Verifying Concurrent Programs with VST

William Mansky

1 Introduction

As of version 2.1, VST includes support for verifying concurrent programs with user-
defined ghost state, as in modern concurrent separation logics. This document describes
how to use Verifiable C to prove the correctness of concurrent programs, using examples
from the progs folder that ships with VST. We will assume familiarity with the basics
of VST, as described in the VST manual.

2 Verifying a Concurrent Program with Locks

A concurrent C program a sequential C program with a few additional features. It may
create new threads of execution, which execute functions from the program in parallel,
but with a single shared memory: any data on the heap (including global variables
and malloced memory) can potentially be accessed by every thread. Threads can thus
communicate by passing values to each other through memory locations, and threads
may also synchronize, blocking each other’s control flow to ensure that operations happen
in a certain order. In Verifiable C, synchronization is provided by a lock data structure,
which supports functions acquire and release. Each lock in a program can be held by
at most one thread at a time; when a thread tries to acquire a lock that is not currently
available, it pauses its execution (“blocks”) until the lock becomes available. Locks can
be used to enforce mutual exclusion, ensuring that a memory location is only accessed
by one thread at a time. VST ships with a C header file threads.h that declares the
concurrency primitives (locks and thread creation), and should be #included in any
Verifiable C concurrent program.

The file progs/incr.c contains a simple concurrent C program. It has a global
integer variable ctr that is used as shared data, with two accessor functions: incr,
which increases the value of ctr by one, and read, which reads the current value of ctr.
These functions use the lock ctr_lock to synchronize access to ctr. This synchronization
is necessary because incr changes the value of ctr: if a thread tries to access a memory
location while another thread writes to that location, a data race occurs, leading to
unpredictable (formally, undefined) behavior. This is considered an error in C. This is
reflected in Verifiable C by the existence of shares, as described in section 44 of the
manual. A thread can only write to a memory location if it holds a sufficiently large
share of the location that no other thread can possibly read from it. If we want to

have a memory location that can be modified by multiple threads, we must move shares
between threads via locks, as described below. A consequence of this is that if we prove
any pre- and postcondition in Verifiable C for a program, we also know that as long
as the precondition is met, the program does not have any data races (just as proving
correctness of a sequential program also implies that it has no null-pointer dereferences).
In this section, we will focus on the verification of the incr and read functions, and
demonstrate how to prove correctness of programs with locks.

The proof of correctness for incr.c is in progs/verif_incr_simple.v. It has sev-
eral elements that do not appear in sequential Verifiable C proofs. First, it imports
VST.progs.conclib, a library of lemmas and tactics that are useful for concurrent pro-
gram verification. It then declares specifications for the built-in concurrency primitives
of VST. Their specifications are already defined in concurrency/semax_conc.v, so we
only need to associate them with their function identifiers. We will go through the
specifications of each concurrency primitive in the following sections; the concurrent
separation logic rules are summarized in Section 6.

The first thing we need to do to verify functions on ctr is to define a lock invariant,
a predicate describing the resources protected by the lock ctr_lock. A lock invariant
can be any Verifiable C assertion (i.e., mpred), subject to a condition described later.
In this case, the lock protects the data in ctr. We want to know specifically that ctr
always contains an unsigned integer value, so we use the lock invariant cptr_lock_inv £
EX z : Z,data_at tuint (Vint(Int.repr z)) ctr. We use the lock_inv predicate to assert that
a lock exists in memory with a given invariant: lock_inv sh p R means that the current
thread owns share sh of a lock at location p with invariant R. Shares of a lock can
be combined and split in the same way as shares of data_at, and any readable share is
enough to acquire or release the lock!.

Now we can give specifications to the functions that manipulate locks.

DECLARE _incr
WITH ctr : val, sh : share, lock : val
PRE []
PROP (readable_share sh)
LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)
SEP (lock_inv sh lock (cptr_lock_inv ctr))
POST [tvoid 1
PROP () LOCAL () SEP (lock_inv sh lock (cptr_lock_inv ctr))

DECLARE _read
WITH ctr : val, sh : share, lock : val
PRE []
PROP (readable_share sh)
LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)

!This contrasts with ordinary data_at, in which we need a writable share to write to a location;
multiple threads can try to acquire a lock at the same time, and the lock’s built-in synchronization will
prevent any race conditions.

SEP (lock_inv sh lock (cptr_lock_inv ctr))
POST [tuint]
EX z : Z,
PROP O
LOCAL (temp ret_temp (Vint (Int.repr z)))
SEP (lock_inv sh lock (cptr_lock_inv ctr))

These are surprisingly boring specifications! The read function needs to know that the
lock exists, and returns some number, about which we know nothing; the incr function
does even less, taking the lock_inv assertion and returning it as is. These are enough
to prove safety of the program, to show that it is a valid C program, but not enough
to learn much about what the program actually computes. This is a product of our
invariant: when a thread acquires the lock, the only thing it knows about the memory
it gains access to is that it satisfies the invariant. This is a well-known limitation of
basic concurrent separation logic, and it is generally solved using ghost state, which we
describe in Section 4. For now, we will describe how to prove safety for this program;
later we will see how the proof of correctness builds on the safety proof.

There is one more important step before we can prove that the counter functions
satisfy their specifications. In order to use a resource invariant, we need to show that it
is exclusive, i.e., that it can only hold once in any given state. This is represented in VST
by a property exclusive_mpred R = Rx R - FF. This allows us to know that if the current
thread holds the invariant, it also holds the lock. Fortunately, most common assertions
(e.g., data_at for a non-empty type) are exclusive, so we can fairly easily prove the desired
property ctr_inv_exclusive. It is useful to add this lemma to auto’s hint database via Hint
Resolve, so that the related proof obligations can be discharged automatically.

Now we can verify the bodies of read and incr, using the same Verifiable C tactics
that we would use for a sequential program. The only new element is the use of the
acquire and release functions, which allow threads to interact with locks and transfer
ownership of resource invariants. We interact with these functions using the ordinary
forward _call tactic. Their witnesses take three arguments: the location £ of the lock, the
share sh of the lock it owned by the caller, and the lock invariant R. Their pre- and
postconditions are as follows:

{!!readable_share sh A lock_inv sh ¢ R} acquire(¥) {R * lock_inv sh ¢ R}

{!!(readable_share sh A exclusive R) x R « lock_inv sh ¢ R} release({) {lock.inv sh ¢ R}

When we acquire the lock, we also gain access to the invariant; when we release the lock,
we must re-establish the invariant.

Consider the proof of body_read: we begin with the usual invocation of start_function.
We then use forward_call to process the acquire call, adding cptr_lock_inv to the SEP
clause. Unfolding its definition tells us that we now have access to ctr, and the integer
stored in it, which we introduce as z. We assign 2z to the local variable t, and then
release the lock. We use the lock_props tactic to discharge the exclusive obligation of
release automatically, so that we need only prove that the invariant holds again. In

this case, since have not changed the value of ctr, its value is still z. The return value of
the function is that same z, and the proof is complete. The proof of body_incr is almost
identical, except that at the call to release the invariant now holds at z + 1.

3 Thread Creation and Joining

Every C program starts its execution as a single-threaded program. It becomes concur-
rent when it calls an external function that spawns a new thread, such as with Verifiable
C’s spawn function. The spawn function takes two arguments: a pointer to a function
that the new thread should execute, and a void* that will be passed as an argument to
that function. The new thread begins execution at the start of the indicated function,
and continues to execute until it returns from that function; until then, it can assign
to local variables, perform memory operations, and call other functions just as a single-
threaded program would. Each thread has its own local variables, but memory is shared
between all threads in a program. In the current version of VST, the starting function
for a thread must take a single argument of type void* and return a value of type voidsx;
the value returned is ignored completely, so it will usually be NULL.
The separation logic rule for spawn is:

{P(y) * f : x. {P(x)}{emp}} spawn(f,y) {}

From the parent thread’s perspective, we give away resources satisfying the precondition
of the spawned function f, and get nothing back. Those resources now belong to the
child thread, whose behavior is invisible to all other threads; the postcondition of emp
reflects the fact that any resources held by the thread when it returns will be lost forever.

If we want to join with a spawned thread once it finishes, retrieving its resources
and learning the results of any computations it performed, we can do so with a lock,
which we can either pass as the argument to f or provide as a global variable. In
order to recover all the resources the thread owned, including the share of the lock
that we use for joining, we need to use a recursive lock, one whose invariant includes
a share of the lock itself. We can make such an invariant with the selflock function, as
we can see in the definition of thread_lock_inv, and use it with the lemma selflock_eq:
V@ sh p,selflock Q sh p = Q *>lock_inv sh p (selflock @ sh p).

In Verifiable C, functions that will be passed to spawn must have specifications of a
certain form, as in thread_func_spec:

DECLARE _thread_func
WITH y : val, x : val * share * val * val
PRE [_args OF (tptr tvoid)]
let ’(ctr, sh, lock, lockt) := x in
PROP (readable_share sh)
LOCAL (temp _args y; gvar _ctr ctr; gvar _ctr_lock lock;
gvar _thread_lock lockt)
SEP (lock_inv sh lock (cptr_lock_inv ctr);

lock_inv sh lockt (thread_lock_inv sh ctr lock lockt))
POST [tptr tvoid]
PROP () LOCAL () SEP ()

The WITH clause must have exactly two elements: one of type val that holds the ar-
gument passed to the function, and another that holds the entire rest of the witness,
usually as a tuple. We can then destruct the tuple inside the precondition to access
the rest of the witness. In the precondition, LOCAL must hold a temp for the argument
followed by zero or more global variables. The PROP and SEP clauses are unrestricted.
The postcondition must be completely empty, reflecting the separation logic rule for
spawn. In this example, the thread function takes a readable share of the lock protect-
ing ctr, along with the same share of a recursive lock for joining; the pointers to the
locks and to ctr are taken from global variables, while the argument to the function is
ignored entirely. The proof of this specification is straightforward until we reach the last
line, where the spawned thread releases its lock (using the release2 function, which is
specialized to recursive locks). At that point, we unroll the definition of selflock and
show that the invariant is satisfied by precisely all the resources held by the thread.

Verifying the main function, which spawns the thread, is more complicated. First,
we create the locks used by ctr and thread func, using the makelock function:

{!writable_share sh A ¢ Sy _} makelock(¥) {lock.inv sh ¢ R}

To make a location into a lock, all we need is a writable share of the location. We do
not need to know that the invariant R holds; we create the lock in the locked state, and
only need to provide R when we release it. This is particularly convenient for making
join-style locks, which are only released once (when the associated thread finishes its
computation). In Verifiable C, the location to be converted into a lock needs to point
to a memory block of the appropriate size, so the caller must provide the predicate
data_at_ sh tlock £.

Next, we divide the locks into shares: one for the spawned function, and one retained
by main. The file progs/conclib.v includes lemmas that for splitting shares into read-
able pieces: the key ones are split_readable_share (of which split_Ews is a special case) and
split_shares (which produces a list of shares of any desired length).

Next, we spawn the child thread using the forward_spawn tactic, a spawn-specific
wrapper around forward_call. Its general form is forward_spawn idarg w, where id is the
identifier of the function to be spawned, arg is the value of the provided argument, and w
is the rest of the witness for the spawned function. The tactic automatically discharges
the proof obligations of the spawn rule, leaving us to prove only the precondition of the
spawned function. In this example, we split off a share of each of the locks and provide
it to the spawned thread to satisfy the precondition of thread func, while retaining
the other share so that main can invoke the incr function in parallel with the spawned
thread.

Finally, we join with the spawned thread by acquiring its lock. Because the lock is
recursive, acquiring it allows us to retrieve the other half of both locks, regaining full

ownership. This allows us to deallocate the locks with calls to freelock (for the non-
recursive ctr lock) and freelock2 (for the recursive thread lock). We must hold a lock
in order to free it, as seen in the freelock rule:

{!(writable_share sh A exclusive R) * R x lock_inv sh ¢ R} freelock({) {R /¢ Sy -}

The freed lock converts back into an ordinary memory location, and we can store data
in it or convert it into a lock with a different invariant. In this example, we simply end
the program instead.

4 Using Ghost State

In the previous section, we proved that progs/incr.c is safe, but not that ctr is 2
after being incremented twice. To prove that, our threads need to be able to record
information about the actions they have performed on the shared state, instead of sealing
all knowledge of the value of ctr inside the lock invariant. We can accomplish this with
ghost variables, a simple form of auxiliary state.

In progs/verif_incr.v, we augment the proof of the previous section with ghost
variables and prove that the program computes the value 2. To do so, we use the new
ghost_var assertion: ghost.var sh a g asserts that g is a ghost name (gname in Coq)
associated with the value a, which may be of any type. We can split and join shares
of ghost variables in the same way as memory locations, but they are not modified by
program instructions. Instead, they can change by view shifts, which can be introduced
at any point in the proof of a program. Whenever a thread holds full ownership (Tsh)
of a ghost variable, it can change the value of the variable arbitrarily. For incr.c, we
will add two ghost variables, each tracking the contribution of one thread to the value
of ctr. We will divide ownership of each ghost variable between the lock invariant
and the related thread. By maintaining the invariant that ctr is the sum of the two
contributions, we will be able to conclude that after two increments, the value of ctr is
2.

4.1 Extending the Specifications

Previously, the lock invariant for the ctr lock was
EX z : Z,data_at tuint (Vint(Int.repr z)) ctr

Now, we want to augment it with shares of two ghost variables. For our convenience,
conclib.v defines shares gshl and gsh2 that are readable halves of the total share Tsh.
So our new invariant will be

EX z: Z,data_at tuint (Vint(Int.repr z)) ctr *
EXz:Z,EXy:Z N (z=x+y) && ghost_var gshl x g1 * ghost_var gshl y g2

The thread that holds the other half of g1 or g2 can thus record its contribution to ctr,
but can only change that contribution while holding the lock, and only while maintaining
the invariant that z = = + y.

Next, we modify each specification to take the ghost variables into account. Our
specification for incr now needs to know which ghost variable the caller wants to incre-
ment, so it takes a boolean left telling it whether we are looking at the left (g1) or right
(92) ghost variable. (In Section 4.3, we will generalize this to allow the caller to pass
any gname from a list.)

DECLARE _incr
WITH ctr : val, sh : share, lock : val,
gl : gname, g2 : gname, left : bool, n : Z

PRE []

PROP (readable_share sh)

LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)

SEP (lock_inv sh lock (cptr_lock_inv gl g2 ctr);

ghost_var gsh2 n (if left then gl else g2))

POST [tvoid 1

PROP ()

LOCAL O

SEP (lock_inv sh lock (cptr_lock_inv gl g2 ctr);

ghost_var gsh2 (nt+1) (if left then gl else g2)).

Holding one of the ghost variables is not enough to guarantee anything about the
value returned by read, but if we hold both of them, we should be able to predict the
result.

DECLARE _read
WITH ctr : val, sh : share, lock : val,
gl : gname, g2 : gname, nl : Z, n2 : Z
PRE []
PROP (readable_share sh)
LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)
SEP (lock_inv sh lock (cptr_lock_inv gl g2 ctr);
ghost_var gsh2 nl gl; ghost_var gsh2 n2 g2)
POST [tuint]
PROP ()
LOCAL (temp ret_temp (Vint (Int.repr (nl + n2))))
SEP (lock_inv sh lock (cptr_lock_inv gl g2 ctr);
ghost_var gsh2 nl gl; ghost_var gsh2 n2 g2).

Finally, we add ownership of ghost variable g1 to the resources passed to thread_func
(and collected by its lock when it terminates):

DECLARE _thread_func

WITH y : val, x : val * share * val * val * gname * gname
PRE [_args OF (tptr tvoid)]
let ’(ctr, sh, lock, lockt, gl, g2) := x in
PROP (readable_share sh)
LOCAL (temp _args y; gvar _ctr ctr; gvar _ctr_lock lock;
gvar _thread_lock lockt)
SEP (lock_inv sh lock (cptr_lock_inv gl g2 ctr);
ghost_var gsh2 0 gi;
lock_inv sh lockt (thread_lock_inv sh gl g2 ctr lock lockt))
POST [tptr tvoid]
PROP () LOCAL () SEP Q).

The value of g1 starts at 0, and should be 1 by the time the thread terminates, as
reflected in thread_lock_R.

4.2 Proving with Ghost State

The proof for incr begins in the same way as before: we acquire the lock, unfold the
invariant, and introduce the variables z,y, and z. This also gains us gshl shares of
both ghost variables. The code that reads and increments ctr proceeds in the same
way as before; even though the value of ctr has increased, the ghost variables are not
yet updated. We do the update after the increment, but in fact we are free to do it
anytime between acquiring and releasing the lock: the relationship between the values
of the ghost variables and the real value in memory is part of the lock invariant, so we
can break it freely while the lock is held, as long as we restore it before calling release.

When we are ready, we gather together all the shares of ghost variables that we
hold, and use the new viewshift_SEP tactic to update the ghost variables. This tactic is
analogous to replace SEP, but it adds a modifier that we have not seen before: instead
of proving P F+ @, we instead prove P = @ (written as P |-- |==> Q in ASCII).
This view shift relation includes the ordinary derives relation, but also has a number of
special rules that allow us to modify ghost state?. Of particular interest here is lemma
ghost_var_update, which says that ghost_var Tsh v p = ghost_var Tsh v/ p. As long as
we have total ownership of a ghost variable, we can change its value to anything of the
same type.

The call to viewshift_SEP here does several things at once. First, we pick out the other
half of the ghost variable that was passed to the function (i.e., if left then g1 else g2) and
join them together. We use the lemma ghost_var_share_join’, which tells us that we can
join two ghost_var assertions with compatible shares, and learn that they agree on the
value of the variable in the process: if we are updating gl then x = n, and if we are
updating g2 then y = n, where n is the value of the ghost variable provided by the caller.
We then use the lemma bupd_frame_r to frame out the unused ghost variable from the

2Formally, the view shift operator allows us to perform any frame-preserving update on ghost state,
i.e., any change that could not invalidate any other thread’s ghost state. We will discuss this idea further
in Section 5.

view shift, and finally apply ghost_var_update to change the value of our ghost variable
from n to n + 1.

Once this operation is complete, we have reestablished the lock invariant: the value
of ctr has been changed from z to z+1, and exactly one of = and y has been incremented
to match. Because the frame depends on whether we passed in gl or g2, we instantiate
it before doing the case analysis on left; other than that, the proof is straightforward.

The proof of correctness of read is similar, but we do not need to do a view shift:
instead, we use an ordinary assert_ PROP to join the shares of both ghost variables, so
that we know exactly the values of both and y (and thus z). The only change we need
to make to the proof for thread func is to pass the extra arguments to incr, telling it
that we are the thread holding gl and its starting value is 0. The remaining interesting
change is in the proof of main, where we need to create the ghost variables that we use
in the rest of the program. We do this using a ghost_alloc tactic that takes the ghost
assertion we want to allocate without its gname; the tactic allocates a new gname at
which the assertion holds, which we can then introduce as usual with Intro. Once we
allocate the two ghost variables with starting value 0, we can then incorporate them
into the lock invariants when we call makelock, and the rest of the proof proceeds as
before. When we spawn the child thread, we pass it the gsh2 share of ghost variable g1
along with the shares of the locks, as its precondition now requires. When we reclaim its
share of the ghost variable and call read, we can now use our half-shares of both ghost
variables with value 1 to conclude that the value of t is 2.

4.3 Generalizing to N Threads

The structure of the ghost state in the previous program limited the number of threads
accessing the counter to two. We could pass the ghost variables between threads to
enable more than two threads to call incr, but no more than two threads could hold
ghost variables at a time, since there were only two ghost variables. In this section, we
show how we can make the counter agnostic to the number of ghost variables, extending
this limit to an arbitrary V.

The code in incrN. c makes a few additions to incr.c. The counter has initialization
and destruction functions init_ctr and dest_ctr, making the counter more of an inde-
pendent data structure. (We could now move ctr, ctr_lock, init_ctr, and dest_ctr to
a separate file from thread func and main.) The main function now spawns N threads,
each with its own lock, each executing thread func to increment the counter by 1.
Once main has joined with all the threads, it reads the final value of ctr, which we
expect to be equal to N. Note that none of the counter functions take N as an argument:
the number of threads will be a parameter to their specifications, but does not affect
the computations they perform, so we could use the counter in multiple programs with
different numbers of threads.

To adapt our specifications to N threads, we first generalize the counter lock’s in-
variant to take a list of ghost variables lg. The counter value z will then be the sum of

the values of all the ghost variables:

EX z : Z,data_at tuint (Vint(Int.repr 2)) ctr x
EX v :list Z,!/(z = sum lv) && ®geig,vew ghost_var gshl v g

(In Coq, we can write iterated separating conjunction over a list with iter_sepcon, or
over two lists with iter_sepcon.) The specifications for the previously existing functions
are modified accordingly, taking an index ¢ into the list of ghost variables to indicate
which variable will be used to record the calling thread’s operations (and thread _func
now takes as its argument the lock it should use to join). The specification for the new
function init_ctr takes the number N of simultaneous threads to support; although N
does not appear in the body of the function, in the specification we need to know how
many ghost variables to create.

DECLARE _init_ctr
WITH N : Z, ctr : val, lock : val
PRE []
PROP (0 <= N)
LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)
SEP (data_at_ Ews tuint ctr;
data_at_ Ews tlock lock)
POST [tvoid]
EX 1g : list gname,
PROP (Zlength 1lg = N)
LOCAL O
SEP (lock_inv Ews lock (cptr_lock_inv 1lg ctr);
iter_sepcon (ghost_var gsh2 0) 1lg).

After the call, ctr is protected by its lock with the invariant, and N ghost variables
have been initialized to 0 (as, by implication, has ctr itself). Destructing the counter
does the same thing in reverse:

DECLARE _dest_ctr
WITH 1g : list gname, 1lv : list Z, ctr : val, lock : val
PRE []

PROP ()

LOCAL (gvar _ctr ctr; gvar _ctr_lock lock)

SEP (lock_inv Ews (gv lock) (cptr_lock_inv lg ctr);

iter_sepcon2 (fun g v => ghost_var gsh2 v g) 1lg 1lv)

POST [tvoid]

PROP ()

LOCAL ()

SEP (data_at Ews tuint (vint (sum 1lv)) ctr;

data_at_ Ews tlock lock).

10

The dest_ctr function retrieves the free shares of all N ghost variables (N = length Ig,
so it does not need to be passed explicitly), and frees the lock, guaranteeing that the
current value of ctr is the sum of the values of the ghost variables.

The proofs for incr and thread_func are almost unchanged from the previous ver-
sion. The proof of init_ctr is similar to that of the beginning of main, allocating the
ghost variables (we use the ghosts_alloc tactic to make a list of N ghost variables) and
showing that the lock invariant holds in the initial state. In dest_ctr, we acquire and
free the lock and then use the same sort of ghost variable reasoning as in read to show
that the list of values associated with the ghost variables inside the lock invariant is the
same as the list of values passed in by the caller (and therefore the value of ctr is equal
to the sum of that list). At the end of the function, we deallocate the ghost variables:
because they are not connected to real memory, we can eliminate them at any time with
a view shift.

The proof of correctness of the modified main is slightly more complicated than
before, illustrating common patterns for reasoning about programs that spawn several
threads performing the same operations. We begin by calling init_ctr to make the
counter lock and the ghost variables. Because each thread needs to know about the
counter lock, we use the split_shares lemma to divide Ews into IV + 1 pieces, one for
each spawned thread and one retained by the parent. In the first loop, we give each
thread its resources: a share of the counter lock, a ghost variable, and half of a thread
lock for joining. In doing so, we gradually use up the data in the thread lock array
by converting it into lock_inv assertions. We use sublist ¢ N to describe the list of
remaining shares/ghost variables at the ith iteration; by the end of the loop, i = N and
all shares and ghost variables have been given away. In the second loop, we reverse the
process, joining with each thread and reclaiming shares and ghost variables—but since
each thread we join with has completed its body, each ghost variable now has a value
of 1 instead of 0. So when we call dest_ctr, we know that the final value of ctr is the
sum of a list of IV 1’s, which simple arithmetic tells us is equal to V.

5 Defining Custom Ghost State

5.1 The Structure of Ghost State

The ghost variables of the previous section are a special case of a much more general
ghost state mechanism. In fact, any Coq type can be used as ghost state, as long as we
can describe what happens when two elements of that type are joined together. To do
S0, we create an instance of the Ghost typeclass. A number of instances can be found
in progs/ghosts.v. An instance of the Ghost typeclass is a separation algebra with
associated join relation, with an additional valid predicate marking those elements of
the algebra that can be used in assertions. For instance, ghost variables of type A are
drawn from the separation algebra over the type option (sharex A), where valid elements
have nonempty shares. An element Some(sh,a) represents a share sh of value a, and
None represents no ownership or knowledge of the variable. Two Some elements join by

11

combining their shares, but only if they agree on the value; a None element joins with
any other element and is the identity.

Every ghost state assertion is a wrapper around the predicate own g a pp, where g
is a gname, a is an element of a Ghost instance, and pp is a separation logic predicate?.
For instance, ghost_var sh v g is defined as own g (Some (sh,v)) NoneP. (For most kinds
of ghost state, pp will be the empty predicate NoneP, but its inclusion also allows us to
create higher-order ghost state, in the style of Iris [1].) The own predicate is governed
by a few simple rules:

valid a
emp = EX g : gname,own g a pp

own_alloc

join al a2 a3
own g a3 pp = own g al pp xown g a2 pp

own_op

own_valid_2

own g al pp xown g a2 pp =!1(Ja3,join al a2 a3 A valid a3)

fp_update a b
own g a pp = own g b pp

own_dealloc

own_update

own g a pp = emp

Of these rules, own_alloc and own_dealloc let us create and destroy ghost state, own_op
lets us split and combine it according to its join relation, own_valid_2 tells us that any
two pieces of ghost state that we hold at the same gname are consistent with each
other, and own_update_ND lets us do frame-preserving updates to our ghost state: we
can change its value arbitrarily as long as this does not invalidate any other piece of
the same ghost state that might be held by another thread. Formally, fp_update a b £
Ve, (3d, join a ¢ d A valid d) — (3d, join b ¢ d A valid d).

The frame-preserving updates allowed by the join relation of each kind of ghost state
determines what the ghost state can be used for. For instance, two pieces of a ghost
variable only join if they have the same value; thus we can only change the value of a
ghost variable when we have all its shares, because then we know that no other thread
is restricting its value. Some ghost constructions allow smaller or older values to join
with larger or newer ones, so that we can change a value without needing to update the
records of all parties; others have extremely restrictive joins that ensure that a piece
of ghost state belongs to only one thread at a time. Most concurrent programs can be
verified with some combination of the types of ghost state defined in ghosts.v, but we
are always free to define new Ghost instances for more complicated patterns of sharing
and recording.

3More accurately, pp is of type preds, a dependent pair of a type signature (possibly including mpred)
and a value of that type. This construction is used to embed predicates inside ghost state (as well as
function pointers, lock invariants, etc.), which in turn can be the subject of predicates, without circular
reference issues.

12

5.2 Example: incr with Unbounded Threads

We can put custom ghost state to use in generalizing the incr example still further. In
Section 4.3, each time we initialized the counter, we chose a bound N on the number of
threads that could access the counter simultaneously, and made N ghost variables for
that purpose. But in fact, the value of the counter has nothing to do with which threads
accessed it—each call to incr increments its value by 1, regardless of which thread calls
incr or how many other threads have access to it. We should be able to track the
counter’s value with a single piece of ghost state that simply accumulates the number of
calls to incr. In this section, we will define custom ghost state to do exactly that.

We begin by declaring an instance of the Ghost typeclass. A Ghost instance has
three fields: a carrier type G, a predicate valid on G, and a join relation Join_G. It
also has three proof obligations: it must be a separation algebra and a permission
algebra, and validity of an element must imply validity of its sub-elements according to
Join_G. To be a permission algebra, the join predicate must be functional, associative,
commutative, and non-decreasing; to be a separation algebra, it must support a function
core : G — @G that, for each element, gives a unit for that element. These are not
fundamental requirements for ghost state in general, but VST expects them to hold of
the heap, and so it is convenient to impose them on ghost state as well.

For our example, we want to count the number of incr calls in two places. First, each
time a thread calls incr, it should record that it has made a call. Second, the counter’s
lock invariant should record the total number of calls made, since that should also be
the value of the counter. If we omit the latter record, then our ghost state will count the
number of calls made, but there will be nothing to connect this number to the value of
ctr. This is a common pattern for ghost state, which we call the reference pattern: each
thread holds partial information describing its contribution to the shared state, and the
shared resource holds a “reference” copy that records all of the contributions. We provide
a function ref _PCM that makes such a reference structure for any Ghost instance. An
element of ref_PCM is a pair of an optional contribution element ghost_part sh a and an
optional reference element ghost_reference r, where a and r are drawn from the underlying
Ghost instance, and sh is a nonempty share. To join two elements, we combine the shares
and values of the contributions (if any), and require that the elements contain at most
one reference between them (ensuring the uniqueness of the reference value). When a
contribution element has the full share Tsh, it is guaranteed to be equal to the reference
element, since this means we have collected all of the contributions. In general, we start
by creating an initial contribution element and reference element, store the reference in
the invariant of the shared data, and divide the contribution element into shares that we
distribute to each thread. The contribution elements then record all the contributions
of every thread, and when we rejoin them at the end of the program we learn exactly
what all threads have done collectively and can deduce the state of the shared data. We
will work this out in detail in the rest of the example.

The underlying Ghost instance for the increment program is simply a nat recording
the number of calls to incr. The join operation for the ghost is addition, and all numbers
are valid. This sum_ghost instance is then passed to ref_PCM to make the part-reference

13

ghost state we need. We also define some local definitions for the kinds of ghost state
we expect to use: partial contributions, reference state, and the combination of both.
(Using these definitions, which specialize the parametric definitions in ghosts.v to the
sum_ghost instance, allows us to avoid relying on Coq to find the right Ghost instance
for our ghost assertions.)

Now that we no longer have a list of ghost variables, the specifications for most
functions are simpler. init_ctr gives us a contribution ghost with full share and value
0, and dest_ctr guarantees that the value of ctr is exactly the value of the total
contributions of all threads. The incr and thread_func functions no longer need indices;
they simply take any arbitrary ghost part and increase its value by 1. Since all the parts
will be summed to determine the value of the counter, this precisely reflects the fact
that incr increases the counter by 1.

Proving the correctness of our new specs involves correctly manipulating our new
kind of ghost state. We allocate the ghost state in init_ctr, as a combination of
total information (Tsh,0) and reference element 0. This time, ghost alloc leaves us
with a subgoal: we need to show that our initial element is valid. For a ref_PCM
instance, this means that the share of the thread contributions is nonempty (which Tsh
is) and the contributions are completable to the reference element—i.e., there exists
some remaining contribution that could join with the existing contributions to make the
reference element. When the share is total and the two elements are equal, this is easy
to prove. Now, when we release the counter lock, we establish its invariant by separating
the reference copy from the contributions and giving it to the lock.

Conversely, in dest_ctr, we must relate the total contributions to the value of the
counter. The calling thread passes in a total contribution element ghost_part(Tsh,v),
and from the lock invariant we receive ghost_ref(z), where z is also the value of ctr.
Given these two pieces, we can use the lemma ref_sub (which is derived from the validity
rule own_valid_2 of general ghost state) to conclude that z = v, exactly as desired. (Note
how much simpler this proof is than that of the previous section, in which we needed to
prove that each ghost variable in the list had the same value in the thread as it did in
the lock invariant.)

The last major change in the proofs is in incr, in which we want to simultaneously
add 1 to a contribution element and the reference element. To do this, we need to show
that this addition is a frame-preserving update. Fortunately, ref PCM comes with a
lemma ref_add for doing just this kind of update: we can add on any piece of ghost state
to both the contribution and the reference, as long as it is safe to add to any element
between the contribution and the reference. In sum_ghost, it is always safe to add 1 to
any element, so this is easy to prove. In general, when we define a new kind of ghost
state, we will prove lemmas describing its common forms of frame-preserving update; in
the absence of these lemmas, we can use the generic own_update rule and work with the
definition of frame-preserving update directly.

The remaining proofs (of thread func and main) are very similar to those in the
previous section. In main, we need to split off shares of the ghost contribution for each
thread instead of giving away a ghost variable, and rejoin the shares when we join with

14

the threads. Thanks to our simpler ghost state, we can easily track the fact that we
have seen total contributions of ¢ after joining with ¢ threads, and quickly conclude that
after joining with all N threads the value of t is N.

6 The Rules of Concurrent Separation Logic

6.1 Lock and Thread Functions

These specifications can be found in concurrency/semax_conc.v.

{!!writable_share sh A ¢ KUN _} makelock(¥) {lock_inv sh ¢ R}

{!readable_share sh A lock_inv sh ¢ R} acquire({) {R xlock_inv sh ¢ R}
{!!(readable_share sh A exclusive R) x R « lock_inv sh ¢ R} release({) {lock.inv sh ¢ R}
{!!(writable_share sh A exclusive R) * R * lock_inv sh ¢ R} freelock({) {R* ¢ Sy -}

{P(y) « f :x. {P(x)}{emp}} spawn(f,y) {}

6.2 Ghost Operations

These rules can be found in ms1/ghost_seplog.v.

own_alloc valid a
emp = EX g : gname,own g a pp
join al a2 a3
own_op

own g a3 pp =own g al pp xown g a2 pp

own_valid_2

own g al pp xown g a2 pp =!1(Ja3,join al a2 a3 A valid a3)
fp_update_.ND a B
own g a pp = EX b,!!/(B b) && own g b pp
fp_update a b
own g a pp = own g b pp

own_dealloc

own_update_ND

own_update

own g a pp = emp

References

[1] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost
state. In Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, pages 256-269, New York, NY, USA, 2016. ACM.

15

