

Lexical Nesting

dure and

e

rocedure

ide

e it

s

s

 a

nd Mod-
Lexical Nesting Chapter Five

5.1 Chapter Overview

This chapter discusses nested procedures and the issues associated with calling such proce
accessing local variables in nested procedures. Nesting procedures offers HLA users a modicum of built-in
information hiding support. Therefore, the material in this chapter is very important for those wanting to
write highly structured code. This information is also important to those who want to understand how block
structured high level languages like Pascal and Ada operate.

5.2 Lexical Nesting, Static Links, and Displays

In block structured languages like Pascal1 it is possible to nest procedures and functions. Nesting on
procedure within another limits the access to the nested procedure; you cannot access the nested p
from outside the enclosing procedure. Likewise, variables you declare within a procedure are visible ins
that procedure and to all procedures nested within that procedure2. This is the standard block structured lan-
guage notion of scope that should be quite familiar to anyone who has written Pascal or Ada programs.

There is a good deal of complexity hidden behind the concept of scope, or lexical nesting, in a block
structured language. While accessing a local variable in the current activation record is efficient, accessing
global variables in a block structured language can be very inefficient. This section will describe how a high
level language like Pascal deals with non-local identifiers and how to access global variables and call
non-local procedures and functions.

5.2.1 Scope

Scope in most high level languages is a static, or compile-time concept3. Scope is the notion of when a
name is visible, or accessible, within a program. This ability to hide names is useful in a program becaus
is often convenient to reuse certain (non-descriptive) names. The i variable used to control most FOR loop
in high level languages is a perfect example.

The scope of a name limits its visibility within a program. That is, a program has access to a variable
name only within that name’s scope. Outside the scope, the program cannot access that name. Many pro-
gramming languages, like Pascal and C++, allow you to reuse identifiers if the scopes of those multiple use
do not overlap. As you’ve seen, HLA provides scoping features for its variables. There is, however, another
issue related to scope: address binding and variable lifetime. Address binding is the process of associating
memory address with a variable name. Variable lifetime is that portion of a program’s execution during
which a memory location is bound to a variable. Consider the following Pascal procedures:

procedure One(Entry:integer);
var

i,j:integer;

procedure Two(Parm:integer);
var j:integer;
begin

for j:= 0 to 5 do writeln(i+j);

1. Note that C and C++ are not block structured languages. Other block structured languages include Algol, Ada, a
ula-2.
2. Subject, of course, to the limitation that you not reuse the identifier within the nested procedure.
3. There are languages that support dynamic, or run-time, scope; this text will not consider such languages.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1375

Chapter Five

Volume Five

It is quite

the
 v
if Parm < 10 then One(Parm+1);

end;

begin {One}
for i := 1 to 5 do Two(Entry);

end;

Figure 5.1 shows the scope of identifiers One, Two, Entry, i, j, and Parm. The local variable j in proce-
dure Two masks the identifier j in procedure One for statement inside procedure Two.

Figure 5.1 Lexical Scope for Variables in Nested Pascal Procedures

5.2.2 Unit Activation, Address Binding, and Variable Lifetime

Unit activation is the process of calling a procedure or function. The combination of an activation
record and some executing code is considered an instance of a routine. When unit activation occurs a rou-
tine binds machine addresses to its local variables. Address binding (for local variables) occurs when the
routine adjusts the stack pointer to make room for the local variables. The lifetime of those variables is from
that point until the routine destroys the activation record eliminating the local variable storage.

Although scope limits the visibility of a name to a certain section of code and does not allow duplicate
names within the same scope, this does not mean that there is only one address bound to a name.
possible to have several addresses bound to the same name at the same time. Consider a recursive procedure
call. On each activation the procedure builds a new activation record. Since the previous instance still exists,
there are now two activation records on the stack containing local variables for that procedure. As additional
recursive activations occur, the system builds more activation records each with an address bound to
same name. To resolve the possible ambiguity (which address do you access when operating on theari-
able?), the system always manipulates the variable in the most recent activation record.

Note that procedures One and Two in the previous section are indirectly recursive. That is, they both call
routines which, in turn, call themselves. Assuming the parameter to One is less than 10 on the initial call, this
code will generate multiple activation records (and, therefore, multiple copies of the local variables) on the
stack. For example, were you to issue the call One(9), the stack would look like Figure 5.2 upon first
encountering the end associated with the procedure Two.

One:

Two:

locals in Two: J, Parm
Globals in Two: I, Entry, One

Locals in One: Entry, I, J, Two
Page 1376 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

t

Figure 5.2 Activation Records for a Series of Recursive Calls of One and Two

As you can see, there are several copies of I and J on the stack at this point. Procedure Two (the cur-
rently executing routine) would access J in the most recent activation record that is at the bottom of Figure
5.2. The previous instance of Two will only access the variable J in its activation record when the curren
instance returns to One and then back to Two.

The lifetime of a variable’s instance is from the point of activation record creation to the point of activa-
tion record destruction. Note that the first instance of J above (the one at the top of the diagram above) has
the longest lifetime and that the lifetimes of all instances of J overlap.

5.2.3 Static Links

Pascal will allow procedure Two access to I in procedure One. However, when there is the possibility of
recursion there may be several instances of I on the stack. Pascal, of course, will only let procedure Two
access the most recent instance of I. In the stack diagram in Figure 5.2, this corresponds to the value of I in
the activation record that begins with "One(9+1) parameter.” The only problem is how do you know where to
find the activation record containing I?

10

Return Address

Saved EBP Value

"I" Local Variable

"J" Local Variable

Previous Stack Content

9
One(9) parameter

Two(9) parameter

One Activation Record

Two Activation Record

One(9+1) parameter

One Activation Record

Return Address

Saved EBP Value

"I" Local Variable

"J" Local Variable

9

Return Address

Saved EBP Value

"J" Local Variable

Two(9+1) parameter

Two Activation Record

10

Return Address

Saved EBP Value

"J" Local Variable
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1377

Chapter Five Volume Five

easily
t
s

ght

he stack
A quick, but poorly thought out answer, is to simply index backwards into the stack. After all, you can
see in the diagram above that I is at offset eight from Two’s activation record. Unfortunately, this is no
always the case. Assume that procedure Three also calls procedure Two and the following statement appear
within procedure One:

If (Entry <5) then Three(Entry*2) else Two(Entry);

With this statement in place, it’s quite possible to have two different stack frames upon entry into proce-
dure Two: one with the activation record for procedure Three sandwiched between One and Two’s activation
records and one with the activation records for procedures One and Two adjacent to one another. Clearly a
fixed offset from Two’s activation record will not always point at the I variable on One’s most recent activa-
tion record.

The astute reader might notice that the saved EBP value in Two’s activation record points at the caller’s
activation record. You might think you could use this as a pointer to One’s activation record. But this scheme
fails for the same reason the fixed offset technique fails. EBP’s old value, the dynamic link, points at the
caller’s activation record. Since the caller isn’t necessarily the enclosing procedure the dynamic link mi
not point at the enclosing procedure’s activation record.

What is really needed is a pointer to the enclosing procedure’s activation record. Many compilers for
block structured languages create such a pointer, the static link. Consider the following Pascal code:

procedure Parent;
var i,j:integer;

procedure Child1;
var j:integer;
begin

for j := 0 to 2 do writeln(i);

end {Child1};

procedure Child2;
var i:integer;
begin

for i := 0 to 1 do Child1;

end {Child2};

begin {Parent}

Child2;
Child1;

end;

Just after entering Child1 for the first time, the stack would look like Figure 5.3. When Child1 attempts
to access the variable i from Parent, it will need a pointer, the static link, to Parent’s activation record.
Unfortunately, there is no way for Child1, upon entry, to figure out on it’s own where Parent’s activation
record lies in memory. It will be necessary for the caller (Child2 in this example) to pass the static link to
Child1. In general, the callee can treat the static link as just another parameter; usually pushed on t
immediately before executing the CALL instruction.
Page 1378 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

a
.
r
efi
Figure 5.3 Activation Records After Several Nested Calls

To fully understand how to pass static links from call to call, you must first understand the concept of
lexical level. Lexical levels in Pascal correspond to the static nesting levels of procedures and functions
Most compiler writers specify lex level zero as the main program. That is, all symbols you declare in you
main program exist at lex level zero. Procedure and function names appearing in your main program dne
lex level one, no matter how many procedures or functions appear in the main program. They all begin a
new copy of lex level one. For each level of nesting, Pascal introduces a new lex level. Figure 5.4 shows this.

Figure 5.4 Procedure Schematic Showing Lexical Levels

During execution, a program may only access variables at a lex level less than or equal to the level of the
current routine. Furthermore, only one set of values at any given lex level are accessible at any one time4 and
those values are always in the most recent activation record at that lex level.

 SP

Previous Stack Contents

Activation record for Parent

Activation record for Child2

Activation record for Child1

Lex Level Zero

Lex Level One

Lex Level Two

Note: Each rectangle
represents a procedure
or function.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1379

Chapter Five Volume Five

st
er

s.

ample,

an the
st

he

 It is a
ever, as
py of its

ata it
t take the
truct
Before worrying about how to access non-local variables using a static link, you need to figure out how
to pass the static link as a parameter. When passing the static link as a parameter to a program unit (proce-
dure or function), there are three types of calling sequences to worry about:

• A program unit calls a child procedure or function. If the current lex level is n, then a child
procedure or function is at lex level n+1 and is local to the current program unit. Note that mo
block structured languages do not allow calling procedures or functions at lex levels great
than n+1.

• A program unit calls a peer procedure or function. A peer procedure or function is one at the
same lexical level as the current caller and a single program unit encloses both program unit

• A program unit calls an ancestor procedure or function. An ancestor unit is either the parent
unit, a parent of an ancestor unit, or a peer of an ancestor unit.

Calling sequences for the first two types of calls above are very simple. For the sake of this ex
assume the activation record for these procedures takes the generic form in Figure 5.5.

Figure 5.5 Generic Activation Record

When a parent procedure or function calls a child program unit, the static link is nothing more th
value in the EBP register immediately prior to the call. Therefore, to pass the static link to the child unit, ju
push EBP before executing the call instruction:

<Push Other Parameters onto the stack>
push(ebp);
call ChildUnit;

Of course the child unit can process the static link on the stack just like any other parameter. In this case, t
static and dynamic links are exactly the same. In general, however, this is not true.

If a program unit calls a peer procedure or function, the current value in EBP is not the static link.
pointer to the caller’s local variables and the peer procedure cannot access those variables. How
peers, the caller and callee share the same parent program unit, so the caller can simply push a co

4. There is one exception. If you have a pointer to a variable and the pointer remains accessible, you can access the d
points at even if the variable actually holding that data is inaccessible. Of course, in (standard) Pascal you canno
address of a local variable and put it into a pointer. However, certain dialects of Pascal (e.g., Turbo) and other block sured
languages will allow this operation.

 SP

Previous Stack Contents

Parameters

Static Link

Local variables

Any Registers Saved on Stack

Return Address

Dynamic Link (Old BP)
Page 1380 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

ns
e

static link onto the stack before calling the peer procedure or function. The following code will do this
assuming the current procedure’s static link is on the stack immediately above the return address:

<Push Other Parameters onto the Stack>
pushd([ebp+8]);
call PeerUnit;

Calling an ancestor is a little more complex. If you are currently at lex level n and you wish to call an
ancestor at lex level m (m < n), you will need to traverse the list of static links to find the desired activation
record. The static links form a list of activation records. By following this chain of activation records until it
ends, you can step through the most recent activation records of all the enclosing procedures and functio
of a particular program unit. The stack diagram in Figure 5.6 shows the static links for a sequence of proc-
dure calls statically nested five lex levels deep.

Figure 5.6 Static Links

If the program unit currently executing at lex level five wishes to call a procedure at lex level three, it
must push a static link to the most recently activated program unit at lex level two. In order to find this static
link you will have to traverse the chain of static links. If you are at lex level n and you want to call a proce-
dure at lex level m you will have to traverse (n-m)+1 static links. The code to accomplish this is

// Current lex level is 5. This code locates the static link for,
// and then calls a procedure at lex level 2. Assume all calls are
// near:

<Push necessary parameters>

mov([ebp+8], ebx); // Traverse static link to LL 4.
mov([ebx+8], ebx); // To Lex Level 3.
mov([ebx+8], ebx); // To Lex Level 2.
pushd([ebx+8]); // Ptr to most recent LL 1 activation record.
call ProcAtLL2;

Lex Level 0

Eac h box represents an
activation record.
Each arrow represents
a static link.

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1381

Chapter Five Volume Five

er
ut
 a
5.2.4 Accessing Non-Local Variables Using Static Links

In order to access a non-local variable, you must traverse the chain of static links until you get a point
to the desired activation record. This operation is similar to locating the static link for a procedure call o-
lined in the previous section, except you traverse only n-m static links rather than (n-m)+1 links to obtain
pointer to the appropriate activation record. Consider the following Pascal code:

procedure Outer;
var i:integer;

procedure Middle;
var j:integer;

procedure Inner;
var k:integer;
begin

k := 3;
writeln(i+j+k);

end;

begin {middle}

j := 2;
writeln(i+j);
Inner;

end; {middle}

begin {Outer}

i := 1;
Middle;

end; {Outer}

The Inner procedure accesses global variables at lex level n-1 and n-2 (where n is the lex level of the Inner
procedure). The Middle procedure accesses a single global variable at lex level m-1 (where m is the lex
level of procedure Middle). The following HLA code could implement these three procedures:

procedure Inner; @nodisplay; @noframe;
var

k:int32;
begin Inner;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for k.

mov(3, k); // Initialize k.
mov([ebp+8], ebx); // Static link to previous lex level.
mov([ebx-4], eax); // Get j’s value.
add(k, eax); // Add in k’s value.
mov([ebx+8], ebx); // Get static link to Outer’s activation record.
add([ebx-4], eax); // Add in i’s value to sum.
stdout.puti(eax); // Display the sum.
stdout.newln();

mov(ebp, esp); // Standard exit sequence.
Page 1382 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

nd

nc

ce

cate
pop(ebp);
ret(4); // Removes the stack link from the stack.

end Inner;

procedure Middle; @nodisplay; @noframe;
var

j:int32;
begin Middle;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for j.

mov(2, j); // Initialize j.
mov([ebp+8], ebx); // Get the static link.
mov([ebx-4], eax); // Get i’s value.
add(j, eax); // Compute i+j.
stdout.put(eax, nl); // Display their sum.

push(ebp); // Static link for inner.
call Inner;

mov(ebp, esp); // Standard exit sequence
pop(ebp);
ret(4); // Removes static link from stack.

end Middle;

procedure Outer; @nodisplay; @noframe;
var

i:int32;
begin Outer;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for i.

mov(1, i); // Give i an initial value.
push(ebp); // Static link for middle.
call Middle;

mov(ebp, esp); // Remove local variables
pop(ebp);
ret(4); // Removes static link.

end Outer;

Note that as the difference between the lex levels of the activation records increases, it becomes less a
less efficient to access global variables. Accessing global variables in the previous activation record requires
only one additional instruction per access, at two lex levels you need two additional instructions, etc. If you
analyze a large number of Pascal programs, you will find that most of them do not nest procedures and fu-
tions and in the ones where there are nested program units, they rarely access global variables. There is one
major exception, however. Although Pascal procedures and functions rarely access local variables inside
other procedures and functions, they frequently access global variables declared in the main program. Sin
such variables appear at lex level zero, access to such variables would be as inefficient as possible when
using the static links. To solve this minor problem, most 80x86 based block structured languages allo
variables at lex level zero directly in the STATIC segment and access them directly.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1383

Chapter Five Volume Five

es
t

at
s

 of

nested

 fashion
 more
ter using
 in the
the first
5.2.5 Nesting Procedures in HLA

The example in the previous treats the procedures, syntactically, as non-nested procedures and reli
upon the programmer to manual handle the lexical nesting. A severe drawback to this mechanism is that i
forces the programmer to manually compute the offsets of non-local variables. Although HLA does not pro-
vide automatic support for static links, HLA does allow us to nest procedures and provides some com-
pile-time functions to help us calculate offsets into non-global activation records. Furthermore, we can tre
the static link as a parameter to the procedures, so we don’t have to refer to the static link using addres
expressions like "[ebx+8]".

Like Pascal, HLA lets you nest procedures. You may insert a procedure in the declaration section
another procedure. The Inner, Middle, and Outer procedures of the previous section could have been written
in a fashion like the following:

procedure Outer; @nodisplay; @noframe;
var

i:int32;

procedure Middle; @nodisplay; @noframe;
var

j:int32;

procedure Inner; @nodisplay; @noframe;
var

k:int32;
begin Inner;

<< Code for the Inner procedure >>

end Inner;

begin Middle;

<< code for the Middle procedure >>

end Middle;

begin Outer;

<< code for the Outer procedure >>

end Outer;

There are two advantages to this scheme:

1. The identifier Inner is local to the Middle procedure and is not accessible outside Middle (not even
to Outer); similarly, the identifier Middle is local to Outer and is not accessible outside Outer. This
information hiding feature lets you prevent other code from accidentally accessing these
procedures, just as for local variables.

2. The local identifiers i and j are accessible to the nested procedures.

Before discussing how to use this feature to access non-local variables in a more reasonable
using static links, let’s also consider the issue of the static link itself. The static link is really nothing
than a special parameter to these functions, therefore we can declare the static link as a parame
HLA’s high level procedure declaration syntax. Since the static link must always be at a fixed offset
activation record for all procedures, the most reasonable thing to do is always make the stack link
parameter in the list5; this ensures that the static link is always found at offset "+8" in the activation record.
Here’s the declarations above with the static links added as parameters:

procedure Outer(outerStaticLink:dword); @nodisplay; @noframe;
Page 1384 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

ou to
tement
s

e

CALL
var
i:int32;

procedure Middle(middleStaticLink:dword); @nodisplay; @noframe;
var

j:int32;

procedure Inner(innerStaticLink:dword); @nodisplay; @noframe;
var

k:int32;
begin Inner;

<< Code for the Inner procedure >>

end Inner;

begin Middle;

<< code for the Middle procedure >>

end Middle;

begin Outer;

<< code for the Outer procedure >>

end Outer;

All that remains is to discuss how one references non-local (automatic) variables in this code. As you
may recall from the chapter on Intermediate Procedures in Volume Four, HLA references local variables and
parameters using an address expression of the form "[ebp±offset]" where offset represents the offset of the
variable into the activation record (parameters typically have a positive offset, local variables have a negative
offset). Indeed, we can use the HLA compile-time @offset function to access the variables without having
to manually figure out the variable’s offset in the activation record, e.g.,

mov([ebp+@offset(i)], eax);

The statement above is semantically equivalent to

mov(i, eax);

assuming, of course, that i is a local variable in the current procedure.

Because HLA automatically associates the EBP register with local variables, HLA will not allow y
use a non-local variable reference in a procedure. For example, if you tried to use the sta
"mov(i, eax);" in procedure Inner in the example above, HLA would complain that you cannot acces
non-local in this manner. The problem is that HLA associates EBP with automatic variables and outside the
procedure in which you declare the local variable, EBP does not point at the activation record holding that
variable. Hence, the instruction "mov(i, eax);" inside the Inner procedure would actually load k into EAX,
not i (because k is at the same offset in Inner’s activation record as i in Outer’s activation record).

While it’s nice that HLA prevents you from making the mistake of such an illegal reference, the fact
remains that there needs to be some way of referring to non-local identifiers in a procedure. HLA uses th
following syntax to reference a non-local, automatic, variable:

reg32::identifier

5. Assuming, of course, that you’re using the default Pascal calling convention. If you were using the CDECL or STD
calling convention, you would always make the static link the last parameter in the parameter list.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1385

Chapter Five Volume Five

h level
reg32 represents any of the 80x86’s 32-bit general purpose registers and identifier is the non-local identifier
you wish to access. HLA substitutes an address expression of the form "[reg32+@offset(identifier)]" for this
expression. Given this syntax, we can now rewrite the Inner, Middle, and Outer example in a hig
fashion as follows:

procedure Outer(outerStaticLink:dword); @nodisplay;
var

i:int32;

procedure Middle(middleStaticLink:dword); @@nodisplay;
var

j:int32;

procedure Inner(innerStaticLink:dword); nodisplay;
var

k:int32;
begin Inner;

mov(3, k); // Initialize k.
mov(innerStaticLink, ebx); // Static link to previous lex level.
mov(ebx::j, eax); // Get j’s value.
add(k, eax); // Add in k’s value.

// Get static link to Outer’s activation record and
// add in i’s value:

mov(ebx::outerStaticLink ebx);
add(ebx::i, eax);

// Display the results:

stdout.puti(eax); // Display the sum.
stdout.newln();

end Inner;

begin Middle;

mov(2, j); // Initialize j.
mov(middleStaticLink, ebx); // Get the static link.
mov(ebx::i, eax); // Get i’s value.
add(j, eax); // Compute i+j.
stdout.put(eax, nl); // Display their sum.

Inner(ebp); // Inner’s static link is EBP.

end Middle;

begin Outer;

mov(1, i); // Give i an initial value.
Middle(ebp); // Static link for middle.

end Outer;

This example provides only a small indication of the work needed to access variables using static links.
In particular, accessing @ebx::i in the Inner procedure was simplified by the fact that EBX already con-
tained Middle’s static link. In the typical case, it’s going to take one instruction for each lex level the code
Page 1386 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

ro
not tak
A

t
 lan

be

t

t

e

traverses in order to access a given non-local automatic variable. While this might seem bad, in typical pro-
grams you rarely access non-local variables, so the situation doesn’t arrive often enough to worry about.

HLA does not provide built-in support for static links. If you are going to use static links in your p-
grams, then you must manually pass the static links as parameters to your procedures (i.e., HLA will e
care of this for you). While it is possible to modify HLA to automatically handle static links for you, HL
provides a different mechanism for accessing non-local variables - the display. To learn about displays, keep
reading...

5.2.6 The Display

After reading the previous section you might get the idea that one should never use non-local variables,
or limit non-local accesses to those variables declared at lex level zero. After all, it’s often easy enough to pu
all shared variables at lex level zero. If you are designing a programming language, you can adopt the C-
guage designer’s philosophy and simply not provide block structure. Such compromises turn out to
unnecessary. There is a data structure, the display, that provides efficient access to any set of non-local vari-
ables.

A display is simply an array of pointers to activation records. Display[0] contains a pointer to the mos
recent activation record for lex level zero, Display[1] contains a pointer to the most recent activation record
for lex level one, and so on. Assuming you’ve maintained the Display array in the current STATIC segment
it only takes two instructions to access any non-local variable. Pictorially, the display works as shown in Fig-
ure 5.7.

Figure 5.7 The Display

Note that the entries in the display always point at the most recent activation record for a procedure a
the given lex level. If there is no active activation record for a particular lex level (e.g., lex level six above),
then the entry in the display contains garbage.

The maximum lexical nesting level in your program determines how many elements there must be in th
display. Most programs have only three or four nested procedures (if that many) so the display is usually
quite small. Generally, you will rarely require more than 10 or so elements in the display.

Lex Level 0

0
1
2
3
4
5
6

Display

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5

????
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1387

Chapter Five Volume Five

r
nd
r

with

u

Another advantage to using a display is that each individual procedure can maintain the display info-
mation itself, the caller need not get involved. When using static links the calling code has to compute a
pass the appropriate static link to a procedure. Not only is this slow, but the code to do this must appea
before every call. If your program uses a display, the callee, rather than the caller, maintains the display so
you only need one copy of the code per procedure.

Although maintaining a single display in the STATIC segment is easy and efficient, there are a few situ-
ations where it doesn’t work. In particular, when passing procedures as parameters, the single level display
doesn’t do the job. So for the general case, a solution other than a static array is necessary. Therefore, this
chapter will not go into the details of how to maintain a static display since there are some problems
this approach.

Intel, when designing the 80286 microprocessor, studied this problem very carefully (because Pascal
was popular at the time and they wanted to be able to efficiently handle Pascal constructs). They came up
with a generalized solution that works for all cases. Rather than using a single display in a static segment,
Intel’s designers decided to have each procedure carry around its own local copy of the display. The HLA
compiler automatically builds an Intel-compatible display at the beginning of each procedure, assuming yo
don’t use the @NODISPLAY procedure option. An Intel-compatible display is part of a procedure’s activa-
tion record and takes the form shown in Figure 5.8:

Figure 5.8 Intel-Compatible Display in an Activation Record

If we assume that the lex level of the main program is zero, then the display for a given procedure at lex
level n will contain n+1 double word elements. Display[0] is a pointer to the activation record for the main
program, Display[1] is a pointer to the activation record of the most recently activated procedure at lex level
one. Etc. Display[n] is a pointer to the current procedure’s activation record (i.e., it contains the value
found in EBP while this procedure executes). Normally, the procedure would never access element n of Dis-
play since the procedure can index off EBP directly; However, as you’ll soon see, we’ll need the Display[n]
entry to build displays for procedures at higher lex levels.

Previous Stack Contents

Parameters (if any)

Return Address

Dynamic Link
(previous EBP value)

Display[0]

Display[1]

Display[n]

.

.

.

Local Variables (if any)

EBP

ESP
Page 1388 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

local

 minus
isplay

time
 func-
urrently
n index

, etc. If
One important fact to note about the Intel-compatible display array: it’s elements appear backwards in
memory. Remember, the stack grows downwards from high addresses to low addresses. If you study Figure
5.8 for a moment you’ll discover that Display[0] is at the highest memory address and Display[n] is at the
lowest memory address, exactly the opposite for standard array organization. It turns out that we’ll always
access the display using a constant offset, so this reversal of the array ordering is no big deal. We’ll just use
negative offsets from Display[0] (the base address of the array) rather than the usual positive offsets.

If the @NODISPLAY procedure option is not present, HLA treats the display as a predeclared
variable in the procedure and inserts the name "_display_" into the symbol table. The offset of the _display_
variable in the activation record is the offset of the Display[0] entry in Figure 5.8. Therefore, you can easily
access an element of this array at run-time using a statement like:

mov(_display_[-lexLevel*4], ebx);

The "*4" component appears because _display_ is an array of double words. lexLevel must be a constant
value that specifies the lex level of the procedure whose activation record you’d like to obtain. The
sign prefixing this expression causes HLA to index downwards in memory as appropriate for the d
object.

Although it’s not that difficult to figure out the lex level of a procedure manually, the HLA compile-
language provides a function that will compute the lex level of a given procedure for you – the @LEX
tion. This function accepts a single parameter that must be the name of an HLA procedure (that is c
in scope). The @LEX function returns an appropriate value for that function that you can use as a
into the _display_ array. Note that @LEX returns one for the main program, two for procedures you declare
in the main program, three for procedures you declare in procedures you declare in the main program
you are writing a unit, all procedures you declare in that unit exist at lex level two.

The following program is a variation of the Inner/Middle/Outer example you’ve seen previously in this
chapter. This example uses displays and the @LEX function to access the non-local automatic variables:

program DisplayDemo;
#include("stdlib.hhf")

 macro Display(proc);

 display[-@lex(proc) * 4]

 endmacro;

 procedure Outer;
 var
 i:int32;

 procedure Middle;
 var
 j:int32;

 procedure Inner;
 var
 k:int32;
 begin Inner;

 mov(4, k);
 mov(Display(Middle), ebx);
 mov(ebx::j, eax); // Get j's value.
 add(k, eax); // Add in k's value.

 // Get static link to Outer's activation record and
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1389

Chapter Five Volume Five

,

However,
AR) vari-
 // add in i's value:

 mov(Display(Outer), ebx);
 add(ebx::i, eax);

 // Display the results:

 stdout.puti32(eax); // Display the sum.
 stdout.newln();

 end Inner;

 begin Middle;

 mov(2, j); // Initialize j.
 mov(Display(Outer), ebx); // Get the static link.
 mov(ebx::i, eax); // Get i's value.
 add(j, eax); // Compute i+j.
 stdout.puti32(eax); // Display their sum.
 stdout.newln();

 Inner();

 end Middle;

 begin Outer;

 mov(1, i); // Give i an initial value.
 Middle(); // Static link for middle.

 end Outer;

begin DisplayDemo;

 Outer();

end DisplayDemo;

Program 5.1 Demonstration of Displays in an HLA Program

Assuming you do not attach the @NODISPLAY procedure option to a procedure you write in HLA
HLA will automatically emit the code (as part of the standard entry sequence) to build a display for that pro-
cedure. Up to this chapter, none of the programs in this text have used nested procedures6, therefore there
has been no need for a display. For that reason, most programs appearing in this text (since the introduction
of the @NODISPLAY option) have attached @NODISPLAY to the procedure. It doesn’t make a program
incorrect to build a display if you never use it, but it does make the procedure a tiny bit slower and a tiny bit
larger, hence the use of the @NODISPLAY option up to this point.

6. Technically, this statement is not true. Every procedure you’ve written has been nested inside the main program.
none of the sample programs to date have considered the possibility of accessing the main program’s automatic (V
ables. Hence there has been no need for a display until now).
Page 1390 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

t
de

ay’
tually
f

e

EAVE

nt

ages, if
isplay
5.2.7 The 80x86 ENTER and LEAVE Instructions

When designing the 80286, Intel’s CPU designers decided to add two instructions to help maintain dis-
plays. This was done because Pascal was the popular high level language at the time and Pascal was a block
structured language that could benefit from having a display. Since then, C/C++ has replaced Pascal as the
most common implementation language, so these two instructions have fallen into disuse since C/C++ is no
a block structured language. Still, you can take advantage of these instructions when writing assembly co
with nested procedures.

Unfortunately, these two instructions, ENTER and LEAVE, are quite slow. The problem with these
instructions is that C/C++ became popular shortly after Intel designed these instructions, so Intel never both-
ered to optimize them since few high-performance compilers actually used these instructions. On tods
processors, it’s actually faster to execute a sequence of instructions that do the same job than it is to ac
use these instructions; hence most compilers that build displays (like HLA) emit a discrete sequence o
instructions to build the display. Do keep in mind that, although these two instructions are slower than their
discrete counterparts, they are generally shorter. So if you’re trying to save code space rather than write th
fastest possible code, using ENTER and LEAVE can help.

The LEAVE instruction is very simple to understand. It performs the same operation as the two instruc-
tions:

mov(ebp, esp);
pop(ebp);

Therefore, you may use the instruction for the standard procedure exit code. On an 80386 or earlier proces-
sor, the LEAVE instruction is faster than the equivalent move and pop sequence. However, the L
instruction is slower on 80486 and later processors.

The ENTER instruction takes two operands. The first is the number of bytes of local storage the curre
procedure requires, the second is the lex level of the current procedure. The enter instruction does the fol-
lowing:

// enter(Locals, LexLevel);

push(ebp); // Save dynamic link
mov(esp, tempreg); // Save for later.
cmp(LexLevel, 0); // Done if this is lex level zero.
je Lex0;

lp: dec(LexLevel);
jz Done;

sub(4, ebp); // Index into display in previous activation record
pushd([ebp]); // and push the element there.
jmp lp;

Done:
push(tempreg); // Add entry for current lex level.

Lex0:
mov(tempreg, ebp); // Pointer to current activation record.
sub(_vars_, esp); // Allocate storage for local variables.

As you can see from this code, the ENTER instruction copies the display from activation record to activation
record. This can get quite expensive if you nest the procedures to any depth. Most high level langu
they use the ENTER instruction at all, always specify a nesting level of zero to avoid copying the d
throughout the stack.

The ENTER instruction puts the value for the _display_[n] entry at location EBP-(n*4). The ENTER
instruction does not copy the value for display[0] into each stack frame. Intel assumes that you will keep the
main program’s global variables in the data segment. To save time and memory, they do not bother copying
the _display_[0] entry. This is why HLA uses lex level one for the main program – in HLA the main pro-
gram can have automatic variables and, therefore, requires a display entry.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1391

Chapter Five Volume Five

ms

ested in

s
est
n

The ENTER instruction is very slow, particularly on 80486 and later processors. If you really want to
copy the display from activation record to activation record it is probably a better idea to push the ite
yourself. The following code snippets show how to do this:

// enter(n, 0); (n bytes of local variables, lex level zero.)

push(ebp); // As you can see, "enter(n, 0);" corresponds to
mov(esp, ebp); // the standard entry sequence for non-nested
sub(n, esp); // procedures.

// enter(n, 1);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
lea(ebp, [esp-4]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 2);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
lea(ebp, [esp-8]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 3);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
pushd([ebp-12]); // Push display[3] entry from previous act rec.
lea(ebp, [esp-12]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 4);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
pushd([ebp-12]); // Push display[3] entry from previous act rec.
pushd([ebp-16]); // Push display[3] entry from previous act rec.
lea(ebp, [esp-16]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// etc.

If you are willing to believe Intel’s cycle timings, you’ll fi nd that the ENTER instruction is almost never
faster than a straight line sequence of instructions that accomplish the same thing. If you are inter
saving space rather than writing fast code, the ENTER instruction is generally a better alternative. The same
is generally true for the LEAVE instruction as well. It is only one byte long, but it is slower than the corre-
sponding "mov(esp, ebp);" and "pop(ebp);" instructions. The following sample program demonstrate
how to access non-local variables using a display. This code does not use the @LEX function in the inter
of making the lex level access clear; normally you would use the @LEX function rather than the literal co-
stants appearing in this example.

program EnterLeaveDemo;
#include("stdlib.hhf")
Page 1392 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

re
procedure LexLevel2;

 procedure LexLevel3a;
 begin LexLevel3a;

 stdout.put(nl "LexLevel3a:" nl);
 stdout.put("esp = ", esp, " ebp = ", ebp, nl);
 mov(_display_[0], eax);
 stdout.put("display[0] = ", eax, nl);
 mov(_display_[-4], eax);
 stdout.put("display[-1] = ", eax, nl);

 end LexLevel3a;

 procedure LexLevel3b; noframe;
 begin LexLevel3b;

 enter(0, 3);

 stdout.put(nl "LexLevel3b:" nl);
 stdout.put("esp = ", esp, " ebp = ", ebp, nl);
 mov(_display_[0], eax);
 stdout.put("display[0] = ", eax, nl);
 mov(_display_[-4], eax);
 stdout.put("display[-1] = ", eax, nl);

 leave;
 ret();

 end LexLevel3b;

begin LexLevel2;

 stdout.put("LexLevel2: esp=", esp, " ebp = ", ebp, nl nl);
 LexLevel3a();
 LexLevel3b();

end LexLevel2;

begin EnterLeaveDemo;

 stdout.put("main: esp = ", esp, " ebp= ", ebp, nl);
 LexLevel2();

end EnterLeaveDemo;

Program 5.2 Demonstration of Enter and Leave in HLA

Starting with HLA v1.32, HLA provides the option of emitting ENTER or LEAVE instructions rather
than the discrete sequences for a procedure’s standard entry and exit sequences. The @ENTER procedure
options tells HLA to emit the ENTER instruction for a procedure, the @LEAVE procedure option tells HLA
to emit the LEAVE instruction in place of the standard exit sequence. See the HLA documentation for mo
details.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1393

Chapter Five Volume Five

er

to use

te in yo
5.3 Passing Variables at Different Lex Levels as Parameters.

Accessing variables at different lex levels in a block structured program introduces several complexities
to a program. The previous section introduced you to the complexity of non-local variable access. This prob-
lem gets even worse when you try to pass such variables as parameters to another program unit. The follow-
ing subsections discuss strategies for each of the major parameter passing mechanisms.

For the purposes of discussion, the following sections will assume that “local” refers to variables in the
current activation record, “global” refers to static variables in a static segment, and “intermediate” refers to
automatic variables in some activation record other than the current activation record (this includes auto-
matic variables in the main program). These sections will pass all parameters on the stack. You can easily
modify the details to pass these parameters elsewhere, should you choose.

5.3.1 Passing Parameters by Value

Passing value parameters to a program unit is no more difficult than accessing the corresponding vari-
ables; all you need do is push the value on the stack before calling the associated procedure.

To (manually) pass a global variable by value to another procedure, you could use code like the follow-
ing:

push(GlobalVariable); // Assume "GlobalVariable" is a static object.
call proc;

To pass a local variable by value to another procedure, you could use the following code7:

push(LocalVariable);
call proc;

To pass an intermediate variable as a value parameter, you must first locate that intermediate variable’s
activation record and then push its value onto the stack. The exact mechanism you use depends on wheth
you are using static links or a display to keep track of the intermediate variable’s activation records. If using
static links, you might use code like the following to pass a variable from two lex levels up from the current
procedure:

mov([ebp+8], ebx); // Assume static link is at offset 8 in Act Rec.
mov([ebx], ebx); // Traverse the second static link.
push(ebx::IntVar); // Push the intermediate variable’s value.
call proc;

Passing an intermediate variable by value when you are using a display is somewhat easier. You could
use code like the following to pass an intermediate variable from lex level one:

mov(_display_[-1*4], ebx); // Remember each _display_ entry is 4 bytes.
push(ebx::IntVar); // Pass the intermediate variable.
call proc;

It is possible to use the HLA high level procedure calling syntax when passing intermediate variables as
parameters by value. The following code demonstrates this:

mov(_display_[-1*4], ebx);
proc(ebx::IntVar);

This example uses a display because HLA automatically builds the display for you. If you decide
static links, you’ll have to modify this code appropriately.

7. The non-global examples all assume the variable is at offset -2 in their activation record. Change this as appropriaur
code.
Page 1394 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

ss of
ng

nce,

lue,

way to
e returns,
ial case

l,
 has
the

e

 lie in the
5.3.2 Passing Parameters by Reference, Result, and Value-Result

The pass by reference, result, and value-result parameter mechanisms generally pass the addre
parameter on the stack8. In an earlier chapter, you’ve seen how to pass global and local parameters usi
these mechanisms. In this section we’ll take a look at passing intermediate variables by reference,
value/result, and by result.

To pass an intermediate variable by reference, value/result, or by result, you must first locate the activa-
tion record containing the variable so you can compute the effective address into the stack segment. When
using static links, the code to pass the parameter’s address might look like the following:

mov([ebp+8], ebx); // Assume static link is at offset 8 in Act Rec.
mov([ebx], ebx); // Traverse the second static link.
lea(eax, ebx::IntVar); // Get the intermediate variable’s address.
push(eax); // Pass the address on the stack.
call proc;

When using a display, the calling sequence might look like the following:

mov(_display_[-1*4], ebx); // Remember each _display_ entry is 4 bytes.
lea(eax, ebx::IntVar); // Pass the intermediate variable.
push(eax);
call proc;

It is possible to use the HLA high level procedure calling syntax when passing parameters by refere
by value/result, or by result. The following code demonstrates this:

mov(_display_[-1*4], ebx);
proc(ebx::IntVar);

The nice thing about the high level syntax is that it is identical whether you’re passing parameters by va
reference, value/result, or by result.

As you may recall from the chapter on Low-Level Parameter Implementation, there is a second
pass a parameter by value/result. You can push the value onto the stack and then, when the procedur
pop this value off the stack and store it back into the variable from whence it came. This is just a spec
of the pass by value mechanism described in the previous section.

5.3.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured
Language

Since you pass a thunk when passing parameters by name or by lazy-evaluation, the presence of globa
intermediate, and local variables does not affect the calling sequence to the procedure. Instead, the thunk
to deal with the differing locations of these variables. Since HLA thunks already contain the pointer to
activation record for that thunk, returning a local (to the thunk) variable’s address or value is especially triv-
ial. About the only catch is what happens if you pass an intermediate variable by name or by lazy evaluation
to a procedure. However, the calculation of the ultimate address (pass by name) or retrieval of the value
(pass by lazy evaluation) is nearly identical to the code in the previous two sections. Hence, this code will b
left as an exercise at the end of this volume.

8. As you may recall, pass by reference, value-result, and result all use the same calling sequence. The differences
procedures themselves.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1395

Chapter Five Volume Five

t

rocedure

 the
w
l

rt of
 as

ly
up
5.4 Passing Procedures as Parameters

Many programming languages let you pass a procedure or function name as a parameter. This lets the
caller pass along various actions to perform inside a procedure. The classic example is a plot procedure tha
graphs some generic math function passed as a parameter to plot.

HLA lets you pass procedures and functions by declaring them as follows:

procedure DoCall(x:procedure);
begin DoCall;

x();

end DoCall;

The statement "DoCall(xyz);" calls DoCall that, in turn, calls procedure xyz.

Whenever you pass a procedure’s address in this manner, HLA only passes the address of the p
as the parameter value. Upon entry into procedure x via the DoCall invocation, the x procedure first creates
its own display by copying appropriate entries from DoCall’s display. This gives x access to all intermediate
variables that HLA allows x to access.

Keep in mind that thunks are special cases of functions that you call indirectly. However, there is a
major difference between a thunk and a procedure – thunks carry around the pointer to the activation record
they intend to use. Therefore, the thunk does not copy the calling procedure’s display; instead, it uses the
display of an existing procedure to access intermediate variables.

5.5 Faking Intermediate Variable Access

As you’ve probably noticed by now, accessing non-local (intermediate) variables is a bit less efficient
than accessing local or global (static) variables. High level languages like Pascal that support intermediate
variable access hide a lot of effort from the programmer that becomes painfully visible when attempting
same thing in assembly language. When attempting to write maintainable and readable code, you may ant
to break up a large procedure into a sequence of smaller procedures and make those smaller procedures loca
to a surrounding procedure that simply calls these smaller routines. Unfortunately, if the original procedure
you’re breaking up contains lots of local variables that code throughout the procedure shares, sho
restructuring your code you will have to leave those variables in the outside procedure and access them
intermediate variables. Using the techniques of this chapter may make this task a bit unpleasant, especial
if you access those variables a large number of times. This may dissuade you from attempting to break
the procedure into smaller units. Fortunately, under certain special circumstances, you can avoid the head-
aches of intermediate variable access in situations like this.

Consider the following short code sequence:

procedure MainProc;
var

ALocalVar: dword;

procedure proc; @nodisplay; @noframe;
begin proc;

mov(ebp::ALocalVar, eax);
ret();

end proc;

begin MainProc;

mov(5, ALocalVar);
Page 1396 © 2001, By Randall Hyde Version: 9/12/02

Lexical Nesting

entry

es
bind

y

proc();

// EAX now contains five...

end MainProc;

Notice that the proc procedure has the @NOFRAME option, so HLA does not emit the standard
sequence to build an activation record. This means that upon entry to proc, EBP still points at MainProc’s
activation record. Therefore, this code can access the ALocalVar variable by using the syntax ebp::ALocal-
Var. No other code is necessary.

The drawback to this scheme is that proc may not contain any parameters or local variables (which
would require setting EBP to point at proc’s activation record). However, if you can live with this limitation,
then this is a useful trick for accessing local variables one lex level up from the current procedure.

5.6 Putting It All Together

This chapter introduces the concept of lexical nesting commonly found in block structured languag
like Pascal, Ada, and Modula-2. This chapter introduces the notion of scope, static procedure nesting, -
ing, variable lifetime, static links, the display, intermediate variables, and passing intermediate variables as
parameters. Although few assembly programs use these features, they are occasionally useful, especiall
when writing code that interfaces with a high level language that supports static nesting.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1397

Chapter Five Volume Five
Page 1398 © 2001, By Randall Hyde Version: 9/12/02

	Lexical Nesting Chapter Five
	5.1 Chapter Overview
	5.2 Lexical Nesting, Static Links, and Displays
	5.2.1 Scope
	5.2.2 Unit Activation, Address Binding, and Variable Lifetime
	5.2.3 Static Links
	5.2.4 Accessing Non-Local Variables Using Static Links
	5.2.5 Nesting Procedures in HLA
	5.2.6 The Display
	5.2.7 The 80x86 ENTER and LEAVE Instructions

	5.3 Passing Variables at Different Lex Levels as Parameters.
	5.3.1 Passing Parameters by Value
	5.3.2 Passing Parameters by Reference, Result, and Value-Result
	5.3.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language

	5.4 Passing Procedures as Parameters
	5.5 Faking Intermediate Variable Access
	5.6 Putting It All Together

