
%final writeup for algoirithms
\documentclass[12pt]{article}
\usepackage{graphicx, listings, fancyvrb}

\begin{document}

\title{Final Project: Make A Lisp}
\author{Nick Creel}
\date{May 5, 2019}

\maketitle

\section[Introduction]{What is Make-A-Lisp?}

Make-A-Lisp, also known as MAL, is an implementation of Lisp 
created by Joel Martin as a learning tool for writing 
programming languages. Anyone who is capable of following along 
with Martin's detailed step-by-step guide can create their very 
own lisp interpreter, a helpful thing for those of us trying to 
learn how to create our own programming languages. Jim and I 
stumbled upon MAL while searching for a suitable final project 
for my Programming Languages tutorial. 

\section{My Implementation}
\subsection{Picking a Language}

I chose to write my implementation of MAL in Javascript. I 
didn't really decide based on any particular feature of 
Javascript, but felt that I should probably write something in 
Javascript to build proficiency in the language. In the end, a 
lot of the common motifs of Javascript programming didn't come 
in handy, so it felt a lot like I was writing python with more 
curly brackets...and more confusing errors. 

\subsection{step 0}

MAL is unusual in that it does not provide the programmer with 
a EBNF describing the language. In a roundabout way, Martin 
avoids the topic of an EBNF by describing the functions that 



make up the lexer and the parser and in what order they should 
be called. For example, a function that parses lists must also 
analyze the atomic contents of the list. The final function 
called can be read as the terminal/atomic expression seen in an 
EBNF, which indicated when the left recursion of a context-free 
grammar should stop.

Step 0 of the implementation of MAL involves setting up a 
skeleton for the MAL REPL (read evaluate print loop). The basic 
structure is like so:

\begin{enumerate}
\item Take user input from console as string
\item pass user input to reader function (lexing and 

parsing)
\item once parsed, evaluate the code that the user provided
\item print the result of the evaluation, or any error 

messages
\item repeat

\end{enumerate}

Setting up the skeleton only involved setting up a series of 
functions that looks something like this:

\begin{code}
    PRINT(EVAL(READ(user\_input)))
\end{code}

At this point, the functions did nothing but immediately return 
the input that the user provided, so the REPL initially behaved 
like an echo function. 

\subsection{step 1}

\begin{wrapfigure}          
  \includegraphics[width=\linewidth]{$HOME/Pictures/
harvestmoon/drawthefuckingowl.png}



\end{wrapfigure}

Traditionally, when creating a compiler, the first two 
essential pieces that a programmer codes are the lexer and the 
parser. A lexer is a function/group of functions that reads 
user input, matches to a regular expression, and identifies 
different tokens in the input that are defined for the 
language. The lexer may also do a bit of pre-parsing by 
determining the type of each atomic token. 

Once the lexer generates tokens, it passes them on to the 
parser, which performs a process known as syntactic analysis, 
using the tokens as input and producing a syntax tree. A syntax 
tree forms based on the specification provided in the grammar 
of a language, recursing down through the user input until 
finding an atomic value.

In the Make-a-Lisp guide, Martin combines the role of lexer and 
parser into a "reader," presumably representing the R in REPL. 
The user input is matched to a provided Regular Expression that 
contains all of the tokens possible in MAL (tokenize()), then 
the matched tokens are immediately sent to another function 
(read\_form()). read\_form runs until all of the tokens have 
been seen, parsing lists and atoms (variables and numbers). 
When parsing a list, the read\_list function repeatedly calls 
read\_atom on the contents of the list, and read\_atom assigns 
a type to each token based on whether or not the item matches 
as a number or a variable. Because all lisp functions are 
wrapped in parenthesis, they are recognized as lists at this 
step. 

It is simple to combine the lexer and the parser with Lisp, 
because the way that Lisp is written immediately reflects its 
syntax. For example, to add two numbers, a lisp programmer 
would write something like

\begin{code}
(+ 1 2)
\end{code}



and the syntax tree would look like 

\begin{lstlisting}
          +
         /  \
        /    \
       /      \
  Int:1         Int:2
\end{lstlisting}

And, while evaluation typically follows parsing, Martin advises 
the programmer to create a print function that "pretty prints" 
the result of evaluation based on the type of thing being 
returned. I originally decided to use built-in Javascript types 
for this test, but realized that Javascript's types might not 
mean the same thing as the intended types for the MAL language. 
I have not defined the MAL types yet, but doing so would allow 
for greater flexibility with type definitions and correct 
evaluation of the user's input. 

\subsubsection[Synchronous vs Asynchronous]{My Javascript Woes}

Javascript is a programming language designed for the 
implementation of websites in a browser. Because of this, some 
of the required elements of a REPL that would be simple to code 
in another language required special consideration. For 
example, the built-in library readline sounds like it would be 
just the solution for accepting user input. readline even has a 
method ".question" which provides a prompt and accepts a 
response from the user. This assumes that the function is 
synchronous, or that the execution of the code depends on the 
sequence of the source, but this isn't the case with 
Javascript. 

For browser development, asynchronicity makes a lot of sense: 
often, a web page is expected to provide multiple functions to 
the user at once. Facebook allows users to scroll through their 
timeline while they message their friends, for example. If 



Facebook made every user wait for their timeline to load in 
order to send a message, most users would be frustrated by slow 
load times. 

Although Node allows users to run Javascript in their terminal, 
this is not the natural environment that Javascript's builtins 
depend on. Most visitors to websites do not interact with the 
website via the console, but through DOM elements that have 
particular event listeners attached to them. However, when 
Javascript is run using a CLI, there are no DOM elements that 
the event listener can attach to, and therefore no way to 
listen for events. Because of this, readline stalls when used 
to solicit input via the command line. 

Jim and I butt our heads against this problem for about an hour 
and a half before we realized that the asynchronous nature of 
readline was preventing the REPL from prompting the user. 
Thankfully, someone else out there tried to do something as 
silly as writing a REPL using javascript and rectified the 
problem by writing a readline-sync library. Even though this 
was a source of frustration that made me feel like I was "yak-
shaving," I did learn something new about Javascript and its 
applications.  

\section{Next Steps}

Logically, the next step to take would be to write the EVAL 
functions so that the REPL can actually interpret user input 
rather than simply echoing input back to the user. Having this 
happen properly would require defining MAL types that are 
distinct from Javascript types so that evaluation is coded 
correctly. I don't have much experience beyond writing a lexer 
and parser, and I wish I had gotten farther with this project, 
but fumbling around with Javascript took up more time than 
expexted. In the future, I might not use a language like 
Javascript to implement command line interactivity; it's 
awkward and feels a bit like forcing a square peg through a 
round hole. 



 \end{document}


