
One-Dimensional Billiards
S. Glashow mentioned this problem during a talk I heard him give at the Nov `92 AAPT
meeting at Vassar. He said that it's possible to have an infinite number of collisions if the
"elasticity" (Glashow's term) is less than . Here's how it works.

Suppose that at least one collision has already taken place, and that the last collision was
between the two balls on the right, which must therefore be moving apart. Choose a velocity
scale and inertial frame such that the velocity of the middle ball is 0 and the right ball is +1.
Call the left velocity Vn, as shown in this picture.

After N'th collision (N>=1)

The next collision of the two balls on the left will happen only if Vn > 0.

Assuming that Vn is positive, the situation after collision (N+1) can be found by momentum
conservation. We get

where 0 <= alpha <= 1 is the "elasticity." alpha = 1 is a perfectly elastic collision in which
the ball on the left stops and the middle ball continues on at Vn, while alpha = 0 is a
perfectly inelastic collision in which the two balls stick together and both move at .

Now, to continue, 1) reverse left and right, 2) move into the rest frame of the middle ball,
and 3) scale the velocities so that once again the ball on what will be the right is moving at
velocity +1. These three steps are shown below.

The problem now looks just like it did in the beginning, except that Vn (after the n'th
collision) has changed to a new velocity Vn+1(the velocity after collision n+1), where

One-Dimensional Billiards file:///Users/mahoney/sugar/academics/code/projects/1D_billiards/b...

1 of 4 4/23/20, 11:21 AM

.

As this relation is applied repeatedly for increasing n, collisions will continue until Vn+1 <
0.

To visualize what will happen in the long run we can borrow a graphical technique from
chaos studies. Plot Vn+1 vs. Vn, as shown below. Starting at some value for Vn, we find the
next by traveling vertically to the curve given above to find Vn+1. We then move
horizontally to the Vn+1 = Vn dotted line to find this new velocity on the x axis, and then
repeat the process, zig-zagging between the Vn+1 vs. Vn curve and the Vn+1 = Vn line.

Curves are shown below for three different values of alpha; 1, 0.072, and 0.05. In each case
the first collision (in which all three balls are approaching each other) does not fit our
description and is not shown. For values of alpha below the critical value shown where the
two curves just touch, a stable solution exists and collisions can continue on forever.

To find the critical value where stable solutions begin, we find the values of alpha where
Vn=Vn+1 is allowed.

Therefore, letting V=Vn = Vn+1 in the equation at the top of the last page, we have this
equation, which we want to solve, if possible.

One-Dimensional Billiards file:///Users/mahoney/sugar/academics/code/projects/1D_billiards/b...

2 of 4 4/23/20, 11:21 AM

As shown in the graph on the previous page, only some values of alpha (or beta) allow a
solution.

Multiplying through by V, collecting terms, and completing the square on V gives

which can only be true when

Since alpha <= 1, and beta = 1/alpha, we must have beta >= 1, so only the second range is
possible. Thus possible values where Vn = Vn+1 are for

or

At this critical alpha, the velocity of the ball on the left must be (1+beta)/4 = 3.732 times the
velocity on the far right, in the rest frame of the middle ball.

So there you go.

By the way, the plot was made with the following routine in NumberCrunch II.

This is V[n+1] as a function f of V[n] and Alpha.
NextV(v,alpha) = 0.5 + 1/alpha (0.5 - 1/v);
The magic value where infinitely collisions are possible:
C = 7 - sqrt(48); # which is = 0.07179677
This returns a 2 by N array of points defining the line
segments that trace the path of N collisions in the V[n+1]

One-Dimensional Billiards file:///Users/mahoney/sugar/academics/code/projects/1D_billiards/b...

3 of 4 4/23/20, 11:21 AM

vs V[n] phase plot.
FUNCTION IteratePath(V1, Alpha)
. VAR Done, j, Vn, Vnp1, Path
. BEGIN
. Done = 0
. Path[1... 2, 1... 31] = 0
. Path[1... 2, 1] = [V1, 0]
. j = 0
. Vn = V1<
. WHILE Done<>1 DO
. BEGIN
. j = j + 2
. Vnp1 = NextV(Vn, alpha)
. Path[1... 2, j] = [Vn, Vnp1] # Move to the NextV curve
. Path[1... 2, j+1] = [Vnp1, Vnp1] # Move to the x=y line.
. IF Vnp1 < 0 THEN
. Done = 1 # Stop if velocity has gone negative.
. ELSE IF j > 27 THEN
. Done = 1 # or we've done lots of velocities
. ELSE IF |Vnp1 - Vn| < 1e-4 THEN
. DONE = 1 # or we've hit a stable point.
. Vn = Vnp1 # Move on to the next.
. END

. IteratePath = Path[1... 2, 1... (j+1)]

. END

.

For example, put
IteratePath(5, 0.05)
in the [x,y] field of a plot item to graph the thickest black line seen in the plot.

Jim Mahoney

One-Dimensional Billiards file:///Users/mahoney/sugar/academics/code/projects/1D_billiards/b...

4 of 4 4/23/20, 11:21 AM

