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1 Terminology and Notation

• “Prosets” are preordered sets; “preorders” are relations. This is strictly
analogous to “poset” and “partial order”.

• Ω is the poset of truth values, with implication as the ordering.

• Because most of the prosets we are interested in are those that serve as
algebras of assertions/propositions, we will typically write P ` Q rather
than P ≤ Q.

2 Background on optics

Fix the following ingredients:

• Categories C and D.

• A monoidal category M.

• Actions of M on C and D; i.e., strong monoidal functors L :M→ [C, C]
and R :M→ [D,D], where the codomain functor categories have functor
composition as their monoidal product. For M ∈ M, A ∈ C, we will
typically denote L(M)(A) by M ·A; we will also denote R this way unless
it is vital, and otherwise impossible, to distinguish L and R.

One of the simplest examples of this set of ingredients is when C, D, and M
are all the same category, and L,R : M → [M,M] are both the “left regular
action” A · B = A ⊗ B. The simplest example is when this is specialized to
the category Set with the cartesian monoidal product. In the general case, we
think of the objects of M as encoding various kinds of “contexts” that we can
extend objects of C or D with, and of the actions as the means of performing
this extension. In this example, a “context” is just a set, and to extend a given
set A using a context M is to take the product M × A, so that elements of
the extended set now carry extra data. In the general case, the fact that M is
required to be monoidal and L,R are required to be strong monoidal functors
means that extending by a context N and then by another context M is the
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same as extending by some “nested context” M⊗N—M ·N ·A ∼= (M⊗N)·A—so
that we can see any series of extensions as a single large one. The fact that the
action is by functors means that we can lift morphisms through extension-by-
contexts: A→ B to M · A→M ·B. In a concrete category, where morphisms
are special functions, this means something like (in programming terms) “we
can map over the original type within the context”.

Given the above ingredients, we define a category OpticRL . Its objects are
pairs (S ∈ C, T ∈ D). The hom-sets are defined by a coend:

OpticRL((S, T ), (A,B)) =

∫ M∈M
C(S,M ·A)×D(M ·B, T ). (1)

Remembering that this is a particular quotient of the disjoint union⊔
M∈M

C(S,M ·A)×D(M ·B, T ),

an optic (S, T ) → (A,B) is an equivalence class of pairs of a C-morphism
open : S → M · A and a D-morphism close : M · B → T , with each pair
allowed to use any M ∈ M. Under the interpretation of objects of M as “con-
texts”, any representative of this equivalence class is a means of first dissecting
S into A extended by some kind of context, hence possibly allowing some kind
of transformation from A to B within the context, and then subsequently re-
constituting the M · B into a final T . The equivalence imposed by the coend
then enforces that all usage of optics must be “parametric” (more accurately,
extranatural) in the particular M provided, by identifying together (open, close) wait, is that

right?pairs that differ only by “what context they provide”, rather than by “what the
provided context is extending”.

write down
the coend
quotient ex-
plicitly?

In the above-mentioned case of C = D = M = Set with L(M) = R(M) =
M×−, this gives us lenses. If we instead equipM = Set with + as its monoidal
product and use L(M) = R(M) = M +−, we get prisms.

Discuss composition of optics!

In the applications we discuss, we will be mostly interested in prosets. If we
view the poset Ω as a thin category, and equip it with ∧ as a monoidal product,
we can identify prosets with Ω-enriched categories. This turns out to give the
right specialized-to-prosets version of notions such as presheaves, coends, and
profunctors—and the proset version of these notions may be nontrivially differ-
ent! This tends to arise in colimit-like situations, because colimits in Ω work
differently from in Set—e.g., > ∨ > = >, while 1 + 1 6∼= 1.1 As an example
of the impact this has: Colimits of presheaves are computed pointwise, so if
X is a non-empty proset, then 1 + 1 6∼= 1 in PSh(X) (the category of ordinary
presheaves), but 1 + 1 ∼= 1 in PShΩ(X) (the category of Ω-enriched presheaves).

In this setting, if we have prosets C,D, a monoidal proset M, and strong
monoidal monotone functions L : M → [C, C], R : M → [D,D], then we can
form an optic proset.2 Working Ω-enriched, the definition (1) reduces to Should still

work out
a concrete
example!

1In more detail, the subsingletons are not a coreflective subcategory of Set.
2Note that this is not in general the same as the optic category that results from interpreting
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(S, T ) `OpticR
L

(A,B) ⇐⇒ ∃M ∈M. S `C M ·A ∧M ·B `D T. (2)

Thus, when Ω-enriched it becomes slightly less meaningful to talk about “an
optic”—rather, the question becomes whether a particular inequality/entailment
holds in the optic proset.

3 Basic Optics for Separation Logic: Ramifica-
tion

3.1 Optics for the Left Regular Action

The description of what (the above formulation of) an optic allows—decomposition
into a subpart extended by an abstracted context, manipulation of the subpart,
and then reconstitution to a modified whole—applies well as a description of
how a number of separation logic reasoning techniques operate on knowledge of How strong

of a claim
do I want to
make here?

program state. Indeed, some of these techniques can be shown to fit within the
framework of optics!

Fix a separation logic that admits typical intuitionistic propositional logic
and includes −∗. The assertions of the logic form a proset under `; call this
proset S. S is bicartesian closed, and it is symmetric closed monoidal under
(∗, emp,−∗). Wait, emp

being a unit
is not a uni-
versal as-
sumption!

We start by considering the simplest kind of optics involving S. First, for
any monoidal proset M, define the left regular action LRegM :M→ [M,M]
ofM on itself to be (as previously discussed) LRegM(A) = A⊗−. We can then
form an optic proset with C = D =M = S and L = R = LRegS . We will call
this proset RamS , because it gives rise to ramification as in “The Ramifications
of Sharing in Data Structures”. By the simplified coend formula (2), we have cite

(S, T ) `RamS (A,B) ⇐⇒ ∃M ∈ S. S `M ∗A ∧M ∗B ` T.

We can correspond this to a particular separation logic entailment:

(S, T ) `RamS (A,B) ⇐⇒ S ` (B −∗ T ) ∗A, (3)

which is recognizable as the premise of the ramify rule. This equivalence is not
hard to prove directly, but it is also an instance of a more general phenomenon
whereby optics can have “concrete representations” as morphisms in C. In
particular, if we have some C,D,M, L,R, some (S, T ), (A,B) ∈ OpticRL , and
the functor − · B :M→ D admits a right adjoint RB : D →M, then there is
a chain of isomorphisms cite riley—

this is lifted
directly
from p31 w/
just small
tweaks!

the ingredients above as ordinary categories, because that optic category need not be thin—
this optic proset can be acquired as the quotient of that category which identifies together all
parallel morphisms.
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OpticRL((S, T ), (A,B)) =

∫ M∈M
C(S,M ·A)×D(M ·B, T ) (definition)

∼=
∫ M∈M

C(S,M ·A)×M(M,RB(T )) (adjunction)

∼= C(S,RB(T ) ·A) (Ninja Yoneda lemma). (*)

In the RamS case, we have (−·B) = (−∗B) a (B −∗ −). Setting RB = (B −∗ −)
in (*) and otherwise instantiating it with the machinery associated to RamS ,
we recover (3). This is perhaps fancier than necessary for a single simple case,
but recognizing its applicability to many kinds of optics will subsequently be
useful.

3.2 Tambara Modules and Applying Optics to Hoare Triples

The derivation of the ramify rule from the frame rule, too, can be seen as a
case of a more general phenomenon. First, we will need yet another represen-
tation of optics, in terms of Tambara modules.

This representation can be motivated by switching perspectives on what hav-
ing a given optic fundamentally enables us to do, from a step-by-step viewpoint
to a big-picture one. If we have some “transformation from A to B” or “relation-
ship between A and B” which can be be used even when A and B are extended
by some additional context M ∈M, then an optic (S, T )→ (A,B) allows us to
lift to a “transformation” or “relationship” of the same kind between S and T .3 This foot-

note is
slightly
bullshit—
need to note
that the 2nd
argument
has flipped
variance.

As a fairly literal example, whenever C = D and L = R—such as in the case of
lenses or RamS—ordinary morphisms are just such a kind of “transformation”:
whenever f : A → B, we can extend to L(M)(f) : M · A → M · B.4 More
generally, Tambara modules are the appropriate formalism for “some notion of
transformation or relationship which can be used even within contexts”, and so
optics turn out to correspond to natural “lifting operations” that operate on
any Tambara module.

Any sources on mixed Tambara modules, or am I gonna have to double
check for myself that the arguments still go through?

Formally: Recall that a profunctor P : D −7−→ C is a functor P : Cop×D → Set;
or equivalently, by swapping the arguments and currying, a functor P ′ : D →
[Cop,Set] = PSh(C).5 A particular such profunctor fixes, for our purposes, a
concept of “transformation” or “relation” from objects of C to objects of D: for
A ∈ C, B ∈ D, we can view P (A,B) as a “generalized hom-set”—the set of “het-
eromorphisms” A  B. Then, the action of P on morphisms is “composition
of morphisms with heteromorphisms”—although this interpretation only goes

3If the variance seems backward at first glance, note that the action of a morphism X → Y
(in any category) on morphisms out of Y is to “lift” them to morphisms out of X.

4Note that L = R is necessary here, since we must put S → L(M)(A) and R(M)(B)→ T
on either side of the extended morphism.

5By the Yoneda lemma, another relationship between these two forms can be given by
P (A,B) ∼= PSh(D)(y(A), P ′(B)) (where y is the Yoneda embedding), which provides some
justification to viewing a profunctor as a kind of tweaked hom-functor.
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so far, since a profunctor does not provide a way of composing its heteromor-
phisms with each other, even in cases where the types happen to line up. Next,
given a monoidal category M with actions L on C and R on D, we would like
to consider those kinds of heteromorphism that can be lifted through the action
of M, since these are then the ones which can be lifted using an optic. Given
P as above, P is turned into a Tambara module (D, R) −7−→ (C, L) by equipping
it with a family of functions that perform this “lifting”, Cite!

ζA,B,M : P (A,B)→ P (M ·A,M ·B),

subject to several conditions regarding naturality, dinaturality, and compati-
bility with the action. However, these conditions are trivial in the Ω-enriched
version we will primarily work with, so we will not cover them in detail here.

At this point, we can now examine the precise connection with optics. Sup-
pose P is indeed equipped as a Tambara module, and we have a heteromorphism
h : A  B. Suppose further we have an optic o ∈ OpticRL((S, T ), (A,B)) with
some representative (open : S → M · A, close : M · B → T ). We can first take
ζA,B,M (h) : M ·A M ·B, and then use profunctoriality to put open and close
before and after, giving

P (open, close)(ζA,B,M (h)) : S  T.

This turns out to be independent of the choice of representative of o, and so
it is well-defined as an action of OpticRL((S, T ), (A,B)) on P (A,B). Then,
vitally, there is a Yoneda-esque result that this mapping from A B to S  T
for all Tambara modules is all that characterizes an optic of this type! In
particular: There is a notion of “morphism of Tambara modules” such that
the Tambara modules (D, R) −7−→ (C, L) are the objects of a category, and then
for A ∈ C, B ∈ D we have a functor evA,B from this category of Tambara
modules to Set which evaluates its argument at (A,B)—i.e., it takes the set of
heteromorphisms A  B. Then, natural transformations from evA,B to evS,T
correspond exactly to optics (S, T )→ (A,B). Pull out into

a theorem
statement,
and cite!

We now turn to the Ω-enriched analogues of these definitions. An Ω-enriched

Probably
worth revis-
ing some-
where to
say sth like
“Ω-enriched
definitions
are usually
just special
cases of the
standard
definition”.

profunctor P : D −7−→ C is a monotone function P : Cop × D → Ω, which we can
view as “generalized entailment”. A vital example for us will be that, for any
command C, we have HC : S −7−→ S defined by HC(P,Q) = {P}C {Q}—the
classic Hoare logic rule of consequence precisely states that HC is an Ω-enriched
profunctor! Moving forward, we will tend to drop the “Ω-enriched” prefix from
“Ω-enriched profunctor” when it is established that C and D are prosets, since
we have little need for the other kind in that case.

In the Ω-enriched case, the equipment of a Tambara module reduces to a
property that a profunctor must satisfy:

Tamb(P ) ⇐⇒ ∀A ∈ C, B ∈ D, M ∈M. P (A,B)→ P (M ·A,M ·B), (4)

where → is just implication. Similarly, the Tambara module-based formulation

Cram in
somewhere
a mention
of the na-
ture of Tam-
bara module
homomor-
phisms or
something?

of the preorder on the optic proset reduces to

Give an ac-
tual argu-
ment, and
elaborate!
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(S, T ) `OpticR
L

(A,B) ⇐⇒ ∀P. Tamb(P )→ P (A,B)→ P (S, T ). (5)

We can now put this to work in a very simple case. If we instantiate (4)
with S under the left regular action, we get

Tamb(P ) ⇐⇒ ∀A,B,M ∈ S. P (A,B)→ P (M ∗A,M ∗B).

Now consider Tamb(HC):

Tamb(HC) ⇐⇒ ∀A,B,M ∈ S. {A}C {B} → {M ∗A}C {M ∗B}.

In traditional separation logic, we have Tamb(HC) only for C which does not
modify any variables, but in systems such as Iris, or those that use variables-as-
resources, the content of the frame rule is exactly that HC is a Tambara module Double

check(S,LRegS) −7−→ (S,LRegS).6

Putting together the concrete representation formula with the Tambara
module formulation, we can recover the ramify rule based on the fact that
Tamb(HC):

S ` (B −∗ T ) ∗A ⇐⇒ (S, T ) `RamS (A,B)

⇐⇒ ∀P. Tamb(P )→ P (A,B)→ P (S, T )

=⇒ HC(A,B)→ HC(S, T )

= {A}C {B} → {S}C {T}.

Once again, this is considerably more machinery than is necessary to derive
such a rule—what is important is that similar reasoning can allow the uniform
derivation of a broad range of similar-in-spirit rules based on the categorical
structure of the ingredients.

4 Building New Kinds of Optic: Quantified Ram-
ification

The Verified Software Toolchain includes a file called ramification lemmas.v.
One of the modules in this file, RAMIF Q, deals with a version of ramification
where the premise takes the form S ` (∀x : X. B(x) −∗ T (x)) ∗ A, for some
type X. In this section, we gather some constructions and facts (many fairly
standard) which allow this class of formula—and others like it—to be easily citation

neededderived as the concrete representation of a flavor of optic.

Also Tam-
bara module
stuff coming
up.

• Given any set X, we can form the discrete proset δX whose preorder is
just equality. If C is any proset, then monotone functions δX → C are the
same as ordinary functions X → C.7

6We will later recover the traditional frame rule as the statement that HC is a Tambara
module for a different pair of actions.

7That is, δ is left adjoint to the forgetful functor from prosets to sets.
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• If C,D are prosets and D is monoidal, then [C,D] can be made monoidal
under the pointwise product, with unit the constant function at D’s unit.
If D is symmetric monoidal, then so is the pointwise product. If D is
closed monoidal, then the internal hom does not necessarily lift pointwise,
because the variances are wrong, but if C’s relation is symmetric, then it
does (since then the variances can be flipped). This is especially important Double

check?in the case where C = δX. When D = S, we will write these pointwise
operations with the same ∗ and −∗.

• Suppose a proset C has all limits (resp. colimits) of shape J . Then
limJ : [J , C] → C (resp. colimJ ) is monotone. Define KJ : C → [J , C]
by KJ (A)(J) = A; this is easily also monotone, and we have KJ a limJ
(resp. colimJ a KJ ). In the case where J = δX, these are X-indexed
infima and suprema, and we write limδX as ∀X and colimδX as ∃X , as
well as abbreviating KδX to just KX .

• If C is monoidal, then KJ is strong monoidal. If limJ : [J , C]→ C exists,
it is lax monoidal. If colimJ : [J , C]→ C exists, it is oplax monoidal.

Next paragraph probably needs a lot of work on the exposition.

Suppose S has all X-indexed infima, so that we have a sensible interpretation
of the formula ∀x : X. ϕ(x) as ∀X(x 7→ ϕ(x)). We now consider what kind
of optic would give rise to quantified ramification. First of all, S and A are
still assertions, but B and T are now assertion-valued predicates parameterized
over some X. Thus, we still have C = S, but for B, T to be objects of D,
we must switch to D = [δX,S]. Next, we must find an M and actions L :
M → [S,S], R : M → [[δX,S], [δX,S]] so that we get the desired concrete
representation. Recalling (*), we need R(−)(B) :M→ [δX,S] to have a right
adjoint RB : [δX,S]→M for each B, and we need

S ` ∀X(B −∗ T ) ∗A ⇐⇒ S ` RB(T ) ·A.

This is easily satisfied if M = S, L = LRegS , and RB = ∀X ◦ (B −∗ −). Then
KX a ∀X and (− ∗ B) a (B −∗ −), so (− ∗ B) ◦ KX a RB , and we must
have R(−)(B) = (− ∗ B) ◦KX . Finally, we can rewrite this to R(M) = B 7→
KX(M) ∗ B = LReg[δX,S](KX(M)) and then R = LReg[δX,S] ◦KX , which is a
composition of strong monoidal monotone functions and hence itself a strong
monoidal monotone function. We define RamQS,X to be the optic proset for
the actions LRegS and LReg[δX,S] ◦KX , so by the reasoning just given, we have

(S, T ) `RamQS,X
(A,B) ⇐⇒ S ` (∀x : X. B(x) −∗ T (x)) ∗A.

We next gather some results on profunctors and Tambara modules for similar
purposes.

• Composition of profunctors P : E −7−→ D and Q : D −7−→ C is defined by the on objects...
coend

(Q ◦ P )(C,E) =

∫ D∈D
Q(C,D)× P (D,E).
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For Ω-enriched profunctors, this reduces to ordinary composition of rela-
tions:

(Q ◦ P )(C,E) = ∃D ∈ D. Q(C,D) ∧ P (D,E).

This is associative, and has identity idC(C,C
′) = C ` C ′, so we have a

category with prosets as objects and profunctors as morphisms.

• If F : D → C is a monotone function, then we can define a profunctor
F∗ : D −7−→ C by F∗(A,B) = A ` F (B) and a profunctor F ∗ : C −7−→ D by
F ∗(B,A) = F (B) ` A. For G : C → D, we have F a G iff F ∗ ∼= G∗. If
P : C −7−→ E , then P ◦ F∗ ∼= (E,D) 7→ P (E,F (D)), and if Q : E −7−→ C, then
F ∗ ◦Q ∼= (D,E) 7→ Q(F (D), E).

• Suppose we have a monoidal proset M and actions L : M → [C, C], I :
M → [D,D], R : M → [E , E ]. If P is a Tambara module (E , R) −7−→
(D, I) and Q is a Tambara module (D, I) −7−→ (C, L), then Q ◦ P is a
Tambara module (E , R) −7−→ (C, L). Additionally, as informally alluded to,
the identity profunctor on any C is always a Tambara module (C, F ) −7−→
(C, F ) for any action F on C. Altogether, then, for any fixed monoidal
proset M, we can form a category whose objects are prosets equipped
with an action ofM, and whose morphisms are Tambara modules.8 This
has a faithful forgetful functor to the aforementioned profunctor category.

• Suppose F : D → C and L :M→ [C, C], R :M→ [D,D]. Then F∗ : D −7−→
C is a Tambara module (D, R) −7−→ (C, L) iff F is “lax-equivariant”:

∀M ∈M, B ∈ D. M · F (B) ` F (M ·B),

and F ∗ : C −7−→ D is a Tambara module (C, L) −7−→ (D, R) iff F is “oplax-
equivariant”:

∀M ∈M, B ∈ D. F (M ·B) `M · F (B).

Next bit is motivated reasoning and total bullshitting hmm. Also, need to
not fucking say “obvious”!!!!!!

With these results in hand, we can work out the appropriate Hoare logic
rule[s] for eliminating an entailment in RamQS,X , and hence a quantified
ramification—we just need to find a Hoare-triple-based based Tambara mod-
ule ([δX,S],LReg[δX,S] ◦KX) −7−→ (S,LRegS). We start with HC : (S,LRegS) −7−→
(S,LRegS), so the most obvious thing to do is compose it with some other Tam-
bara module already of the desired type. The easiest way to get a profunctor

8Actually, we can form a category with these same objects but whose morphisms are
“lax-equivariant” monotone functions between those prosets instead of profunctors; then PSh
gives rise to a monad on this category, and the Tambara module category arises as the Kleisli
category for this monad.

Currently bullshitting!! Double check this!!
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[δX,S] −7−→ S is by taking F ∗ or F∗ of a monotone function; simultaneously, it
is natural to expect a rule eliminating a quantified ramification to involve some
kind of “Hoare triple with quantification”, so the the most obvious candidate
profunctors are ∀X∗ and ∃X∗. To check that these are Tambara modules, we just
need to check that ∀X and ∃X are “lax-equivariant” as above, which expands
to the following two separation logic validities:9 Should I cut

out this di-
version?

M ∗ ∀X(B) ` ∀X(x 7→M ∗B(x))

M ∗ ∃X(B) ` ∃X(x 7→M ∗B(x)).

We conclude that in separa-
tion logics
whose frame
rule does not
have side-
conditions

HC ◦ ∀X∗, HC ◦ ∃X∗ : ([δX,S],LReg[δX,S] ◦KX) −7−→ (S,LRegS),

and note

HC ◦ ∀X∗ ∼= (P,Q) 7→ {P}C {∀x. Q(x)}
HC ◦ ∃X∗ ∼= (P,Q) 7→ {P}C {∃x. Q(x)}.

Altogether, we have use sth bet-
ter than \
frac

(S, T ) `RamQS,X
(A,B) {A}C {∀x.B(x)}

{S}C {∀x.T (x)}

(S, T ) `RamQS,X
(A,B) {A}C {∃x.B(x)}

{S}C {∃x.T (x)}

If we replace the (S, T ) `RamQS,X
(A,B) in the latter of the two rules above

by expanding the concrete optic formula (*) to only the second-to-last step, we
get the localize rule from “Certifying Graph-Manipulating C Programs via
Localizations within Data Structures”. This is not

quite true—
one of their
points was
management
of the side
condition.
To be fair,
this does
work out
like their
point if you
do the side-
condition
version of
the frame
rule in this
framework,
but that’s
not what
I’ve said
here.

5 Side Conditions for the Frame Rule

It is time to stop ignoring the fact that separation logics tend to have side
conditions on their frame rule.

Given a command C, let S \ C denote the full subproset of S on assertions
closed with respect to C’s modified variables—i.e., the subproset of assertions
which satisfy the side condition of the frame rule for C—and let ιC : S \C ↪→ S
be the inclusion. We will need a basic assumption about our separation logic
which is fairly universal: S \ C includes emp and is closed under ∗ and −∗, so

um, it is,
right?

9∀X∗ remains a Tambara module if S is replaced with any monoidal proset with all X-
indexed infima: by KX a ∀X we have K∗X

∼= ∀X∗, so ∀X∗ is a Tambara module iff KX is
oplax-equivariant:

KX(M ∗A) = KX(M ·A) `M ·KX(A) = KX(M) ∗KX(A),

but this just asks that KX is oplax monoidal, which it is—indeed, it is strong monoidal! By
contrast, the fact that ∃X∗ is a Tambara module hinges on the fact that ∗ distributes over
X-indexed suprema, which follows from the existence of −∗.

9



it inherits S’s closed monoidal structure. Then ιC is trivially strong monoidal.
Therefore, we can restrict the left regular action to take contexts only from S\C
rather than from all of S using LRegS ◦ιC . Then, the version of the frame rule
with a side condition states that HC is a Tambara module (S,LRegS ◦ιC) −7−→
(S,LRegS ◦ιC), and so optics for this action can be applied directly to Hoare
triples for C even when the frame rule has a side condition. We define RamS \C
to be the optic proset for C = D = S, M = S \ C, L = R = LRegS ◦ιC .

We can now recover the correct form of the localize rule previously mentioned—
we use the same ingredients for quantified ramification as before, except that
we restrict the domain of the actions, so

C = S, D = [δX,S], M = S \ C, L = LRegS ◦ιC , R = LReg[δX,S] ◦KX ◦ ιC .

This gives an optic proset which we will call RamQS,X \ C.

Argue for HC ◦∃X∗ or something along those lines being a Tambara module.

Then the remark about partially expanding the concrete optic formula really
does yield localize, side condition and all. no wait

that’s
slightly off...

In order to work further with this subproset, we need one more fact about
it whose proof rests on the details of the logic in question, but which is again
true in most cases: S \ C is both reflective and coreflective in S. That is,

Write up the
proofs for an
example case
or two!

there are monotone functions λC , ρC : S → S \ C such that λC a ιC a ρC .
Roughly speaking, λC(P ) is the existential closure of P with respect to the
modified variables of C, while ρC(P ) is the universal closure with respect to
those variables.

By some standard abstract nonsense, we can draw the following conclusions:

• λC◦ιC ∼= ρC◦ιC ∼= idS\C . I.e., for all P ∈ SC , λC(ιC(P )) a` ρC(ιC(P )) a`
P .

• Define ♦C ,�C : S → S by ♦C = ιC ◦ λC and �C = ιC ◦ ρC . Then ♦C is
a monad, �C is a comonad, and ♦C a �C .

• λC , ιC , and ♦C distribute over colimits (including ∨ and ∃X) because they
are left adjoints. ρC , ιC , and �C distribute over limits (including ∧ and
∀X) because they are right adjoints.

• An assertion P is in S \ C iff it is an algebra of ♦C (i.e., ♦CP ` P ), or
equivalently by the adjunction, a coalgebra of �C (i.e., P ` �CP ). Note
that since P ` ♦CP and �CP ` P in general anyway, “algebra” and
“coalgebra” coincide with “fixed point up to logical equivalence”.10

• λC and ♦C are oplax monoidal, and ρC and �C are lax monoidal. Check
whether any
are actu-
ally strong
monoidal,
hm.

10Of course, if we were working in arbitrary categories instead of prosets, algebras of an
arbitrary monad (resp. coalgebras of an arbitrary comonad) would not need to be inverse to
the monad’s unit (resp. comonad’s counit). But coincidentally, in the case we are considering
of a reflective (resp. coreflective) subcategory, they would be inverse!
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This lets us derive the concrete representation for RamS\C and RamQS,X\
C. For the former, if B ∈ S,

(− ·B) = (− ∗B) ◦ ιC a ρC ◦ (B −∗ −).

Plugging this into (*) gives

(S, T ) `RamS\C (A,B) ⇐⇒ S ` ιC(ρC(B −∗ T )) ∗A
= S ` �C(B −∗ T ) ∗A.

If B and T already satisfy the side condition, then �C(B −∗ T ) a` B −∗ T , and
in this case the concrete representation is the same as for RamS .

Next, take RamQS \ C. Suppose B ∈ [δX,S]. Then

(− ·B) = (− ∗B) ◦KX ◦ ιC a ρC ◦ ∀X ◦ (B −∗ −).

Once again, we apply (*):

(S, T ) `RamQS,X\C (A,B) ⇐⇒ S ` ιC(ρC(∀X(B −∗ T ))) ∗A
⇐⇒ S ` (∀x : X. �C(B(x) −∗ T (x))) ∗A.

As before, if B(x) and T (x) already satisfy the side condition for all x, then
∀x : X. �C(B(x) −∗ T (x)) a` ∀x : X. B(x) −∗ T (x), and in this case the
concrete representation is the same as for RamQS,X .
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