
Overview — polynomial algebra

1 General strategy for solving polynomial equations

Our goal is to solve polynomial equations, such as, say, x3 − 11x2 − 10x + 200 = 0. In other words, we
are looking for values of x that makes the polynomial zero. One fact will be the key to all our efforts to
tackle such equations: a product is zero when one of the factors is zero. Thus our general strategy will
be to write the polynomial as a product. In the above example, the polynomial x3 − 11x2 − 10x + 200
can be written as a product as follows: (x + 4)(x − 5)(x − 10); this is easy to check by multiplying out
the parentheses, but how we found it in the first place shall remain a mystery for now. So we reduced
the hard problem of finding the zeros of x3 − 11x2 − 10x + 200 to the easy problem of finding the zeros
of (x + 4)(x − 5)(x − 10). Since (x + 4)(x − 5)(x − 10) can be zero only when one of its factors is zero
we see that the values of x that make the polynomial zero are −4, 5 and 10. So now we have our
general strategy charted out. However, implementation of this strategy is not always straightforward,
as our example suggests—it will frequently require much ingenuity to find the factorization from the
polynomial. For this reason we shall be much concerned with factorization techniques.

2 Factoring by algebraic rules

Sometimes we find factorizations by using good old algebraic rules such as these:

(x + y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

x2 − y2 = (x + y)(x− y)

x3 + y3 = (x + y)(x2 − xy + y2)

x3 − y3 = (x− y)(x2 + xy + y2)

Example. By the second of these rules, the equation x2 − 6x + 9 = 0 can be rewritten as (x− 3)2 = 0, so
the only solution is x = 3.

3 Quadratic equations

Quadratic equations ax2 + bx + c = 0 can always be solved by the formula

x =
−b±

√
b2 − 4ac

2a
.

Ambitious readers could verify this formula and see that it agrees with our factorization program by
checking that (

x− −b +
√

b2 − 4ac
2a

)(
x− −b−

√
b2 − 4ac

2a

)
= x2 +

b
a

x +
c
a
.
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Thus we have found the factorization of any quadratic equation once and for all, which, in principle,
liberates us from the burden of inventiveness involved in finding the factorizations in particular cases.
Since the formula is fairly cumbersome, however, factorization tricks will sometimes still be preferable
in practice.

Example. For the quadratic equation 2x2 − 4x− 16 = 0 we have a = 2, b = −4 and c = −16. Therefore
the solutions are

x =
−b±

√
b2 − 4ac

2a
=

4±
√

42 − 4 · 2 · (−16)
2 · 2

=
4±

√
144

4
=

4± 12
4

=
16
4

and
−8
4

= 4 and − 2

4 Factoring higher degree polynomials

4.1 Equations with no constant term

When all terms in the equation involve x, zero is obviously a solution. We then factor out x and study
the solutions to the remaining expression.

Example. The equation 2x3 − 4x2 − 16x = 0 has no constant term. Factoring out x yields
x
(
2x2 − 4x− 16

)
= 0. So zero is a solution and the other solutions will come from the other factor,

2x2 − 4x − 16, being zero. We saw above that 2x2 − 4x − 16 is zero when x is 4 or −2, so our original
equation 2x3 − 4x2 − 16x = 0 has the solutions 0, 4, and −2.

4.2 Equations involving only even powers

A polynomial in x with only even powers may also be regarded as a polynomial in x2.

Example. The equation x4 − 6x2 + 9 = 0 can be attacked as a second degree equation by writing it as
(x2)2 − 6(x2) + 9 = 0, or, if we prefer, we can let u stand for x2 and the equation becomes u2 − 6u + 9 = 0.
So x2 must equal the solutions of the equation u2 − 6u + 9 = 0. We solved this second degree equation
above and found that the only solution was 3, so x2 = 3, so x = ±

√
3.

4.3 Equations with one obvious factor or solution

If x = r is a solution to a polynomial equation then we know that (x− r) is a factor of the polynomial.
Therefore we can factor out (x− r) from the polynomial and study the zeros of the remaining factor.

Example. The equation x3 − x2 − x + 1 = 0 has the obvious solution 1, so (x − 1) must be a factor of
x3 − x2 − x + 1. Then it is not hard to find the factorization x3 − x2 − x + 1 = (x − 1)(x2 − 1), so the
equation has the two solutions 1 and −1. Instead of noticing the solution 1 we might have noticed
the factor (x − 1) and arrived at the factorization from there, perhaps through the intermediate step
x3 − x2 − x + 1 = (x− 1)(x2) + (x− 1)(−1) = (x− 1)(x2 − 1).
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5 Division of polynomials

If x = r is a solution to a polynomial equation then we know that (x− r) is a factor of the polynomial
and, as we saw above, factoring out (x − r) will help us solve the equation. This is not always easy,
however. It is one thing to know a solution, but to factor it out is a different matter. The situation is
analogous to divisibility of ordinary integers. We know that 186327 is divisible by 9 since the sum of its
digits is divisible by 9, but that doesn’t help us find the value of 186327÷ 9. For this we would need
long division or something like it. We shall study the analog of long division for polynomials. It will
help us factor out solutions (x− r) from polynomials, just as ordinary long division helps us factor out
the factor 9 from 186327.

5.1 The division algorithm for polynomials

Example. We consider again the equation x3 − x2 − x + 1 = 0, which we factored above by spotting the
root x = 1 and using clever guesswork to factor out (x− 1). Division of polynomials gives a systematic
way of factoring out known factors. So the problem is to divide x3 − x2 − x + 1 by x− 1. We write this
as follows.

x + 1 x3 −x2 −x +1

As in ordinary long division, we need to determine how many times x + 1 fits into x3− x2− x + 1. When
we are dealing with polynomials we should look only at the highest degree terms: the x from x + 1 and
the x3 from x3 − x2 − x + 1. The greatest “number of times” x goes into x3 is x2. Therefore we record x2

as the first term of our solution as follows.

x + 1
x2

x3 −x2 −x +1

So we found that we can take away x2 number of (x + 1)′s from x3 − x2 − x + 1. Now we need to know
what’s left of x3 − x2 − x + 1, i.e. we need to calculate x3 − x2 − x + 1− (x2)(x + 1). To do this we write
the result of multiplying out (x2)(x + 1) under x3 − x2 − x + 1 and then subtract.

x + 1
x2

x3 −x2 −x +1
x3 −x2

−x +1

Now we do the same thing again with what’s left. Look at the highest degree terms of x− 1 and −x + 1:
how many x′s can we take away from −x? Or, in other words, what can we multiply x by to get −x?
−1, of course. So we put down−1 as the next term in our solution and subtract (x− 1)(−1) from−x + 1.

x + 1
x2 −1

x3 −x2 −x +1
x3 −x2

−x +1
−x +1

0

Now the remainder is zero, which means that when we have taken away x2 − 1 number of (x + 1)′s
from x3 − x2 − x + 1 we are left with nothing. In other words, x3 − x2 − x + 1 = (x + 1)(x2 − 1), and we
have thus factored our polynomial, as desired.
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5.2 Finding initial solutions

To make use of the division of polynomials algorithm for solving polynomial equations we need to
know one solution of the equations so that we know what to factor out. When trying to find this initial
solution the following fact is helpful: a rational solution to a polynomial equation must be of the form

divisor of the constant term
divisor of the coefficient of the highest degree term

Example. Consider the equation 2x4 − 4x3 − x2 − x + 6 = 0. The divisors of the constant term are 1, 2, 3
and 6. The divisors of the coefficient of the highest degree term 1 and 2. Thus the candidates for rational
solutions of the equation are 1, 2, 3, 6, 1

2 , 2
2 , 3

2 and 6
2 . Testing these in the original equation, we see that 2

is indeed a solution.

6 Rational equations

Rational equations can be solved by converting them to ordinary polynomial equations by multiplying
by the denominators. (A technical note: This would not be allowed if one of the denominators was
zero. The resulting polynomial equation, however, doesn’t recall that it came from a rational equation,
so it may display solutions that correspond to a denominator being zero in the original equation. Such
solutions must of course be discarded.)

Example. Consider a rectangle with perimeter 2. Call the longer side x. Then the shorter side will be
1− x. Supposedly, the most aesthetically pleasing rectangle is the one where the shorter side is to the
longer side as the longer side is to the sum of both sides, i.e. 1−x

x = x
1 . Multiplying up the denominators

gives 1− x = x2, which we may rewrite as x2 − x + 1 = 0 and apply the quadratic formula to obtain the
solutions x = 1±

√
1+4

2 = 1±
√

5
2 . Apparently, there is a negative and a positive solution; if we wish to build

ourselves one of those aesthetically perfect rectangles with perimeter 2 then we must clearly choose the
positive root and make the longer side equal to the “golden ratio” 1+

√
5

2 .

7 Bonus topics

7.1 Completing the square

We shall now derive the solution formula for quadratic equations by means of a useful method called
completing the square. We wish to solve ax2 + bx + c = 0. Let’s divide by a and move the constant term
to the other side to get x2 + b

a x = − c
a . The left hand side can be interpreted geometrically as a square

and a rectangle:

x

x

x

b/a

Cut the rectangle in half and click the pieces to the square:
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x

x

x

b/2a

b/2a
x

Now we see how to “complete the square”—we must add the bottom right piece, which is a square
with side b

2a . So we started with x2 + b
a x and saw that we needed to add

(
b
2a

)2
to turn it into one big

square with side x + b
2a . So the left hand side of our equation is now

(
x + b

2a

)2
. Since we added the little

square
(

b
2a

)2
in the process, we must add it to the right hand side as well; so the right hand side is now(

b
2a

)2 − c
a . That is, (

x +
b
2a

)2

=
(

b
2a

)2

− c
a

Taking the square root of both sides we get

x +
b
2a

= ±

√(
b
2a

)2

− c
a

or, solving for x,

x = − b
2a
±

√(
b
2a

)2

− c
a

or, putting the right hand side on the common denominator 2a,

x =
−b±

√
b2 − 4ac

2a
.

7.2 The geometric series

Applying the division algorithm to 1 divided by 1− x, where x is between 0 and 1, gives

1
1− x

= 1 + x + x2 + x3 + . . .

This says for example that
1

1− 1
2

= 1 +
1
2

+
(

1
2

)2

+
(

1
2

)3

+ . . . ,

i.e.
2 = 1 +

1
2

+
1
4

+
1
8

+ . . .

Meditate on that for a while.
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