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*In these notes we first review some relevant material from classical mechanics
concerning oscillations and waves before introducing the Fourier series and the
continuous Fourier transform. We then introduce the Discrete Fourier Transform
(DFT) and the Fast Fourier Transform (FFT).

1 Oscillations and Simple Harmonic Motion

e Uniform circular motion is described by the following position vector:

r = (rcosf)i + (rsinf)j = (rcoswt)i + (rsinwt)y

If we project uniform circular motion onto one dimension, the result is called
simple harmonic motion. Restoring forces make an equilibrium stable,
and a small displacement from a stable equilibrium is what produces simple
harmonic motion. Put another way, simple harmonic motion is any motion
that is a combination of a sine and cosine of the form

x(t) = By cos(wt) + By sin(wt)
This motion can be equivalently expressed as

x(t) = Cleim‘/ + Cngiwt

2 Traveling Waves

e A traveling wave is a disturbance traveling with a given wave speed v.
The degree to which an element of the wave is disturbed at some position
and time is called its displacement from equilibrium. The amplitude
A of the wave is the maximum value of the displacement. A wave source
that oscillates with simple harmonic motion will generate a sinusoidal wave,
and the frequency f of the wave produced will match the frequency of the
source’s oscillations. The period T of the wave is the time interval for one
cycle of the motion, and we note the following relationship:

T=—
/

e We can graph the displacement of one fixed point in space over time, and
we will obtain a periodic sinusoidal graph. Alternatively, we can take a
snapshot of a wave at a certain time, and graph the displacement of the
whole wave at that fixed time. Sinusoidal waves are periodic in space as
well as in time, so this graph in terms of position for a fixed time will also
be periodic, where the distance spanned by one cycle of motion is called the
wavelength )\ of the wave.

The period T of a wave is the time it takes for the disturbance at a fixed
point in space to repeat itself. The wavelength \ of a wave is the distance it



takes for the disturbance to repeat itself for a fixed instant in time. We see
therefore that displacement is in fact a function of both position and time,
and we write this as D(z,t).

e If we analyze several history graphs of a wave over the span of one period,
we will see that during a time interval of exactly one period T each crest
of a sinusoidal wave travels forward a distance of exactly one wavelength .
This is the fundamental relationship for sinusoidal waves. We therefore have
v = A/T, which is usually written as

v=Af

3 The Mathematics of Sinusoidal Traveling Waves

e We can describe the displacement of a sinusoidal waves at a fixed time ¢t =0
as

D(z,t =0) = Asin (2)7\Tx + ¢o>

where ¢ is the phase constant that characterizes the initial conditions.
Now, we note that in a time interval ¢ a wave will travel a distance of vt,
we see that the displacement of a wave at time ¢. This means that whatever
displacement the wave has at position x and time ¢ is the same as the
displacement the wave had at position z — vt and time ¢t = 0. In other
words, D(x,t) = D(z — vt,t = 0). We can substitute this into the previous
equation as follows

D(x,t) = Asin (2;(:5 )+ ¢o>

. (2 2mv
= Asin (;T:U — %t—i— ¢0)
= Asin (kz — 27 ft 4+ ¢p)

= Asin (kz — wt + ¢op)

where we have defined the wave number k = 27/, and recalling from
simple harmonic motion that the angular frequency w can be expressed as
w = 27 f. This is the equation for a sinusoidal wave traveling in the positive
x direction, and we can see that it is a function of both position x and time
t.

4 Standing Waves

e If two sinusoidal traveling waves of the same wavelength, frequency, and
amplitude coincide in space traveling in opposite directions, then by the
principle of superposition they will combine to form one standing wave
which does not travel but whose amplitude will oscillate up and down. The
displacement of a standing wave is given by

D(z,t) = 2Asin(kx) cos(wt)

e If we consider a standing wave on a string tied down at both ends, we see
that a standing wave on the string must have nodes at both ends. (Note



that electromagnetic waves and sound waves in closed-closed tubes also re-
quire nodes at both ends.) Therefore, we have a boundary condition which
imposes that the wavelength must be of the form \,, = 2L/m where L is the
length of the string and m is a positive integer. Consequently, the frequency
of the standing wave is also restricted to that of the form
v v
fm = 3= M3

We see here that the lowest possible frequency is fi = v/2L, and this is
referred to as the fundamental frequency. The other possible frequencies
can be expressed as integer multiples of the fundamental frequency thusly:
fm = mf1. These other possible frequencies are called harmonics, where
fo2, for example, is called the “second harmonic.” The possible standing
waves are called the modes of the string. Note that each mode m has a
unique wavelength and frequency.

5 Fourier Series

e If you hit a piano key, the resulting sound wave is periodic, and is composed
of several sinusoidal waves with different frequencies, each called a “pure
tone.” Therefore, if we measure the pressure resulting from a sound wave as
a function of z and ¢, then the pressure will be a sum of several sinusoidal
functions, each representing one of the pure tones (that is, individual sinu-
soidal waves each with different frequencies). One of the pure tones will have
a fundamental frequency, and the others will have corresponding harmonic
frequencies. If sin(wt) and cos(wt) correspond to the fundamental frequency
(in this case, fi = w/2w), then sin(nwt) and cos(nwt) correspond to the
higher harmonics, where higher values of n result in higher frequencies and
shorter periods. The overall net combination of the fundamental and the
harmonics is a complicated periodic function with the period of the funda-
mental, and we can express this function as a sum of terms corresponding
to the various harmonics; this sum is called a Fourier series.

The exact same process is applicable for other types of waves besides sound.
For example, we could describe the various proportions of different light
frequencies in a given beam of light.

e In general, it turns out that any function with period T can be expressed
as a linear combination of these sines and cosines as follows:

oo
ft) = 2 4 Z[an cos(nwt) + by, sin(nwt)]
2
n=1

This is the Fourier series for f(¢). Constructing a waveform by adding
together a fundamental frequency and harmonics of various amplitudes in
a process called Fourier synthesis. The reverse process - determining the
various frequencies and amplitudes present in a given waveform - is called
Fourier analysis. The latter process is common in practice; for example,
suppose we have already found a curve f(t) experimentally and we now
want to know the values of the amplitudes a,, and b,, for as many values of
n as necessary. These amplitudes (that is, the Fourier coefficients) can be
calculated as follows:

o (T/2
ap = —/ f(z) cos(nx) dz
T J_ 7/



o (T/2
by, = —/ f(z) sin(nx) dx
T J_7/2

e We can equivalently express the previous formula in terms of the complex
exponential:

+0oo _
f(t): Z cneznwt

n=—oo

where the coefficients can be calculated as follows:

1 [T/? ,
Cn = = flx)e " dx
T /_T/z )

e A trick that is often used in evaluating trigonometric Fourier coefficients
relies on the fact that cosine is an even function while sine is an odd
function. In particular, since an even function has the same value at any
point t as it does at point —t, we note that for even functions one can replace
any integral from —T to T by twice the integral from 0 to T

6 Fourier Transforms

e Unlike when we hit a piano key, some other sound waves are not periodic.
Describing these sounds waves (that is, graphing pressure as a function of
time) therefore requires not just a fundamental frequency, its amplitude,
and a set of discrete harmonics and their amplitudes (as was true for the
case of the piano), but rather a continuous range of frequencies.

In this way, a non-periodic function may be thought of as a limiting case of
a periodic function, where the period tends to infinity, and consequently the
fundamental frequency tends to zero. The harmonics are more and more
closely spaced and in the limit there is a continuous range of harmonics,
each of infinitesimal amplitude. Therefore, the summation of the Fourier
series is replaced by integration, and the graph of our waveform is

1 e ,
r)=— a)e'* da
f@) =5 [ olo)
Here we see that for a given time x we graph sinusoids for a continuous range
of frequencies «, where g(«) represents the amplitude for a given frequency.
If we compare this to the complex exponential forms of the Fourier series, we
note that the frequency « corresponds to n, the amplitude g(a) corresponds
to ¢,, and ffooo corresponds to Zfz since we are now graphing a continuous
range of frequencies rather than a set of discrete frequencies. That is, the
quantity « is a continuous analog of the integral-valued variable n, and so
the set of coefficients ¢,, has become a function g(«).

The Fourier transform of the previous equation is

o) = [ fae e

We note that this represents amplitude as a function of frequency. For a
given frequency «, the Fourier transform will graph its amplitude. So, if
a certain frequency is present in the original signal, the Fourier transform
will show a peak at that frequency. In this way the Fourier transform shows
what frequencies are in a signal.



7 Discrete Fourier Transforms

e In order to make use of computational tools, we can discretize the continuous
Fourier transform. If F(z) is the original waveform (signal) at time z, then
we can discretize it with N points as

N/2

Fa)= Y G(je*™¥

j=—N/2+1

and the Discrete Fourier Transform of that waveform is given by

N
GU) = =3 F(z)e2ri%
=N

x=1

For a given frequency j, this last formula gives its amplitude G(j) in the
original signal.

e Because sinusoids are orthogonal at different frequencies, the sinusoidal
terms in the DFT form an orthogonal basis of the space C* (that is, the
sinusoidal terms in the DFT are linearly independent and span the space
C?) which can be normalized to obtain an orthonormal basis for C*. In this
way we can see that the argument of the summation is the dot product of
the original function with an orthogonal basis vector, thereby extracting the
component of the original function along this new basis vector. We then
sum over all the various values of x (that is, the components in the original
basis), and we obtain one coefficient of the vector in the new basis.

In other words, the Fourier transform defines the coefficients of the original
function with respect to a new basis (complex sinusoids). It obtains these
coefficients by projecting the original function onto each (orthogonal) basis
function. In this sense it is a linear unitary transform. We see then that the
DFT is proportional to the set of coefficients of projection onto the sinusoidal
basis set.

e We note that the norm of the DFT sinusoids is v/N. So elements of the
orthonormal set are of the form

6271'2'%

VN

e In computation, we can first define a function which takes a value of x and
returns a corresponding basis vector. We then calculate a Fourier coefficient
G(j) for a given frequency j by summing the dot products of the original
function and the various xz-bases, with the latter determined by calling the
function we previously defined. Finally, we plot these Fourier coeflicients.

8 Fast Fourier Transforms

e Let us first recognize that the DFT is essentially matrix multiplication, inso-
far as it multiplies a column vector of size N (consisting of the various values
of the original function) by a square matrix containing all the complex sinu-
soidal terms, which obtains a column vector consisting of the various Fourier
coefficients. Since the process of matrix multiplication requires N2 multi-
plications for its completion, these calculations can quickly become quite



cumbersome for large data sets. Fast Fourier Transforms ameliorate
this problem by reducing the number of multiplications to 2N log,(N). It
essentially does this by factorizing the matrix of complex sinusoids.

When N is a power of 2, the Cooley-Tukey algorithm is a recursion which
at each stage puts the values of the input function F(x) where the index
x is even into one column vector of length N/2, and then puts the values
of the input function F'(x) where the index z is odd into another column
vector of length N/2. The DFT is then calculated for each of these two
column vectors, and the results are combined to produce the DFT of the
whole array of N inputs. This process is performed recursively, continuing
until only 2 x 2 matrices are left, which have computationally trivial Fourier
transforms. We can express this procedure as

G(j) = E(j) + e 2% 0(j)

. N . —omid .
G+ 5) = E() — eV O(j)
where E(j) and O(j) are the even-indexed inputs and odd-indexed inputs,

respectively.
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