you
encounter such a situation.

There is one important place you can get into trouble with respect to exceptions: within the code the
routine emits for the _initialize_ string. If you modify the _initialize_ string so that it contains a construc
call and the execution of that constructor raises an exception, this will probably force an exit from that rou-
tine without executing the corresponding _finalize_ code. You could bury the TRY..ENDTRY statement
directly into the _initialize_ and _finalize_ strings but this approach has several problems, not the least o
which is the fact that one of the first constructors you call might raise an exception that transfers control to
the exception handler that calls the destructors for all objects in that routine (including those objects
constructors you have yet to call). Although no single solution that handles all problems exists, probably the
best approach is to put a TRY..ENDTRY block around each constructor call if it is possible for that constr-
tor to raise some exception that is possible to handle (i.e., doesn’t require the immediate termination of th
program).

Thus far this discussion of _initialize_ and _finalize_ has failed to address one important point: why use
this feature to implement the “automatic” calling of constructors and destructors since it apparently involves
more work that simply calling the constructors and destructors directly? Clearly there must be a way to
automate the assignment of the _initialize_ and _finalize_ strings or this section wouldn’t exist. The way to
accomplish this is by using a macro to define the class type. So now it’s time to take a look at another HLA
feature that makes is possible to automate this activity: the FORWARD keyword.

You’ve seen how to use the FORWARD reserved word to create procedure and iterator prototypes (s
“Forward Procedures” on page 567), it turns out that you can declare forward CONST, VAL, TYPE, and
variable declarations as well. The syntax for such declarations takes the following form:

ForwardSymbolName: forward(undefinedID);

This declaration is completely equivalent to the following:

?undefinedID: text := "ForwardSymbolName";

Especially note that this expansion does not actually define the symbol ForwardSymbolName. It just con-
verts this symbol to a string and assigns this string to the specified TEXT object (undefinedID in this exam-
ple).

Now you’re probably wonder how something like the above is equivalent to a forward declaration
truth is, it isn’t. However, FORWARD declarations let you create macros that simulate type names by
ing you to defer the actual declaration of an object’s type until some later point in the code. Consider
lowing example:

type
myClass: class

var
i:int32;

procedure Create; returns("esi");
procedure Destroy;

endclass;

#macro _myClass: varID;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1089

Chapter Ten Volume Five

t the

bles of

. This
lass;”

ill
forward(varID);
?_initialize_ := _initialize_ + @string:varID + ".Create(); ";
?_finalize_ := _finalize_ + @string:varID + ".Destroy(); ";
varID: myClass

#endmacro;

Note, and this is very important, that a semicolon does not follow the “varID: myClass” declaration a
end of this macro. You’ll find out why this semicolon is missing in a little bit.

If you have the class and macro declarations above in your program, you can now declare varia
type _myClass that automatically invoke the constructor and destructor upon entry and exit of the routine
containing the variable declarations. To see how, take a look at the following procedure shell:

procedure HasmyClassObject;
var

mco: _myClass;
begin HasmyClassObject;

<< do stuff with mco here >>

end HasmyClassObject;

Since _myClass is a macro, the procedure above expands to the following text during compilation:

procedure HasmyClassObject;
var

mco: // Expansion of the _myClass macro:
forward(_0103_); // _0103_ symbol is and HLA supplied text symbol
 // that expands to "mco".

?_initialize_ := _initialize_ + "mco" + ".Create(); ";
?_finalize_ := _finalize_ + "mco" + ".Destroy(); ";
mco: myClass;

begin HasmyClassObject;

mco.Create(); // Expansion of the _initialize_ string.

<< do stuff with mco here >>

mco.Destroy(); // Expansion of the _finalize_ string.

end HasmyClassObject;

You might notice that a semicolon appears after “mco: myClass” declaration in the example above
semicolon is not actually a part of the macro, instead it is the semicolon that follows the “mco: _myC
declaration in the original code.

If you want to create an array of objects, you could legally declare that array as follows:

var
mcoArray: _myClass[10];

Because the last statement in the _myClass macro doesn’t end with a semicolon, the declaration above w
expand to something like the following (almost correct) code:

mcoArray: // Expansion of the _myClass macro:
forward(_0103_); // _0103_ symbol is and HLA supplied text symbol
 // that expands to "mcoArray".

?_initialize_ := _initialize_ + "mcoArray" + ".Create(); ";
?_finalize_ := _finalize_ + "mcoArray" + ".Destroy(); ";
mcoArray: myClass[10];
Page 1090 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

ray.

ctor for
hapter).

rays of

ther

 If
ht w

.

the pres
a

ed

f one
The only problem with this expansion is that it only calls the constructor for the first object of the ar
There are several ways to solve this problem; one is to append a macro name to the end of _initialize_ and
finalize rather than the constructor name. That macro would check the object’s name (mcoArray in this
example) to determine if it is an array. If so, that macro could expand to a loop that calls the constru
each element of the array (the implementation appears as a programming project at the end of this c

Another solution to this problem is to use a macro parameter to specify the dimensions for ar
myClass. This scheme is easier to implement than the one above, but it does have the drawback of requiring
a different syntax for declaring object arrays (you have to use parentheses around the array dimension ra
than square brackets).

The FORWARD directive is quite powerful and lets you achieve all kinds of tricks. However, there are
a few problems of which you should be aware. First, since HLA emits the _initialize_ and _finalize_ code
transparently, you can be easily confused if there are any errors in the code appearing within these strings.
you start getting error messages associated with the BEGIN or END statements in a routine, you migant
to take a look at the _initialize_ and _finalize_ strings within that routine. The best defense here is to always
append very simple statements to these strings so that you reduce the likelihood of an error.

Fundamentally, HLA doesn’t support automatic constructor and destructor calls. This section has pre-
sented several tricks to attempt to automate the calls to these routines. However, the automation isn’t perfect
and, indeed, the aforementioned problems with the _finalize_ strings limit the applicability of this approach
The mechanism this section presents is probably fine for simple classes and simple programs. However, one
piece of advice is probably worth following: if your code is complex or correctness is critical, it’s probably a
good idea to explicitly call the constructors and destructors manually.

10.13 Abstract Methods

An abstract base class is one that exists solely to supply a set of common fields to its derived classes.
You never declare variables whose type is an abstract base class, you always use one of the derived classes.
The purpose of an abstract base class is to provide a template for creating other classes, nothing more. As it
turns out, the only difference in syntax between a standard base class and an abstract base class is -
ence of at least one abstract method declaration. An abstract method is a special method that does not hve
an actual implementation in the abstract base class. Any attempt to call that method will raise an exception.
If you’re wondering what possible good an abstract method could be, well, keep on reading...

Suppose you want to create a set of classes to hold numeric values. One class could represent unsign
integers, another class could represent signed integers, a third could implement BCD values, and a fourth
could support real64 values. While you could create four separate classes that function independently o
another, doing so passes up an opportunity to make this set of classes more convenient to use. To understand
why, consider the following possible class declarations:

type
uint: class

var
TheValue: dword;

method put;
<< other methods for this class >>

endclass;

sint: class
var

TheValue: dword;

method put;
<< other methods for this class >>

endclass;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1091

Chapter Ten Volume Five

in.
r64: class
var

TheValue: real64;

method put;
<< other methods for this class >>

endclass;

The implementation of these classes is not unreasonable. They have fields for the data, they have a put
method (which, presumably, writes the data to the standard output device), Presumably they have other
methods and procedures in implement various operations on the data. There is, however, two problems with
these classes, one minor and one major, both occurring because these classes do not inherit any fields from a
common base class.

The first problem, which is relatively minor, is that you have to repeat the declaration of several com-
mon fields in these classes. For example, the put method declaration appears in each of these classes10. This
duplication of effort involves results in a harder to maintain program because it doesn’t encourage you to use
a common name for a common function since it’s easy to use a different name in each of the classes.

A bigger problem with this approach is that it is not generic. That is, you can’t create a generic pointer
to a “numeric” object and perform operations like addition, subtraction, and output on that value (regardless
of the underlying numeric representation).

We can easily solve these two problems by turning the previous class declarations into a set of derived
classes. The following code demonstrates an easy way to do this:

type
numeric: class

procedure put;
<< Other common methods shared by all the classes >>

endclass;

uint: class inherits(numeric)
var

TheValue: dword;

override method put;
<< other methods for this class >>

endclass;

sint: class inherits(numeric)
var

TheValue: dword;

override method put;
<< other methods for this class >>

endclass;

r64: class inherits(numeric)
var

TheValue: real64;

override method put;
<< other methods for this class >>

endclass;

This scheme solves both the problems. First, by inheriting the put method from numeric, this code
encourages the derived classes to always use the name put thereby making the program easier to mainta
Second, because this example uses derived classes, it’s possible to create a pointer to the numeric type and

10. Note, by the way, that TheValue is not a common class because this field has a different type in the r64 class.
Page 1092 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

a

 to

 of

at the
l

 F

et

nly

lly
load this pointer with the address of a uint, sint, or r64 object. That pointer can invoke the methods found in
the numeric class to do functions like addition, subtraction, or numeric output. Therefore, the application
that uses this pointer doesn’t need to know the exact data type, it only deals with numeric values in a generic
fashion.

One problem with this scheme is that it’s possible to declare and use variables of type numeric. Unfor-
tunately, such numeric variables don’t have the ability to represent any type of number (notice that the dat
storage for the numeric fields actually appears in the derived classes). Worse, because you’ve declared the
put method in the numeric class, you’ve actually got to write some code to implement that method even
though one should never really call it; the actual implementation should only occur in the derived classes.
While you could write a dummy method that prints an error message (or, better yet, raises an exception),
there shouldn’t be any need to write “dummy” procedures like this. Fortunately, there is no reason to do so
– if you use abstract methods.

The ABSTRACT keyword, when it follows a method declaration, tells HLA that you are not going
provide an implementation of the method for this class. Instead, it is the responsibility of all derived class to
provide a concrete implementation for the abstract method. HLA will raise an exception if you attempt to
call an abstract method directly. The following is the modification to the numeric class to convert put to an
abstract method:

type
numeric: class

method put; abstract;
<< Other common methods shared by all the classes >>

endclass;

An abstract base class is a class that has at least one abstract method. Note that you don’t have to make
all methods abstract in an abstract base class; it is perfectly legal to declare some standard methods (and,
course, provide their implementation) within the abstract base class.

Abstract method declarations provide a mechanism by which a base class enforces the methods th
derived classes must implement. In theory, all derived classes must provide concrete implementations of al
abstract methods or those derived classes are themselves abstract base classes. In practice, it’s possible to
bend the rules a little and use abstract methods for a slightly different purpose.

A little earlier, you read that one should never create variables whose type is an abstract base class. or
if you attempt to execute an abstract method the program would immediately raise an exception to complain
about this illegal method call. In practice, you actually can declare variables of an abstract base type and g
away with this as long as you don’t call any abstract methods. We can use this fact to provide a better form
of method overloading (that is, providing several different routines with the same name but different param-
eter lists). Remember, the standard trick in HLA to overload a routine is to write several different routines
and then use a macro to parse the parameter list and determine which actual routine to call (see “Simulating
Function Overloading with Macros” on page 990). The problem with this technique is that you cannot over-
ride a macro definition in a class, so if you want to use a macro to override a routine’s syntax, then that
macro must appear in the base class. Unfortunately, you may not need a routine with a specific parameter
list in the base class (for that matter, you may only need that particular version of the routine in a single
derived class), so implementing that routine in the base class and in all the other derived classes is a waste of
effort. This isn’t a big problem. Just go ahead and define the abstract method in the base class and o
implement it in the derived class that needs that particular method. As long as you don’t call that method in
the base class or in the other derived classes that don’t override the method, everything will work fine.

One problem with using abstract methods to support overloading is that this trick does not apply to pro-
cedures - only methods and iterators. However, you can achieve the same effect with procedures by declar-
ing a (non-abstract) procedure in the base class and overriding that procedure only in the class that actua
uses it. You will have to provide an implementation of the procedure in the base class, but that is a minor
issue (the procedure’s body, by the way, should simply raise an exception to indicate that you should have
never called it).

An example of routine overloading in a class appears in this chapter’s sample program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1093

Chapter Ten Volume Five

ct is

ter
t’

uld
e

e

ms that
eal

n
f that

the

oints

e is a
10.14 Run-time Type Information (RTTI)

When working with an object variable (as opposed to a pointer to an object), the type of that obje
obvious: it’s the variable’s declared type. Therefore, at both compile-time and run-time the program trivially
knows the type of the object. When working with pointers to objects you cannot, in the general case, de-
mine the type of an object a pointer references. However, at run-time it is possible to determine the objecs
actual type. This section discusses how to detect the underlying object’s type and how to use this informa-
tion.

If you have a pointer to an object and that pointer’s type is some base class, at run-time the pointer co
point at an object of the base class or any derived type. At compile-time it is not possible to determine th
exact type of an object at any instant. To see why, consider the following short example:

ReturnSomeObject(); // Returns a pointer to some class in ESI.
mov(esi, ptrToObject);

The routine ReturnSomeObject returns a pointer to an object in ESI. This could be the address of som
base class object or a derived class object. At compile-time there is no way for the program to know what
type of object this function returns. For example, ReturnSomeObject could ask the user what value to return
so the exact type could not be determined until the program actually runs and the user makes a selection.

In a perfectly designed program, there probably is no need to know a generic object’s actual type. After
all, the whole purpose of object-oriented programming and inheritance is to produce general progra
work with lots of different objects without having to make substantial changes to the program. In the r
world, however, programs may not have a perfect design and sometimes it’s nice to know the exact object
type a pointer references. Run-time type information, or RTTI, gives you the capability of determining a
object’s type at run-time, even if you are referencing that object using a pointer to some base class o
object.

Perhaps the most fundamental RTTI operation you need is the ability to ask if a pointer contains
address of some specific object type. Many object-oriented languages (e.g., Delphi) provide an IS operator
that provides this functionality. IS is a boolean operator that returns true if its left operand (a pointer) p
at an object whose type matches the left operand (which must be a type identifier). The typical syntax is
generally the following:

ObjectPointerOrVar is ClassType

This operator would return true if the variable is of the specified class, it returns false otherwise. Her
typical use of this operator (in the Delphi language)

if(ptrToNumeric is uint) then begin
.
.
.

end;

It’s actually quite simple to implement this functionality in HLA. As you may recall, each class is given
its own virtual method table. Whenever you create an object, you must initialize the pointer to the VMT
with the address of that class’ VMT. Therefore, the VMT pointer field of all objects of a given class type
contain the same pointer value and this pointer value is different from the VMT pointer field of all other
classes. We can use this fact to see if an object is some specific type. The following code demonstrates how
to implement the Delphi statement above in HLA:

mov(ptrToNumeric, esi);
if((type uint [esi])._pVMT_ = &uint._VMT_) then

.

.

Page 1094 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects

n
al

a
ss

se

l
int
 is
 to
.
endif;

This IF statement simply compares the object’s _pVMT_ field (the pointer to the VMT) against the
address of the desired class’ VMT. If they are equal, then the ptrToNumeric variable points at an object of
type uint.

Within the body of a class method or iterator, there is a slightly easier way to see if the object is a certai
class. Remember, upon entry into a method or an iterator, the EDI register contains the address of the virtu
method table. Therefore, assuming you haven’t modified EDI’s value, you can easily test to see if THIS
(ESI) is a specific class type using an IF statement like the following:

if(EDI = &uint._VMT_) then
.
.
.

endif;

10.15 Calling Base Class Methods

In the section on constructors you saw that it is possible to call an ancestor class’ procedure within the
derived class’ overridden procedure. To do this, all you needed to do was to invoke the procedure using the
call “classname.procedureName(parameters);” On occasion you may want to do this same operation with
class’ methods as well as its procedures (that is, have an overridden method call the corresponding base cla
method in order to do some computation you’d rather not repeat in the derived class’ method). Unfortu-
nately, HLA does not let you directly call methods as it does procedures. You will need to use an indirect
mechanism to achieve this; specifically, you will have to call the function using the address in the ba
class’ virtual method table. This section describes how to do this.

Whenever your program calls a method it does so indirectly, using the address found in the virtua
method table for the method’s class. The virtual method table is nothing more than an array of 32-bit po-
ers with each entry containing the address of one of that class’ methods. So to call a method, all you need
the index into this array (or, more properly, the offset into the array) of the address of the method you wish
call. The HLA compile-time function @offset comes to the rescue- it will return the offset into the virtual
method table of the method whose name you supply as a parameter. Combined with the CALL instruction,
you can easily call any method associated with a class. Here’s an example of how you would do this:

type
myCls: class

.

.

.
method m;
.
.
.

endclass;
.
.
.

call(myCls._VMT_[@offset(myCls.m)]);

The CALL instruction above calls the method whose address appears at the specified entry in the virtual
method table for myCls. The @offset function call returns the offset (i.e., index times four) of the address of
myCls.m within the virtual method table. Hence, this code indirectly calls the m method by using the virtual
method table entry for m.

There is one major drawback to calling methods using this scheme: you don’t get to use the high level
syntax for procedure/method calls. Instead, you must use the low-level CALL instruction. In the example
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1095

Chapter Ten Volume Five

 a

ro

ble f
age.

(space
above, this isn’t much of an issue because the m procedure doesn’t have any parameters. If it did have
parameters, you would have to manually push those parameters onto the stack yourself (see “Passing Param-
eters on the Stack” on page 822). Fortunately, you’ll rarely need to call ancestor class methods from
derived class, so this won’t be much of an issue in real-world programs.

10.16 Putting It All Together

HLA’s class declarations provide a powerful tool for creating object-oriented assembly language p-
grams. Although object-oriented programming is not as popular in assembly as in high level languages, part
of the reason has been the lack of assemblers that support object-oriented programming in a reasonaash-
ion and an even greater lack of tutorial information on object-oriented programming in assembly langu

While this chapter cannot go into great detail about the object-oriented programming paradigm
limitations prevent this), this chapter does explain the object-oriented facilities that HLA provides and sup-
plies several example programs that use those facilities. From here on, it’s up to you to utilize these facilities
in your programs and gain experience writing object oriented assembly code.
Page 1096 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Classes and Objects Chapter Ten
	10.1 Chapter Overview
	10.2 General Principles
	10.3 Classes in HLA
	10.4 Objects
	10.5 Inheritance
	10.6 Overriding
	10.7 Virtual Methods vs. Static Procedures
	10.8 Writing Class Methods, Iterators, and Procedures
	10.9 Object Implementation
	10.9.1 Virtual Method Tables
	10.9.2 Object Representation with Inheritance

	10.10 Constructors and Object Initialization
	10.10.1 Dynamic Object Allocation Within the Constructor
	10.10.2 Constructors and Inheritance
	10.10.3 Constructor Parameters and Procedure Overloading

	10.11 Destructors
	10.12 HLA’s “_initialize_” and “_finalize_” Strings
	10.13 Abstract Methods
	10.14 Run-time Type Information (RTTI)
	10.15 Calling Base Class Methods
	10.16 Putting It All Together

