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• A big beach-ball
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Introduction
• You’ll remember that we started out our analysis of pressure and temperature in the

kinetic theory by looking at a single particle velocity v.

• We then generalised this result to a large number of particles by taking either the
mean velocity 〈v〉 or more commonly the root-mean-square velocity 〈v2〉½, which
prevents the direction (either + vs – for vx or the direction in 3D space for a true vector
v) from making our result zero.

• The use of this average masks the actual behaviour of the particles in the gas, and it’s
easy to think that they all travel at the average velocity, but this is absolutely not the
case! The particles in the gas have a wide range of velocities from near zero to
several times the average.

So a good logical question is:

Suppose I pick a particle at random in my gas, what is its velocity likely to be?

• This is a question that Maxwell looked at in 1866. He derived what is known as the
Maxwell velocity distribution. It is sometimes also known as the Maxwell-Boltzmann
distribution, because Boltzmann added some contributions to Maxwell’s earlier work
when he developed much of statistical mechanics.
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What does the Maxwell distribution look like?
• The Maxwell velocity distribution (see below) is a plot of the probability density D(v)

on the y-axis as a function of the particle speed v on the x-axis, for a particular gas at
a particular temperature.

• The probability that a particle has a
precisely given speed is zero. Since there
are so many particles, their speed can
vary continuously over infinitely many
values, each particular speed has
infinitesimal probability (i.e., zero).

• Hence, the actual value of a distribution
function D(v) at a particular v isn’t very
meaningful by itself – it doesn’t even
have sensible units for a probability
(i.e., none), its units are 1/v or s/m. The
distribution function exists to be
integrated – to turn it into a probability
you need to integrate it over some range
of velocities or interval dv.
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Extracting the probability
• So, it’s more correct to ask, what is the probability that a particle has a velocity

between v1 and v2, and this probability is then given by:

• This is equivalent to an area under the distribution curve as shown below. Note that
you can make v1 and v2 arbitrarily close and for example integrate between v and v +
dv, but in the limit where dv goes to zero (i.e., you ask for a precise velocity), you get
back a zero (or infinitesimal) probability.
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So what is D(v)?

• The distribution function D(v) is given by:

• The derivation is rather complex, but for those interested, pages 242-246 in DVS are a
good place to start. One thing to note is that the factor at the front is a normalisation
factor to ensure that the total area under the curve (i.e., the probability of the particle
having any velocity) is equal to 1. In other words:
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• The Maxwell distribution is actually rather difficult to use, mostly because the integral
of the form x2 exp(−x2)dx cannot be solved analytically and requires instead either
computational techniques, or in certain limits, you can take an approximation to make
the integral analytical (for example, integrate x exp(−x2)dx instead when exp(−x2) >>
x2).
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Maxwell distribution in the limits of v

• Firstly, let’s look the limits v → 0 and v → ∞. In both cases D(v) drops to zero. In the v
→ 0 limit, exp(−v2) << v2 so the v2 term dominates and the fall-off is roughly parabolic.
In contrast, in the v → ∞ limit, exp(−v2) >> v2 so the exp(−v2) term dominates and the
fall-off is roughly exponential.



PHYS 2060
Thermal Physics

Three characteristic velocities
• We can also place three speeds on our distribution function.

• The first is the most probable speed vm.p. = (2kBT/m)½, which you can obtain by setting
the derivative of D(v) equal to zero and solving for v. The most probable speed vm.p.
coincides with the peak in the Maxwell distribution, which lies at D(v) = 0.59(m/kBT)½.

• The second is the average speed vav, which is the weighted average velocity:
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Three characteristic velocities
• We can also place three speeds on our distribution function.

• The third is the root-mean-squared velocity vrms, which we can obtain as the square-
weighted average:

• Note that this is the same result we got from the equipartition of energy, which is
reassuring, and is the average velocity of the particles in our gas. We find that vav is
13% larger than vm.p., and vrms is 22% larger than vm.p..
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Maxwell distribution vs mass and temperature
• There is one final thing to consider, and that is how D(v) varies with the two

parameters that we can control m and T.

• The behaviour of D(v) with m at constant T is shown above left – we find that
increasing m squashes the distribution to the left, raising the peak and lowering the
most probable, average and rms speeds.

• The behaviour of D(v) with T at constant m is shown above right - reducing T pushes
the distribution to the left, raising the peak and lowering the most probable, average
and rms speeds.

Maxwell Dist. Java Applet -
http://webphysics.davidson.edu
/physlet_resources/thermo_pap
er/default.html
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How can you measure the Maxwell distribution?
• The Maxwell distribution can be measured using a molecular beam deposition

technique, as done by Zartman and Ko in 1930-1934 using the apparatus below.

• The concept is fairly simple, the faster the molecule the closer to the clockwise side
of the glass slide that it is deposited, you can then use the deposition on the glass
slide to tell you the distribution of velocities of the molecules in the gas.

• For a more extended discussion of experimental measurement of the Maxwell
distribution, see pages 362 – 366 of SS.
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Introduction

• We’ve now discussed kinetic theory to the point of understanding the force of the
particles against a wall (pressure), their average kinetic energy (temperature), their
various excitations (equipartition of energy), and in the last lecture, the likely velocity
of a particle chosen at random (the Maxwell Distribution).

• In this lecture we’re going to start looking at the trajectories of a particle in a gas.

• While so far we’ve always assumed that the particles travel very long distances
between collisions in a straight line, this typically only happens at very low pressures
(i.e., at high vacuum P << 1 millionth of an atmosphere).

• At most normal pressures, a particle will travel a very short distance between
collisions with other particles in the gas. This leads to a number of interesting
behaviours, which will be the subject of the next 2 lectures. The first one that we’ll talk
about is the Brownian motion of larger particles suspended in liquids or gases.
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Some history behind Brownian motion
• The discovery of ‘Brownian motion’ is attributed to the botanist Robert Brown. In

1827, Brown noticed the irregular motion of pollen particles suspended in water, and
was able to rule out the motion being due to the pollen being ‘alive’ by repeating the
experiment using suspensions of dust in water. However, at the time, the origin of this
Brownian motion could not be explained.

• The first explanation of the mathematics behind Brownian motion was made by
Thorvald Thiele in 1880 (the mathematics of Brownian motion is important in fields
ranging from fractals to economics).
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Some history behind Brownian motion

• Finally, Jean Perrin carried out the first experiments to test the new mathematical and
theoretical models for Brownian motion, as we’ll see later. The results of this ended a
2000-year-old dispute (beginning with Democritus and Anaxagoras in ~500 B.C.)
about the reality of atoms and molecules.

• However, it was Albert Einstein who is widely acknowledged for putting together the
first physical understanding of Brownian motion in 1905. At the time, the atomic
nature of matter was still controversial, so understanding that Brownian motion was
due to the kinetic motion of particles was an important result. In fact, it was one of
two results that earned Einstein the Nobel Prize in 1921, and one of Einstein’s three
great discoveries in 1905.

• Brownian motion is also very important
in biology, where you have a lot of small
molecules and structures immersed in
water at ~300K, and is even used by
biological entities to move things
around. If you’re interested, see this
week’s reading “Making molecules into
motors” by R. Dean Astumian from
Scientific American.
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The concept
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The concept

• Imagine you are at the cricket. The crowd gets a bit bored so they pull out a large
beach ball and start bouncing it around. As you know, assuming someone isn’t
deliberately aiming it in some direction (like away from security), it will take a random
path through the crowd.

• If the ball is a few seat-areas away, it may seem that
the ball never seems to make it over to you. Instead, it
just wanders ‘around in circles’ near where it started,
travelling a long path but not travelling very far from
its origin.

• This is very similar to Brownian motion, but here the
ball only takes one hit at a time with some long
interval in between. In Brownian motion, the hits are
more frequent, so let’s extend our analogy a little
further.
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A big beach-ball
• Imagine that the beach-ball is actually really big, say 20 m in diameter (not 1 m in

diameter like the one in the picture last slide). This ball will be so big that many
people in the crowd can hit it all at once.

• If we now consider the force on it, 20 people might be pushing it to the left and 21
people might be pushing it to the right, so the forces to the left and right are
almost balanced and there is a small net force to the right, and the ball will take a
small step right. Next time, it might go another direction.

• The motion will be even more random now, one person might want to send it some
direction, but on average that will be cancelled out by all the other directions that
people are pushing it in, and so at each point the net force on the ball will be
random, and the strength and direction of the net force will depend entirely on the
balance of all the little pushes that it receives.

= Net force



PHYS 2060
Thermal Physics

Brown’s experiment – Pollen in water

• Returning to Robert Brown’s experiment in 1827 – the motion of pollen in water – the
physics is pretty much the same.

• A liquid is just a gas where the potential energy between the particles is comparable
to the kinetic energy of those particles (in contrast a gas has negligible potential
energy compared to the kinetic energy and the particles travel around freely between
collisions).

• So the particles of the liquid are all bouncing around (just very close to each other
and making lots of collisions with one another) and if we stick a piece of pollen in, we
get something very close to our beach ball analogy – a lot of water particles smacking
against the pollen particle and randomly pushing it around.

• The water particles are ~1 nm in size, and our pollen particle is ~ 1µm, about 1000
times bigger (given a fist is about 10 cm in diameter, this would mean a beach-ball
around 100 m in diameter!). So the pollen particle would receive a massive quantity of
little pushes (about 1014 per s) from all the water molecules bouncing against it, and at
any time the net force would be the balance of all these little pushes.
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Brown’s experiment – Pollen in water

• In the simulations, the pollen particle wanders about randomly, and each time, the
path is completely random and different. The one consistent thing is that as the
particle wanders around, the ‘spread’ of its path away from the starting point slowly
increases with time.

• So a very useful question to ask at this point is: After a given length of time, how far
away from its starting point is the particle likely to be? This is exactly the question
that Einstein and Smoluchowski asked in 1905.

• The experiments can be tricky (watching tiny particles for long periods under a
microscope) but we can quite easily see the behaviour of a particle undergoing
Brownian motion using simulations:

http://www.chm.davidson.edu/ChemistryApplets/KineticMolecularTheory/Diffusion.html

and

http://mutuslab.cs.uwindsor.ca/schurko/animations/brownian/gas2d.htm

• It’s also clear that the particle travels a much smaller distance than we’d expect if it
was just travelling along at its velocity.
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The drunken sailor problem
• This something commonly known as the ‘drunken

sailor problem’, which is where we’ll start our
analysis, and it goes like: A drunk sailor comes out of
a bar, but he is so drunk that as he staggers around,
each step at some arbitrary angle relative to the last
step, as shown below.

• Let’s bring some maths to bear on this. The sailor’s position after N steps is given by
the vector RN, which is the vector sum of all his individual vector steps L.

• This problem is much like you would have done for interference of light in 1st year –
we take a series of vectors, one for each step, line them up head to tail and work out
the vector sum of them all, which is RN.
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The drunken sailor problem

• Now the relationship between the RN and RN−1 is given by RN = RN−1 + L, where L is the
vector for the Nth step. So if we calculate RN squared, we get:

• Each time the system is different, so again our response is to average, and when we
do we get:

• Since the number of steps is proportional to time in this problem, the mean square
distance is also proportional to the time, so we can also write 〈RN

2〉 = βt, where β is a
constant that in part, will depend on the particle and the fluid it is in.
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because the angle between RN−1 and L is random and so 〈cosθ〉 = 0 and therefore
〈RN−1.L〉 = 0. And so by induction, we get:
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The square here is important!

• Something important to note here is that we’re talking about the mean square
distance, not the mean distance, being proportional to time.

If the mean distance was proportional to time then it would mean that the drifting is a
nice uniform velocity. Certainly not very drunken.

While the sailor is making sensible headway, he’s walking a lot further than he has to
because of the randomness of his walk. The mean square distance being
proportional to time is the key characteristic of what is called a ‘random walk’ –
something that is common from biology right through to economics.

• So what I’d like to do now is calculate β, because this is clearly the key to being able
to put numbers to how fast our particle moves due to the Brownian motion since β = 〈
RN

2〉/t.

We will do this with something called the Langevin equation.
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The Langevin equation

• What we have to do now, is something that we do a lot in physics (you will all have
done this many times in the mechanics course last session) – cook up an ‘equation of
motion’ and solve it to work out the dynamical behaviour. For example, with the
harmonic oscillator, the equation of motion is:

and we solve it to get x = x0 cos(ωt + φ). The first step in doing this is to consider the
various forces and motions involved in this new problem.

• Firstly, we’re going to start by considering this problem in 1D (i.e., 〈x2〉 = βt) and work
our way up to the 3D answer (i.e., 〈RN

2〉 = βt). We do this quite commonly in physics,
it’s a standard approach.
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• To come up with the equation of motion for this system, we need to think about how
the particle will react to an external force Fext. In this problem, there are two factors
involved.

(Advanced)
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The two factors

• Inertia: First, there is the usual inertia term m(d2x/dt2). Even though it won’t appear
explicitly, the mass m isn’t the mass as we’d normally think of it (i.e., the mass m
obtained by dividing the weight W by g). It’s an ‘effective’ mass that accounts for the
interaction between the particle and the fluid around it. You can see this as the mass
corrected so that the effect of the liquid moving around our pollen particle is buried in
the mass itself (this is separate from the drag, which we’ll deal with below).

This is a very similar concept to the effective mass of electrons in solids, where for
example, an electron in Si behaves like it has a mass ~1/4 of the free electron mass
due to its interaction with the Si crystal. In the limit of the fluid being a gas, the mass
m is the real mass of the real particle though. All that said, we don’t have to care too
much about m, it cancels out anyway.

• Drag: Second, if we put a steady pull on the object, there would be a drag on it, a
retarding force proportional to its velocity. In other words, besides the inertia, there is
a resistance to flow due to the fluid’s viscosity. This is a very important. It is
absolutely essential that there be some irreversible losses (called dissipation),
something like resistance, in order that there be random fluctuations. This is
something called the fluctuation-dissipation theorem. The origin of this drag force is
beyond this course, but it appears as α(dx/dt), where α is a constant that depends on
the particle and the fluid.

(Advanced)
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The equation of motion

• Bringing these two terms together, we get the total external force on our particle as:

This is our equation of motion and it’s something known as the Langevin equation.
The Langevin equation occurs quite a lot in fluid dynamics (due to the inertia and
drag terms) usually with variations of Fext and occasionally additional terms to
account for other forces.
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• We now need to solve the Langevin equation for 〈x2〉, which we will then generalise to
3D to get 〈R2〉.

(Advanced)
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Solving the Langevin equation for 〈x2〉

• How do we do this from the equation of motion (Eqn. 7.10)? If we realise that d(x2)/dt =
2x (dx/dt), then it’s clear that we can get somewhere if we multiply Eqn. 7.10 by x, to
get:

and then get the time average of x(dx/dt) by averaging the whole equation and
looking at the three terms individually.
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• xFx: We can kill this term by direction. This is a 1D problem right now, so both x and
Fx can be positive or negative. If the particle has just travelled x, since the force is
completely irregular then there is no reason why the force should be positive or
negative (and likewise if we travelled –x), and so the average will be the sum of an
equal number of x × Fx, –x × Fx, x × –Fx, –x × –Fx, which is just zero. Physically, this
just tells us that the impacts from all the water particles don’t drive the pollen in any
particular direction, as we would expect from observing it experimentally.

• So if we have 〈x2〉 = βt, then our goal will be to show that d〈x2〉/dt = β (i.e., a constant).

(Advanced)
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Solving the Langevin equation for 〈x2〉

• mx(d2x/dt2): We have to be a little more sophisticated here, and rewrite mx(d2x/dt2) as:

and then consider the average of the two terms. Starting with m d/dt(xv), xv has an
average that doesn’t change with time, because when it gets to some position, the
particle has no memory of where it was before, so this term is zero on average.
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• x(dx/dt):  We can rewrite 〈x dx/dt〉 as ½ d/dt〈x2〉, and so now we are in reach of our final
result. Eqn. 7-11 becomes:

The other term is 〈mv2〉 and it certainly isn’t zero because v is always parallel to itself.
Furthermore, we know from equipartition that ½ 〈mv2〉 = ½kBT (n.b., it’s a half here
because our problem is 1D! The factor of three will appear when we convert to 3D).
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Substituting our new terms:

(Advanced)
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Solving the Langevin equation for 〈x2〉

• We can rewrite Eqn. 7.14 as:

and then integrating:
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The same displacement will occur for the y- and z-directions, so 〈R2〉 = 〈x2〉 + 〈y2〉 + 〈z2〉
, and we get:
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which gives β = kBT/α, and so now we can actually now determine how far our
particles go.

• The one missing piece is α, which can be determined experimentally. For example we
can drop a large particle in the fluid and watch it fall under gravity and since we know
the force is mg, then α is just mg divided by the particle’s terminal velocity. Or if the
particle is charged, we can put it in a field and measure how fast it moves (remember
this next week) – but ultimately α isn’t something artificially cooked up, it’s something
real that we can actually measure.

(Advanced)
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Perrin’s experiment

• Perrin provided the experimental confirmation of Eqn 8-12 by looking at how dust
suspended in water behaved under a microscope. At the time, this was a very
significant experiment because it allowed one of the first measurements of
Boltzmann’s constant kB. Aside from knowing kB, this was important because in the
ideal gas law PV = nRT, we can measure R, and since this is equal to Avogadro’s
number NA times kB, we can kill two birds with one stone – we get kB and we get NA.

• Both may seem to be trivial constants, you’ve known them for
a while and you even get to measure kB in the 2nd year lab, but
in the early 1900s, this was nothing to be sneezed at. The
existence of atoms was still a hypothesis and NA was only
roughly known (i.e., to order of magnitude at best). Perrin
managed to obtain a very accurate number for NA and prove
beyond doubt the existence of atoms, and for this won he the
1926 Nobel prize in Physics.
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The Tyndall effect
• At this point it might seem that Brownian motion is all about small light particles in

liquids. But if the particles are light enough, it can also happen in gases. Some of you
will have seen this as light rays through a hazy or dusty sky, and if you see it inside a
building where the air is very calm (e.g., the OMB corridor around mid-morning in
mid-spring is ideal) you might even be able to see little dust particles ‘floating’ around
randomly as we’d expect.

• In the 1860s, another Irishman, John Tyndall was investigating light scattering in
liquids and gases. He was the first to explain why the sky is blue, which is due to
Rayleigh scattering of shorter wavelength light by particles. He used this knowledge
to develop a technique for distinguishing between solutions and suspensions based
on their optical scattering.
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• The Maxwell distribution provides the probability density D(v) as a function of velocity
for a particular gas and takes the form:

• The distribution itself isn’t too meaningful – it exists to be integrated and the
probability of having a velocity between v1 and v2 is given by the integral of D(v)dv
over v1 and v2, and graphically is the area under D(v) between v1 and v2.

• The distribution tails off parabolically as v → 0 and exponentially as v → ∞.

In the next lecture we will begin to think about the dynamics of the particles in our
gas a little more. We will talk about Brownian motion, which explains the motion of a
particle in a gas (or liquid) and how far it can ‘diffuse’ as a function of time.

Maxwell Distribution - Summary

• The weighted average velocity and r.m.s. velocity are 13% and 22% larger than the
most probable velocity, which coincides with the peak of the distribution function.

• As we increase m or decrease T, the Maxwell distribution ‘squashes’ to the left,
raising the peak and lowering the most probable, average and rms speeds.
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• Brownian motion is the random motion of a particle in a gas or liquid due to the force
imparted by collisions with the gas/liquid particles.

• The path of the particle is known as a ‘random walk’ and it is characterised as having
a mean squared displacement that is not only proportional to time, it is also
proportional to the square root of the number of steps taken up to that time.

• The equation of motion for this system is called the Langevin equation, it contains an
inertial term and a dissipative drag term, which is essential for obtaining random
fluctuations.

In the next lecture we will look further at collisions between particles in a gas or
liquid, but with more of a focus on how this is a mechanism for taking a system out of
equilibrium back to equilibrium.

Brownian Motion - Summary

• The mean square fluctuation goes as 〈R2〉 = 6(kBT/α)t. The term α can be measured
experimentally, and Perrin used observations of Brownian motion to make the first
accurate measurements of kB and NA.

• The Tyndall effect is the scattering of light by particles suspended in a gas or liquid.


