

Learning Computer Science by Studying Computer Science Education

A Plan of Concentration in Computer Science

Richard Scruggs

Jim Mahoney, sponsor

December, 2010

Marlboro College, Marlboro, Vermont

Acknowledgements

This plan project would still be a few half-formed ideas if it weren’t for the help of several
people:

Thank you to Jim Mahoney, for sponsoring me through this undertaking – and for supporting my
coming back to Marlboro to do it. I think I finally believe you about test-driven development,
although it certainly took me long enough.

Thank you to Jon Mack, for going out on a limb to work with me on educational theory, and
thank you for Sean Conley, for taking on a new challenge and helping me with the education
papers. Thanks to John Arhin, for turning what started as an ordinary graph theory tutorial into a
nearly semester-long discussion of the traveling salesman problem.

Finally, thank you to Daniella Nahmias, for the mental support, but also for reading the papers,
helping with the data collection and formatting, getting the articles and books… everything.

This is my Plan of Concentration in computer science. It consists of several parts, with grading

percentages as follows:

Plan Project – 40%:

One paper on computer science curriculum and one on educational theory in computer science
education.

Other Plan Component – 30%:

An implementation of the traveling salesman algorithm.

Independent Plan Work – 30%:

Computer science exams in programming languages, discrete math, and algorithms.

Table of Contents

Computer Science Education Papers
“A Discussion of Computer Science Curricula .. 1

“The Relationship between Educational Theory and Educational Practice in Undergraduate
Computer Science Education .. 51

Traveling Salesman Project

Discussion .. 57
 Code .. 68

Computer Science Proficiency Exams
 Exam 1 – Programming Languages ... 97

 Exam 2 – Discrete Math .. 123

 Exam 3 – Algorithms .. 131

A Discussion of Undergraduate Computer Science Curricula

It has become common sport to criticize computer science curricula. CIOs complain

about skills lacking in their new hires, programmers lament the perceived dumbing down of the

discipline, and computer science educators talk of how the curriculum must be changed to

weather a crisis and fit the broadening of the field (Dewar & Schonberg, 2008; Cassel et al.,

2008). The critics tend to focus on a few facets of the field as a whole--most typically

programming-related areas--and use a few apparent flaws to deride the computer science

curriculum as a whole. Meanwhile, many of the people who are trying to change CS curricula are

arguing that small facets of the field should be changed while not addressing wider effects of

those small changes. Before continuing to change the CS curriculum piecemeal, however, a firm

grounding in educational principles should be established. Such a foundation would allow the

field to slowly evolve in order to stay current, while helping CS educators understand how their

changes both fit and change the wider context and goals of the field.

Curricular theory is underutilized in computer science education. While modern

curricular theory often gets bogged down in details of definition and implementation, the field as

a whole has identified and attempted to answer many questions which are increasingly relevant

to computer science education. Mark Guzdial (2005) states that CS educational researchers

should build on the pedagogic foundation created by educationalists and educational

psychologists (in Hazzan et al.). The field of curriculum is very similar; indeed, as computer

science is changing faster than most fields, it is even more important that those who shape it

understand the purpose of and reason for their changes (Soh et al., 2007). Curricular theorists,

while giving more of their time to the questions of what should be learned and how to organize

it, have produced a great deal of discourse on how curricular change should be effected. For this

Page 1 of 148

reason, it is important that computer science educators have a solid understanding of the efforts

of curricular theorists and how those efforts may be best applied when constructing or modifying

their own curricula.

Petre (2005) points out that computer science education lacks a ―driving theory,‖ and as

such must borrow from other disciplines (in Hazzan et al.). She states that what is important is

that borrowing is done properly, with the borrowing educator understanding the context of the

borrowed method and making certain that the method works. CS education does borrow from

some educational theory, but curricular discussions in CS rarely make reference to recent

theorists. Many of these theorists offer more directly useful ideas and talk more about the

realities of curriculum design than their earlier colleagues.

The Current Process of Curricular Change

 At present, there are two approaches to undergraduate CS curricular change: centralized

bodies that attempt to change the direction of the field as a whole, and small-scale efforts that

attempt to change the curriculum in one class, or at one school. The former is led by the

Association for Computing Machinery and its curricular recommendations.

 It is difficult to speak to the scope and success of small-scale curricular change. Randolph

et al. (2008) review several hundred recent computer science education articles and come to the

conclusion that nearly half of these articles discuss a ―new way to organize a course‖. From this,

it is evident that there are many educators discussing and implementing curricular change on a

small scale. Many of the articles published, however, only discuss the author‘s experience

implementing his new ideas in one course, with one posttest to determine success or failure;

there are rarely follow-up articles. Hence, it is unknown whether these small changes take root or

if the experiments were merely one-time events.

Page 2 of 148

In his dissertation, Randolph (2007) discusses the presence of a literature review in

computer science education articles. He theorizes that the majority of such articles do not

perform a literature review, or perform an inadequate review, but is unable to conclusively

support this. If most CS education articles do not in fact cite each other, it is even more difficult

to determine whether their ideas are having any effect outside of their small test areas.

Program accreditation is one way that a central body might shape undergraduate CS

education. In the United States, ABET is the organization that accredits many science and

engineering programs, including computer science. Like the ACM, they are attempting to split

the all-encompassing CS degree into several other programs, each with a more clearly expressed

set of goals. Their primary focus for CS is that graduates should be able to stay current and

competent in the field throughout their professional lives (Reif and Mathieu, 2009).

Reif and Mathieu, who work with ABET, discuss the current scope of CS program

accreditation, coming to the conclusion that while only a minority of CS programs are

accredited, accreditation is becoming more widespread. Of the programs I examined, five had

ABET accreditation, but their requirements differed from each other as much as they differed

from requirements of other schools in the same category.

Further, ABET's mission and strategic plan suggest that while they are interested in

"[promoting] quality and innovation in education," they are an organization that adapts its role to

fit the needs of its constituencies, not an organization that attempts to direct their educational

goals or practices through accreditation standards or requirements. If ABET tried to take more of

a leadership role in the determining of CS curriculum, I do not think that they would have a great

deal of success - convincing hundreds of large, powerful universities that they must change the

content of their programs is at best an exceedingly difficult task.

Page 3 of 148

The Association for Computing Machinery [ACM] constructs undergraduate curricula

recommendations for five computing disciplines: computer science, computer engineering,

software engineering, information systems, and information technology. It also offers curricular

recommendations for computer science in liberal arts colleges, and recommendations for

computer science at two-year schools. Looking at a small sample of computer science curricula, I

found that the ACM CS recommendations bear general resemblance to CS curricula at most

schools, but few schools adhere to the ACM recommendations closely. Further, the ACM's

recommendations are constructed with the input of faculty at only a small percentage of

computer science programs. Nevertheless, their recommendations are the closest thing that

computer science has to a unified curriculum.

 The ACM CS recommendations state several guiding principles that they

attempted to follow in the creation of the recommendations and a list of characteristics that they

believe that all computer science graduates should possess, but they never explicitly state the

purposes of their curriculum. Their listed characteristics suggest that students should understand

both a high-level overview and lower-level implementation of theory, and that students should be

able to adapt and keep pace with the field (63). Although they do not explicitly say so, it is

evident from examining their characteristics and the general tone of their report that the main

purpose of their curriculum is to prepare students for jobs in the computing field.
1

An Examination of Undergraduate Curricula

While the ACM curricular recommendations provide a comprehensive framework for a

computer science curriculum, curricula often change significantly from design to

implementation. Before discussing CS curriculum, it is important to make that distinction and to

1
 In the Computing Curricula 2005 report, they do have one sentence: “It is important that the computing

disciplines attract quality students from a broad cross section of the population and prepare them to be capable
and responsible professionals, scientists, and engineers” (Shackleford et al., 1).

Page 4 of 148

evaluate both planned curriculum and implemented curriculum. I examined the curricula of

sixteen computer science programs, four leading to an associate‘s degree in computer science,

twelve leading to a bachelor‘s degree in computer science. Four curricula were from liberal arts

colleges, four were from large universities, four from schools [research universities] highly

ranked by US News for computer science or computer engineering, and four from community

colleges. The Carnegie classifications of the schools produce a similar grouping to what I am

using, but do not differentiate all the top tier schools from the large research universities

(Carnegie Foundation). Although there were some curricular similarities within the four groups,

there was a great deal of variation across the sixteen curricula examined—and almost as much

variation across the curricula of the twelve schools that offered bachelor‘s degrees.

The community colleges were clearly the most career-oriented of the four groups. Classes

offered included ―MFC Windows Programming,‖ ―C# with .NET,‖ and ―HTML

Programming‖—all skills that would be directly applied in the workforce. Some math courses

were offered, but none of the community colleges examined required any. There were, however,

CS courses that seemed to go beyond simple job skills; all of the schools offer data structures

courses, with one requiring it, and two offer computer organization courses, with one requiring

it. The total number of CS-related
2
 courses required for the associate‘s degree ranges from three

to seven.

The large universities had the most required CS-related classes of any group, from twelve

to thirty-four.
3
 Their curricula, likely aided by the greater number of classes, also achieved the

best coverage of the ACM recommendations. Unlike the community colleges, the large

universities do not offer courses designed to teach directly applicable job skills. Their curricula

2
 For the purposes of this examination, I count CS, electrical engineering, and math courses as “CS-related”.

3
 The hypothetical ACM curriculum for research universities in the 2001 report has 22 courses, omitting the science

electives (47).

Page 5 of 148

seem designed to give students as much of a grounding in the different subfields of CS as

possible, with a strong emphasis on programming and implementation—although there is

certainly ample theory to be found. In this, as well, they follow the ACM recommendations.

Liberal arts colleges required the fewest CS-related classes of the four-year groups, from

seven to eleven.
4
 Their curricula bear some resemblance to the ACM recommendations for small

departments and the Liberal Arts Computer Science Consortium recommendations, but they pare

down the core even further to allow for broader studies. They require few or no math classes, and

their classes seem to focus more on the theory of CS than the implementation, although some of

them emphasize implementation through a large capstone project. Liberal arts colleges, as would

be expected from their general ethos, attempt to educate their CS students to understand what

they see as the nature and theory of the discipline.

The top-ranked research universities require between thirteen and twenty-four CS-related

classes. In general, curricula at top-tier schools bears more resemblance to the liberal arts

colleges than the large research universities, with a lot of emphasis on theory, a small core, and

many electives. They require several math classes, but not more than the large universities. Some

of them also require large capstone projects, or independent research. They seem to be educating

for research more than for ordinary work in the field; many of their courses emphasize

theoretical, mathematical aspects of computer science before particular programming

implementations.

 This examination immediately shows the importance of one contextual factor. The

examined schools generally share a great deal of curricular similarity with others in their

category, and their curricula differ significantly from those at schools in other categories.

4
 The ACM 2001 hypothetical curriculum for small departments has 14 courses (50); the 2007 curriculum by the

Liberal Arts Computer Science Consortium has 11 courses.

Page 6 of 148

 More important to this paper is what the examination reveals about the process of

curricular formation at these schools. The ACM recommendations are broadly followed, but

curricular change is driven less by the direction of a central body, and more by factors internal to

each school or department. Unlike the ACM, individual departments rarely publicize the aims of

their computer science programs, so it is difficult to compare aims with results. Further, it is

difficult to determine exactly why computer science curricula as implemented differ from the

hypothetical curricula proposed by the ACM.

Curricular change has never been easy to affect, particularly in the realm of higher

education. It is difficult to publicize any new changes, and publicity alone has relatively little

effect. In 1975, Kelly determined that, five years after the introduction of a new [British,

secondary school, science] curriculum, 10-20% of schools at which it was advertised had

adopted it—some of them incorrectly—and 20% of the target schools were unaware of it (cited

in Barrow, 1984). This can be compared to a smaller computer science case in higher education.

Ni et al. (2010) interviewed eight instructors to determine how much they had adopted from a

series of workshops on a media computation course: they found that of the eight, four had not

adopted from the course, one hoped to adopt it soon, one had adopted part of the course, another

had adopted the course, and one instructor‘s entire department had adopted the course. The two

cases are not strictly comparable—the introduction to the new material and breadth of the new

material varies greatly—but there is ample evidence to suggest that preparing, publicizing, and

even teaching new material are far from sufficient to ensure its adoption. Worse yet, Gornitzka,

Kogan, and Amaral discuss several studies which indicate that policies as adopted often differ

from policies as implemented (7).

Page 7 of 148

The ACM recommendations do not always address the difficulty of curricular change,

particularly large-scale change. In the Computing Curricula 2005 Overview Report, the ACM

argues for a split between the subfields of CS so that those subfields better reflect the uses of CS

in the outside world. However, many of the schools that they are trying to convince have already

started offering some of the subfields as specializations within an ordinary CS degree, and as

such would be resistant to adopting a different solution. CS degrees, as compared to degrees in

IT and IS, have an established cachet in the computing industry, and it would be difficult to give

that to another degree. Students also have certain expectations relating to their CS degrees, and

transferring those expectations to degrees in information systems, or even software engineering,

would be nontrivial.

Given these difficulties, it is evident that curricular change is a difficult process in any

discipline. While curricular theorists and researchers have not solved all the difficulties of

implementation, they do offer many strategies that are helpful. In the next section, I will

introduce several curricular theories and talk about how they might apply to CS curriculum.

Reconciling the Process of Curricular Change with Educational Theory and Practice

 There are many approaches championed by curricular theorists that explain how

curricular change should be enacted. However, before attempting to change a curriculum, one

should understand that curriculum. What are the questions that educational theorists ask when

examining curricula? Tyler (1949), in his Basic Principles of Curriculum and Instruction, offers

four questions to be answered when constructing a curriculum:

1. What educational purposes should the school seek to attain?

2. What educational experiences can be provided that are likely to attain these purposes?

3. How can these educational experiences be effectively organized?

4. How can we determine whether these purposes are being attained? (p. 1)

Page 8 of 148

While Tyler's questions are intended to be used when constructing a curriculum, they are

sufficiently general that they may be asked of an existent curriculum as well. Tyler has received

a great deal of attention from curricular theorists, and his objectives-focused model is the model

most commonly used in computer science. Many more recent educational theorists, however, see

Tyler‘s perspective as limiting, and instead favor a more holistic, philosophical approach to

curriculum development.

Mannheim (1962) was an early educational sociologist who supported the idea that a

simple, objectives-based approach does not sufficiently describe educational interactions: ―It is

not enough to say that this or that educational system or theory or policy is good. We have to

determine for what it is good, for which historical aims it stands and whether we want this

educational result‖ (p. 44). Educational and curricular theorists took a similar idea from

philosophers: ―To make anything other than random guesses about the curriculum of any

institution, we need to know […] about the context of curriculum‖ (Grundy, 1987, p. 7). This

view is shared by many within curricular theory—the success or failure of a curriculum can only

be evaluated within its context.

The context of computer science curriculum is itself a misleading phrase: computer

science, as a field, is sufficiently multifaceted so as to have many contexts and many curricula.

This is evidenced by the earlier examination of computer science curricula. The ACM does offer

curricular recommendations for several contexts—‗ordinary‘ CS programs, CS in liberal arts

colleges, and CS in two-year schools, but it is difficult to find out whether these contexts

accurately divide CS as a whole. A larger curricular study would provide data from more

categories of schools that could then be compared to ACM classifications; such data could point

to other factors that may influence contextual boundaries of CS education.

Page 9 of 148

With the idea of context, it often is easier to modify curriculum on a smaller-scale, more

individual basis. Lawrence Stenhouse (1975), a British curricular theorist, was known for his

belief that teachers should themselves act as curricular researchers; while he focuses his

argument on secondary schools, I believe it is even more applicable to higher education. The

average professor, having more control over the content and structure of her course than her

colleague in a high school, is in a much better position to bring about change from within—and,

as Randolph et al. (2008) discuss, she often acts to do so.

Even with the importance of context and the difficulty of setting standardized aims for

CS curriculum as a whole, the aims of a particular CS curriculum should be carefully considered.

While some of the curricular theorists discussed in this section are opposed to concrete

objectives, a curriculum should certainly have general aims. In the next section, I will discuss

several factors that may influence the aims of a particular computer science curriculum.

What Should the Goals of Undergraduate CS Curriculum Be?

Curricular theorists often say that curriculum should serve the best interests of the

students then define those interests to fit their needs. Today, though, we have a great deal of data

on the modern university student, and instead of defining the needs of the student, we can use

this data to attempt to discern those needs. In computer science, though, there are other pertinent

needs beyond those of the student: Industry needs a supply of workers who have certain

computer-related skills and universities need students who can thrive in graduate schools and

ultimately expand the frontiers of the discipline. Computer science educators seem to pay better

attention to these needs, sometimes equating them with those of the students; while they should

not be equated, they should certainly be addressed. The Bureau of Labor Statistics [BLS] offers

data that can be used to depict the CS workforce and their educational needs.

Page 10 of 148

Bureau of Labor Statistics Data

The Bureau of Labor Statistics produces data relating to employment. Unlike NCES, they

offer a more detailed breakdown of computer-related occupations, splitting them into several

categories, but they offer no data about the people working those categories and their educational

backgrounds. I have examined the computer-related fields within their category of ―Computer

and Mathematical Science Occupations,‖ excluding the strictly mathematical occupations within

that category, and have also included ―computer science teachers, postsecondary.‖ I have

excluded ―computer support specialists‖ as, based on the job description and needed

qualifications, the majority of employees in that occupation likely have degrees in IT rather than

CS.

Bureau of Labor Statistics Data on Computer Science-Related Occupations

15-1011 Computer and information scientists, research 26,610

15-1021 Computer programmers 394,230

15-1031 Computer software engineers, applications 494,160

15-1032 Computer software engineers, systems software 381,830

15-1051 Computer systems analysts 489,890

15-1061 Database administrators 115,770

15-1071 Network and computer systems administrators 327,850

15-1081 Network systems and data communications analysts 230,410

15-1099 Computer specialists, all other 191,780

25-1021 Computer science teachers, postsecondary 32,520

 Total 2,685,050

Page 11 of 148

Of the CS-related occupations indexed by the BLS, about half are either programming or

software engineering, to an extent validating those who are alarmed at a perceived lack of

programming skills.

Many of the employees in software engineering have degrees in computer science

(―Computing Careers‖). The percentage of employees in the various subfields does not match up

very closely with the amount of instructional time either recommended by the ACM or observed

in the above examination of curricula. If CS curriculum is indeed meant to prepare students for

immediate job placement in the field it could dovetail far better with the needs of employers. On

the other hand, employers‘ future needs are harder to ascertain and the ACM‘s recommendations

may prepare students for productive careers better than for immediate hiring.

Tan and Venable (2008) suggest that while CS curriculum might be more focused on the

teaching of vocational skills, the goal of the university at large is to generally educate all of its

students. While all CS curricula that I examined leave general education to the purview of the

university, they all cover some aspects of the field that are theoretical enough to have little

vocational application. The question of the precise balance would seem more contextual than

anything else—as they should, schools adjust the balance between career vocational skills and

general education to fit their goals.

The desires of students are difficult to ascertain. Cohen and Kisker (2010) state that 75%

of college students go to college for career training, or to make money, but that reflects the goals

of all college students, not merely computer science majors. The National Center for Education

Statistics offers data that can be examined more specifically. 78% of surveyed computer science

majors said it was important to be financially well off, not significantly different from the

average of 77%. After two years, 71% of computer science majors said it was important, slightly

Page 12 of 148

higher than the average of 68%. 39% of computer science majors expected that a bachelor‘s

degree would be the highest degree they would receive, above the average of 32%; an additional

33% of computer science majors expected to terminate with a master‘s, closer to the average of

31%. Two years later, 39% still expected to terminate with a bachelor‘s degree, but those

planning to terminate with a master‘s had dropped to 25%, below the average of 29%. When

considering students earning two-year degrees, 56% of them chose their school to learn job

skills, above the average of 47%.
5

This data does not translate well to precise student needs, but it does generally suggest

that many computer science students, slightly more than in other majors, are studying computer

science for career-related skills. According to a report by Georgetown University‘s Center on

Education and the Workforce, 51% of the ―computing and mathematical science occupations‖

require bachelor‘s degrees and an additional 20% require master‘s degrees (Carnevale et al.,

2010). The report goes on to state that job prospects in these occupations are bright, suggesting

that computer science students‘ career hopes are not misplaced.

Computer science students‘ specific hopes within the larger field are harder to determine,

but those hopes are also less valuable. Yasuhara (2008) states that many students‘ initial

perceptions of computer science are shallow and do not accurately reflect the field as a whole.

However, it would still be useful to have more data about the tracks students pursue within

computer science.

Ideal Computer Science Curricula

I should make clear one important caveat before discussing any ideal curriculum. Tyler,

as many theorists, discusses curriculum as though it were a blank slate and its designer were

5
 These comparisons are difficult to make accurately as NCES combines computer science with information systems

in their major categories.

Page 13 of 148

implementing it for the first time; his exploration of ideal goals does not make allowances for a

preexisting curriculum. Curricular recommendations that recognize—as the ACM‘s do—that

they will not be implemented on blank canvases but instead will be strongly affected by current

practice are much better prepared for adoption (Grundy 6).

 Discussions of ideal curricula differ among curriculum theorists and educators.

The former tend to be more idealistic, while the latter are more constrained by what currently

exists and what they believe they can change. I fall with the latter group, hence the mentions of

existent CS curricula in this section. I believe that it would be exceedingly difficult to implement

an ideal CS curriculum from scratch at a university with an existing program. As the

overwhelming majority of CS curricular change occurs at such universities, any list of ideal

goals for CS curriculum should be based in reality.

While difficult, creating an ideal curriculum or curricular modification for a certain

context is only the first step in the process of curricular change. The planned modification must

be put in practice in order to be of use, and as computer scientists know, implementation of new

ideas is often quite a challenge.

When implementing curricular ideas, it is critical that a professor understands the import

and context of his changes. One can study articles written by CS educators who have reorganized

courses or introduced new ones. In the articles I have examined - which admittedly is by no

means a complete collection, or even a properly representative sample - I have not seen such

considerations discussed. This omission would not only affect the larger aims of CS; it also

suggests that insufficient attention is being paid to context in general.

Affecting curricular change requires consciousness of context, as Grundy states.

Educators must understand the forces already at work on the curriculum that they are attempting

Page 14 of 148

to modify, and if they can work against as few of those forces as possible, their changes will

have a much better chance of success. In this case, the ACM might meet with better results if,

instead of attempting to push students to new degree fields, they work with the specializations

that universities already use. Professors attempting to make smaller changes should also

understand what is driving them to make those changes and how they can best work with the

students, their department, and any outside forces to effect their desired change.

Conclusion

Curricular change in undergraduate computer science education is inevitable. New

developments in computer science will make it necessary for universities to educate students in

new areas of the field; changing preferences will obsolete other areas. As change happens, it is

important that computer science educators are well-equipped to both cope with it and enact it.

Many curricular theorists discuss how curricula should be constructed and modified, offering

suggestions of particular factors that should be considered.

Much of the existent literature about computer science curricula pays insufficient

attention to the effects of context. For example, If a professor at a small liberal arts school saw an

article about symmetric multiprocessing and wished to introduce it to his students, he would

likely be most interested in making sure his students understood the underlying theory—that

work can be parallelized for a multiprocessor machine, and that multiprocessing brings certain

advantages and disadvantages. He could add his new ideas to his class with relatively little effort.

On the other hand, if a professor at a large research university saw the same article and wished to

add it to the curriculum at her school, she would likely be more interested in specific applications

of multiprocessing, might have her students program a project that parallelized an algorithm, and

would have a much more difficult time getting the material into the curriculum.

Page 15 of 148

The many factors that influence context make it very likely that curricular development

and modification will continue to be conducted on a school-by-school basis. Given this, it is

important that computer science educators at each school have a clear understanding of the

factors acting on computer science education as a whole and the factors acting on their school.

As curricular theorists have framed and discussed many of the questions that should be asked

when working with curricula, computer science educators should consider their perspective

carefully when modifying their own curricula.

Page 16 of 148

References

About Swathmore CS. (n.d.). Swarthmore CS home page. Retrieved December 6, 2010, from

http://www.cs.swarthmore.edu/program/about.html

Accredited Programs Search. (n.d.). ABET, Inc. Retrieved November 15, 2010, from

http://www.abet.org/AccredProgramSearch/AccreditationSearch.aspx.

Barrow, R. (1984). Giving Teaching Back to Teachers: a Critical Introduction to Curriculum

Theory. New York: Wheatsheaf.

Best Undergraduate Engineering Programs – Best Colleges – Education – US News. (2010). U.S.

News and World Report. Retrieved December 6, 2010, from

http://colleges.usnews.rankingsandreviews.com/best-colleges/spec-doct-engineering

Best Undergraduate Engineering Programs – Best Colleges – Education – US News. (2010). U.S.

News and World Report. Retrieved December 6, 2010, from

http://colleges.usnews.rankingsandreviews.com/best-colleges/spec-engineering

BHCC. (n.d.). Bunker Hill Community College. Retrieved December 6, 2010, from

http://www.bhcc.mass.edu/inside.php?navID=468&programID=13&year=2009

Bureau of Labor Statistics. (2008, May). Occupational Employment and Wage Estimates:

National Cross-Industry Estimates. Bureau of Labor Statistics. Retrieved May 10, 2010

from ftp://ftp.bls.gov/pub/special.requests/oes/oesm08nat.zip.

Carnegie Foundation for the Advancement of Teaching. (n.d.). Carnegie Foundation for the

Advancement of Teaching. Retrieved December 6, 2010, from

http://www.carnegiefoundation.org/

Page 17 of 148

Carnevale, A. P., Smith, N. & Strohl, J., (2010, June). Help Wanted: Projections of Jobs and

Education Requirements Through 2018. Retrieved from

http://cew.georgetown.edu/jobs2018/

Casper College ~ Casper, Wyoming. (n.d.). Casper College, Casper, Wyoming, USA - Education

for a Lifetime!. Retrieved December 6, 2010, from

http://www.caspercollege.edu/computer_science/index.html

Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, A., … Cross, J.

(2008, December). Computer Science Curriculum 2008. Proceedings from Association

for Computing Machinery, IEEE Computer Society. Retrieved from ACM Digital

Library.

Chang, C., Denning, P., Cross, J., Engel, G., Sloan, R., Carver, D., … Wolz, U. (2001,

December) Computing Curricula 2001: Computer Science. Proceedings from Association

for Computing Machinery, IEEE Computer Society. Retrieved from ACM Digital Library

Cohen, A. & Kisker, C. (2009). The Shaping of American Higher Education: Emergence and

Growth of the Contemporary System (2
nd

 ed.). Jossey-Bass.

Computer Science Major - Mathematical Sciences - Departments - College of Arts and Sciences

- Lewis & Clark. (n.d.). Welcome to Lewis & Clark. Retrieved December 6, 2010, from

http://www.lclark.edu/college/departments/mathematical_sciences/majors/computer_scie

nce_major/

Computer Science, Caltech - Requirements. (n.d.). Computer Science, Caltech. Retrieved

December 6, 2010, from http://www.cs.caltech.edu/academics/opt_info.html

Computing Careers » Software Engineering. (n.d.). Computing Careers. Retrieved December 6,

2010, from http://computingcareers.acm.org/?page_id=12

Page 18 of 148

Degree Requirements. (n.d.). University of Illinois at Urbana-Champaign Computer Science.

Retrieved December 6, 2010, from

https://agora.cs.illinois.edu/display/undergradProg/Degree+Requirements

Department of Electrical Engineering and Computer Science - EECS. (n.d.). University of

Central Florida. Retrieved December 6, 2010, from

http://www.eecs.ucf.edu/index.php?id=majorsacademics/undergraduate/computerscience

Dewar, R. B.K., & Schonberg, E., (2008). Computer Science Education: Where Are the Software

Engineers of Tomorrow? Crosstalk: The Journal of Defense Software Engineering

January Software Technology Support Center. Retrieved May 10, 2010, from

<http://www.stsc.hill.af.mil/crossTalk/2008/01/0801DewarSchonberg.html>.

Gornitzka, A., Amaral, A., & Kogan, M., (2005). Reform and Change in Higher Education

Analysing Policy Implementation. Dordrecht: Springer.

Grundy, S., (1987). Curriculum: Product or Praxis? London: Falmer.

Hazzan, O., Almstrum, V. L., Guzdial, M. & Petre, M. Challenges to Computer Science

Education Research. Proceedings of SIGCSE, 05, 191-192. Retrieved from ACM Digital

Library.

Informal Guide to Computer Science -- Major Requirements. (n.d.). Williams College Computer

Science Department. Retrieved December 6, 2010, from

http://www.cs.williams.edu/ifg/fullguide_7.html

Irving Valley College Pages - Computer Science. (n.d.). Irving Valley College - From Possibility

to Actuality. Retrieved December 6, 2010, from

http://www.ivc.edu/cis/pages/default.aspx

Page 19 of 148

Lansing Community College. (n.d.). Lansing Community College - Where Success Begins.

Retrieved December 6, 2010, from

http://www.lcc.edu/mathematics/computer_science/curriculum/

Liberal Arts Computer Science Consortium. (2007). A 2007 Model Curriculum for a Liberal

Arts Degree in Computer Science. Journal on Educational Resources in Computing

(JERIC), 7(2). Retrieved December 6, 2010, from

http://cs.wellesley.edu/~pmetaxas/LACS2007report.pdf

Mannheim, K., (1962). An Introduction to the Sociology of Education. Ed. W. A. Stewart.

London: Routledge & Kegan Paul.

MIT Course Catalog: Department of Electrical Engineering and Computer Science. (n.d.) MIT.

Retrieved December 6, 2010, from http://web.mit.edu/catalog/degre.engin.elect.html

National Center for Educational Statistics. (see below).

Ni, L., McKlin, T., and Guzdial, M., (2010, March) "How Do Computing Faculty Adopt

Curricular Innovations? The Story from Instructors." ACM Digital Library. Proceedings

of SIGCSE '10, 544-548. Retrieved from ACM Digital Library.

NYU Computer Science Department. (n.d.). Computer Science Majors. Retrieved December 6,

2010, from http://cs.nyu.edu/web/Academic/Undergrad/majors.html

Ohio State University. (n.d.). Undergraduate majors. Retrieved December 6, 2010, from

http://majors.osu.edu/

Program: Computer Science - Oberlin College (n.d.). Oberlin College. Retrieved December 6,

2010, from

http://catalog.oberlin.edu/preview_program.php?catoid=18&poid=2064&bc=1

Page 20 of 148

Programs: Computer Science. (n.d.). Rose-Hulman Institute of Technology. Retrieved December

6, 2010, from www.rose-hulman.edu/Catalog0910/program-cs.htm

Randolph, J. (2007). Computer science education research at the crossroads: A methodological

review of computer science education research: 2000-2005. Retrieved from

http://www.archive.org/details/randolph_dissertation.

Randolph, J., Julnes, G., Sutinen, E., & Lehman, S. (2008). A Methodological Review of

Computer Science Education Research. Journal of Information Technology Education, 7,

135-162.

Reif, H. L., & Mathieu, R. G., (2009) Global Trends in Computing Accreditation. Computer

Nov. 2009: 102-04.

Shackelford, R., Cross, J. H., Davies, G., Impagliazzo, J., Kamall, R., LeBlanc, R., … Topi, H.

(2005, September) Computing Curricula 2005: The Overview Report. ACM, AIS, IEEE,

30 Retrieved from ACM Digital Library.

Soh, L., Samal, A., & Nugent, G. (2007). An Integrated Framework for Improved Computer

Science Education: Strategies, implementations, and results. Computer Science

Education, 17(1), 59-83.

Stenhouse, L. (1975). An introduction to curriculum research and development. London:

Heinemann.

Surendra, N. C., & Denton J. W., (2009) Designing IS Curricula for Practical Relevance:

Applying Baseball's "Moneyball" Theory. Journal of Information Systems Education

20(1). 77-85. Retrieved from WilsonWeb.

Page 21 of 148

http://www.rose-hulman.edu/Catalog0910/program-cs.htm
http://www.archive.org/details/randolph_dissertation

Tan, G., & Venables, A. (2008). Survival Mode: The Stresses and Strains of Computing

Curricula Review." Journal of Information Technology Education: Innovations in

Practice 7. 33-43.

Tyler, R. W. (1949). Basic Principles of Curriculum and Instruction. Chicago: University of

Chicago.

Undergraduate Program, Computer Science Department - USC Viterbi School of Engineering.

(n.d.). Computer Science Department - USC Viterbi School Of Engineering. Retrieved

December 6, 2010, from http://www.cs.usc.edu/current-students/undergrad.html

Yasuhara, K. (2008). Viewpoints from the Doorstep: Pre-major Interest in and Perceptions of

Computer Science. Retrieved from

http://staff.washington.edu/yasuhara//cv/publications/dissertation/Yas08.dissertation-

Viewpoints_from_the_doorstep.pdf

Page 22 of 148

http://www.cs.usc.edu/current-students/undergrad.html

A note on the data from the National Center for Education Statistics: The data used in this paper

was from the 2003-04 Beginning Postsecondary Students Longitudinal Study, First Follow-up

(BPS:04/06). It was created with the aid of the Data Analysis System, http://nces.ed.gov/dasol/.

The precise variables used to create each table are given on each table. The variance estimation

was Balanced Repeated Replication (BRR).

A note on the school curricula: This data was collected in May, 2010, from the most current

curricula listed on each school‘s Web site. The Carnegie classification data and ABET

accreditation data were collected in November, 2010, from the Web sites of the Carnegie

Foundation and ABET, respectively. The liberal arts colleges and community colleges were

selected as a broad sample of their respective categories, covering various sizes and locations;

the large research universities chosen were the two largest private and public universities by

single campus size; and the top tier schools were selected as a broad sample of schools highly

ranked by US News.

Page 23 of 148

Category Community Colleges

School Casper College
Lansing

Community
College

Bunker Hill
Community

College

Irvine Valley
College

Carnegie data

Level 2-year 2-year 2-year 2-year

Control Public Public Public Public

Enrollment 3,799 19,471 7,821 9,865

Classification Category Category Category Category

Undergrad
Instructional

Program:
Assoc: Associate's Assoc: Associate's Assoc: Associate's Assoc: Associate's

Graduate
Instructional

Program:
(not applicable) (not applicable) (not applicable) (not applicable)

Enrollment Profile:
ExU2: Exclusively
undergraduate

two-year

ExU2: Exclusively
undergraduate

two-year

ExU2: Exclusively
undergraduate

two-year

ExU2: Exclusively
undergraduate

two-year

Undergraduate
Profile:

Mix2: Mixed
part/full-time

two-year

PT2: Higher part-
time two-year

PT2: Higher part-
time two-year

PT2: Higher part-
time two-year

Size and Setting:
M2: Medium two-

year
VL2: Very large

two-year
M2: Medium two-

year
L2: Large two-year

Basic

Assoc/Pub-R-M:
Associate's--Public

Rural-serving
Medium

Assoc/Pub-R-L:
Associate's--Public

Rural-serving
Large

Assoc/Pub-U-MC:
Associate's--Public

Urban-serving
Multicampus

Assoc/Pub-S-MC:
Associate's--Public
Suburban-serving

Multicampus

ABET Accredited No No No No

Total CS-Related
Classes

4 3 5 7

Intro N/A N/A

CIT120 Intro to
Computer Science
& Object Oriented

Programming

N/A

 CIT239
Introduction to

JAVA

CS Core
Requirements

COSC 1030
Computer Science

I

CPSC 230 -
Algorithms and

Computing w/C++

CIT285 Advanced
Java

CS 1 Introduction
to Computer
Systems 4

 COSC 2030
Computer Science

II

CPSC 231 -
Computing and
Data Structures

CIT242 Data
Structures

 COSC 2150
Computer

Organization

CPSC 260 -
Computer Science

Structures

Page 24 of 148

Category Community Colleges

School Casper College
Lansing

Community
College

Bunker Hill
Community

College

Irvine Valley
College

Required Choices One of: N/A One of: Four of:

 COSC 2300
Discrete

Structures

MAT291 Linear

Algebra

CS 6A Computer
Discrete

Mathematics I

COSC 2403 Linux
with X-Windows

CIT237 C++

Programming

CS 6B Computer
Discrete

Mathematics II

 COSC 2404 Java
and Java Script
Programming

CS 36 C

Programming

 COSC 2405 MFC
Windows

Programming in
C++

CS 37 C++

Programming

COSC 2406 Java
Programming

 CS 38
WWW/Intranet w/

Java

COSC 2409
Programming:

Topic

CS 50A HTML
Programming

Page 25 of 148

Category Research Universities

School
New York
University

University of
Southern
California

The Ohio State University
University of

Central Florida

Carnegie data

Level 4-year or above 4-year or above 4-year or above 4-year or above

Control
Private not-for-

profit
Private not-for-

profit
Public Public

Enrollment 39408 32160 50995 42465

Classification Category Category Category Category

Undergrad
Instructional

Program:

A&S+Prof/HGC:
Arts & sciences

plus
professions,

high graduate
coexistence

Bal/HGC:
Balanced arts &

sciences/professio
ns, high graduate

coexistence

Bal/HGC: Balanced arts &
sciences/professions, high

graduate coexistence

Prof+A&S/HGC:
Professions plus
arts & sciences,
high graduate
coexistence

Graduate
Instructional

Program:

CompDoc/Med
Vet:

Comprehensive
doctoral with

medical/veteri
nary

CompDoc/MedVe
t: Comprehensive

doctoral with
medical/veterinar

y

CompDoc/MedVet:
Comprehensive doctoral
with medical/veterinary

CompDoc/NMed
Vet:

Comprehensive
doctoral (no

medical/veterina
ry)

Enrollment
Profile:

MU: Majority
undergraduate

MU: Majority
undergraduate

HU: High undergraduate
HU: High

undergraduate

Undergraduate
Profile:

FT4/MS/LTI:
Full-time four-

year, more
selective, lower

transfer-in

FT4/MS/HTI: Full-
time four-year,
more selective,

higher transfer-in

FT4/MS/HTI: Full-time
four-year, more selective,

higher transfer-in

MFT4/S/HTI:
Medium full-

time four-year,
selective, higher

transfer-in

Size and
Setting:

L4/HR: Large
four-year,

highly
residential

L4/R: Large four-
year, primarily

residential

L4/R: Large four-year,
primarily residential

L4/NR: Large
four-year,
primarily

nonresidential

Basic

RU/VH:
Research

Universities
(very high
research
activity)

RU/VH: Research
Universities (very

high research
activity)

RU/VH: Research
Universities (very high

research activity)

RU/H: Research
Universities

(high research
activity)

ABET
Accredited

 Yes Yes Yes

Total CS-
Related Classes

12 23 34 15

Page 26 of 148

Category Research Universities

School
New York
University

University of
Southern
California

The Ohio State University
University of

Central Florida

Intro

V22.0101
Introduction to

Computer
Science

CSCI 101L
Fundamentals of

Computer
Programming

CSE 201 Elementary
Computer Programming
(not needed for major)

COP 3223 Intro
to Programming

with C

COP 3330 Intro
to OO

Programming
with Java

ENGR 102
Engineering
Freshmen
Academy

COP 3502
Computer
Science I

CS Core
Requirements

V22.0102 Data
Structures

MATH 225 Linear
Algebra and
Differential
Equations

MA 366 Discrete
Mathematical Structures I

COP 3503
Computer
Science II

V22.0201
Computer
Systems

Organization

EE 364
Introduction to
Probability and

Statistics

MA 566 Discrete
Mathematical Structures

II

EEL 3801
Computer

Organization

V22.0202
Operating
Systems

Engineering and
Computer Science

STAT 427 Introduction to
Probability and Statistics
for Engineering and the

Sciences I

COP 3402
Systems
Software

V22.0310 Basic

Algorithms
CSCI 102L Data

Structures

STAT 428 Introduction to
Probability and Statistics
for Engineering and the

Sciences II

COT 3100 Intro
to Discrete
Structures

V63.0121
Calculus I

CSCI 200 Object
Oriented

Programming

CSE 221 Software
Development Using

Components,

COP 4331 Procs.
for OO

Development

V63.0120
Discrete

Mathematics

CSCI 201L
Principles of

Software
Development

CSE 222 Development of
Software Components

EEL 4768 Intro to
Computer

Architecture

CSCI 271 Discrete

Methods in
Computer Science

CSE321 Case Studies in
Component-Based

Software

COP 4020
Programming

Languages

CSCI 303 Design
and Analysis of

Algorithms

CSE360 Introduction to
Computer Systems

COP 4600
Introduction to

Operating
Systems

Page 27 of 148

Category Research Universities

School
New York
University

University of
Southern
California

The Ohio State University
University of

Central Florida

CSCI 377
Introduction to

Software
Engineering

CSE 541 Elementary
Numerical Methods

COT 4210
Discrete

Computational
Structures

CSCI 402x
Operating
Systems

CSE 560 Systems Software
Design, Development, and

Documentation

CSCI 477ab Design
and Construction
of Large Software

Systems

CSE 601 Social and Ethical
Issues in Computing

EE 101

Introduction to
Digital Logic

CSE 625 Introduction to
Automata and Formal

Languages

EE 106Lx
Introduction to

Computer
Engineering/Comp

uter Science

CSE 655 Principles of
Programming Languages

EE 201L

Introduction to
Digital Circuits

CSE 660 Introduction to
Operating Systems

Core
Requirements

EE 357 Basic
Organization of

Computer
Systems

CSE 670 Introduction to
Database Systems I

(cont.)

MATH 125
Calculus I

CSE 675.01 Introduction
to Computer Architecture

MATH 126
Calculus II

CSE 680. Introduction to
Analysis of Algorithms

and Data Structures

MATH 226
Calculus III

Elec Eng 206 Switching
Circuits Laboratory

EE 261 Introduction to

Logic Design

 EE 300 Electrical Circuits

EE 309 Electrical Circuits

Laboratory

EE 320 Electronic Devices

and Controls

Page 28 of 148

Category Research Universities

School
New York
University

University of
Southern
California

The Ohio State University
University of

Central Florida

EE 567

Microprocessor/Microcon
troller Laboratory I

Required
Choices

Five of: Four of:
Technical Elective Option

(7 or 8 classes, some
including not CSE classes):

Three CS
electives

400-level CS

classes

CSCI 300,
Introduction to

Intelligent Agents
Using Science

Fiction

Software Systems

 Calc II

CSCI 351,
Programming and

Multimedia on
World Wide Web

Hardware-Software
Systems

Two math
electives

 Linear Algebra
CSCI 445,

Introduction to
Robotics

Information Systems

CSCI 459,
Computer
Systems &

Applications
Modeling

Fundamentals

Information and
Computation Assurance

CSCI 460,
Introduction to

Artificial
Intelligence

Individualized Option:

CSCI 464,
Foundations of

Exotic
Computation

Graphics/Animation Track

CSCI 480,
Computer
Graphics

AI Track

CSCI 485, File and

Database
Management

Advanced Studies Track

Required
Choices (cont.)

CSCI 490x,

Directed Research
Business Information

Systems Track

CSCI 499; Special

Topics

Page 29 of 148

Category Research Universities

School
New York
University

University of
Southern
California

The Ohio State University
University of

Central Florida

EE 450,
Introduction to

Computer
Networks

EE 454L,
Introduction to
Systems Design

Using
Microprocessors

 EE 459L

EE 465,
Probabilistic
Methods in
Computer

Systems Modeling

 EE 477L

EE 490x, Directed

Research

EE 499; Special

Topics

MATH 458.
Numerical
Methods

Page 30 of 148

Category Liberal Arts

School
Lewis & Clark

College
Williams College Oberlin College

Swarthmore
College

Carnegie data

Level 4-year or above 4-year or above 4-year or above
4-year or

above

Control
Private not-for-

profit
Private not-for-

profit
Private not-for-

profit
Private not-

for-profit

Enrollment 3259 2050 2857 1474

Classification Category Category Category Category

Undergrad
Instructional Program:

A&S-F/NGC: Arts
& sciences focus,

no graduate
coexistence

A&S-F/SGC: Arts &
sciences focus,
some graduate

coexistence

A&S-F/SGC: Arts
& sciences focus,
some graduate

coexistence

A&S-F/NGC:
Arts &

sciences focus,
no graduate
coexistence

Graduate Instructional
Program:

Postbac-
Prof/Other:

Postbaccalaureat
e professional

(other dominant
fields)

Postbac-A&S:
Postbaccalaureate

, arts & sciences
dominant

S-Postbac/Other:
Single

postbaccalaureat
e (other field)

(not
applicable)

Enrollment Profile:
MU: Majority

undergraduate
VHU: Very high
undergraduate

VHU: Very high
undergraduate

ExU4:
Exclusively

undergraduat
e four-year

Undergraduate Profile:

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

FT4/MS/LTI:
Full-time four-

year, more
selective,

lower
transfer-in

Size and Setting:
S4/HR: Small four-

year, highly
residential

S4/HR: Small four-
year, highly
residential

S4/HR: Small four-
year, highly
residential

S4/HR: Small
four-year,

highly
residential

Basic

Bac/A&S:
Baccalaureate

Colleges--Arts &
Sciences

Bac/A&S:
Baccalaureate

Colleges--Arts &
Sciences

Bac/A&S:
Baccalaureate

Colleges--Arts &
Sciences

Bac/A&S:
Baccalaureate
Colleges--Arts

& Sciences

ABET Accredited No No No No

Total CS-Related
Classes

11 8 7 9

Intro
CS 171: Computer

Science I

CS 134
Introduction to

Computer Science

CPSC 021 –
Intro to CS

Page 31 of 148

Category Liberal Arts

School
Lewis & Clark

College
Williams College Oberlin College

Swarthmore
College

CS 172: Computer

Science II

CS 136 Data
Structures and

Advanced
Programming.

CS Core Requirements
Computational

Mathematics - CS
230

CS 237 Computer
Organization

CSCI 210:
Computer

Organization

 CPSC 035 –
Data

Structures and
Algorithms

Computer
Architecture and

Assembly
Languages - CS

277

CS 256 Algorithms
CSCI 275:

Programming
Abstractions

CPSC 097 –
Advanced

Topic

Algorithm Design
and Analysis - CS

383

CS 334 Principles
of Programming

Languages

CSCI 280:
Introduction to

Algorithms

Statistical
Concepts and

Methods - Math
255

CS 361 Theory of
Computation

CSCI 383: Theory
of Comp Science

Required Choices Five of: Two of: Three of: One of:

CS 363: Operating

Systems

315 :
Bioinformatics and
Biological Physics

 311 - Databases
 CPSC 033 –
Computer

Organization

CS 367: Computer

Graphics
323: Software
Engineering

 331 - Compilers

 CPSC 052 –
Principles of
Computer

Organization

CS 369: Artificial

Intelligence
336: Computer

Networks

 307 -
Programming

Languages

CS 373:
Programming

Language
Structures

337: Introduction
to Computer

Science

 342 - Computer
Networks

One of:

CS 393: Computer

Networks
338: Parallel
Processing

 341 - Operating
Systems

CPSC 037 –
Structure and
Interpretation
of Computer

Programs

Page 32 of 148

Category Liberal Arts

School
Lewis & Clark

College
Williams College Oberlin College

Swarthmore
College

CS 465: Theory of
Computation

371: Computer
Graphics

 357 - Computer
Graphics

CPSC 075 –
Principles of

Compiler
Design and

Construction

CS 467: Advanced

Computer
Graphics

373: Artificial
Intelligence

 343 -
Information

Security

CS 487: Advanced

Algorithms
432: Operating

Systems
 364 - Artificial

Intelligence
One of:

CS 488: Software

Development
434: Compiler

Design
 317 - Computer

Architecture
CPSC 041 –
Algorithms

CS 495: Topics in

Computer Science

 333 - Natural
Language

Processing

CPSC 046 –
Theory of

Computation

Required Choices
(cont.)

 347 - Software

Engineering

 365 - Advanced

Algorithms

Three of (no
overlap w/
previous):

CPSC 040 -
Graphics

CPSC 041 -
Algorithms

CPSC 044 -
Databases

 CPSC 045 - OS

CPSC 046 –
Theory of

Computation

CPSC 052 -

Architecture

 CPSC 063 - AI

CPSC 065 –
Natural

Language
Processing

CPSC 067 –
Information

Retrieval

CPSC 072 –
Computer

Vision

Page 33 of 148

Category Liberal Arts

School
Lewis & Clark

College
Williams College Oberlin College

Swarthmore
College

CPSC 075 –
Compiler

Design

CPSC 081 –
Adaptive
Robotics

CPSC 082 –

Mobile
Robotics

CPSC 087 –
Distributed
Computing

Page 34 of 148

Category Top Tier

School
California Institute

of Technology

Rose-
Hulman

Institute of
Technology

Massachusetts
Institute of
Technology

University of
Illinois at Urbana-

Champaign

Carnegie data

Level 4-year or above
4-year or

above
4-year or above 4-year or above

Control
Private not-for-

profit
Private not-

for-profit
Private not-for-

profit
Public

Enrollment 2171 1904 10320 40687

Classification Category Category Category Category

Undergrad
Instructional Program:

A&S+Prof/HGC:
Arts & sciences

plus professions,
high graduate
coexistence

(Special
focus

institution)

Bal/HGC: Balanced
arts &

sciences/profession
s, high graduate

coexistence

Bal/HGC:
Balanced arts &

sciences/professi
ons, high
graduate

coexistence

Graduate Instructional
Program:

Doc/STEM:
Doctoral, STEM

dominant

(Special
focus

institution)

CompDoc/NMedVet
: Comprehensive

doctoral (no
medical/veterinary)

CompDoc/MedVe
t: Comprehensive

doctoral with
medical/veterinar

y

Enrollment Profile:
MGP: Majority

graduate/professio
nal

VHU: Very
high

undergradua
te

MGP: Majority
graduate/profession

al

MU: Majority
undergraduate

Undergraduate
Profile:

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

(Special
focus

institution)

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

FT4/MS/LTI: Full-
time four-year,
more selective,

lower transfer-in

Size and Setting:
S4/HR: Small four-

year, highly
residential

(Special
focus

institution)

L4/HR: Large four-
year, highly
residential

L4/R: Large four-
year, primarily

residential

Basic

RU/VH: Research
Universities (very

high research
activity)

Spec/Engg:
Special
Focus

Institutions--
Schools of

engineering

RU/VH: Research
Universities (very

high research
activity)

RU/VH: Research
Universities (very

high research
activity)

ABET Accredited No Yes Yes No

Total CS-Related
Classes

21 21 13 18

Page 35 of 148

Category Top Tier

School
California Institute

of Technology

Rose-
Hulman

Institute of
Technology

Massachusetts
Institute of
Technology

University of
Illinois at Urbana-

Champaign

Intro
CS 1 Intro. to
Computation

CSSE 120
Introduction
to Software
Developmen

t

CS 125 Intro to

Computer
Science

CS 2 Intro. to
Programming

Methods

CSSE 220
Object-

Oriented
Software

Developmen
t

CS Core Requirements
Ma/CS 6 a Intro. to

Discrete Math

CSSE 230
Data

Structures
and

Algorithm
Analysis

6.042J Mathematics
for Computer

Science

CS 173 Discrete
Structures

CS 21 Decidability

and Tractability

CSSE 232
Computer

Architecture

6.005 Elements of
Software

Construction

CS 210 Ethical
and Professional

Issues in CS

CS 24 Intro. to

Computing
Systems

CSSE 304
Programmin
g Language
Concepts

6.006 Introduction
to Algorithms

CS 225 Data
Structure and

Software
Principles

CS 38 Introduction

to Algorithms

CSSE 332
Operating
Systems

6.033 Computer
Systems

Engineering

CS 231 Computer
Architecture I

E 11 Technical

Communication

CSSE 333
Database
Systems -

SQL

6.034 Artificial
Intelligence

CS 232 Computer
Architecture II

 E 10

CSSE 371
Software

Requirement
s and

Specification

6.046 Design and
Analysis of
Algorithms

CS 241 System
Programming

CSSE 374
Software

Architecture
and Design

CS 242

Programming
Studio

Page 36 of 148

Category Top Tier

School
California Institute

of Technology

Rose-
Hulman

Institute of
Technology

Massachusetts
Institute of
Technology

University of
Illinois at Urbana-

Champaign

CSSE 473
Design and
Analysis of
Algorithms

CS 373 (was CS
273) Theory of
Computation

CSSE 474
Theory of

Computation

MATH 461
Probability

Theory

ECE 130
Introduction

to Logic
Design

MATH 415

Applied Linear
Algebra

ECE 332
Computer

Architecture
II

MA 275
Discrete and
Combinatori
al Algebra I

(assuming CS

track)

MA 221
Differential
Equations
and Matrix

Algebra

CS 357 Numerical

Methods I

CS Core Requirements
(cont.)

MA 375
Discrete and
Combinatori
al Algebra II

CS 421
Programming

Languages and
Compilers

MA 381
Introduction

to
Probability

with
Applications
to Statistics

CS 473

Algorithms

Required Choices
Major project or

thesis
Four CS

electives
One of: Two of:

 CS electives
18.03 Differential

Equations
400-level classes

 63 CS units
18.06 Linear

Algebra

 Senior Project

Page 37 of 148

Category Top Tier

School
California Institute

of Technology

Rose-
Hulman

Institute of
Technology

Massachusetts
Institute of
Technology

University of
Illinois at Urbana-

Champaign

36 units in MA,

ACM, CS
 One of:

6.141 Robotics

Science and
Systems

One, two-class
specialization,
selected from:

6.172 Performance

Engineering of
Software Systems

Systems

6.035 Computer

Language
Engineering

Databases

6.813 User Interface

Design &
Implementation

Graphics

Human-

Computer
Interaction

Two advanced

subjects
Languages

Three exploratory

classes
Artificial

Intelligence

 Security

 Networking

Page 38 of 148

 No Yes

 (%) (%)

Estimates

 Total 52.9698 47.0302

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 54.7658 45.2342

 Humanities 58.1276 41.8724

 Social/behavioral sciences 60.9317 39.0683

 Life sciences 73.9506 26.0494

 Physical sciences 57.9494 42.0506

 Math ‡ ‡

 Computer/information science 43.6935 56.3065

 Engineering 59.5767 40.4233

 Education 58.1749 41.8251

 Business/management 62.1498 37.8502

 Health 49.8663 50.1337

 Vocational/technical 40.8887 59.1113

 Other technical/professional 50.2618 49.7382

Standard Error (BRR)

 Total 1.0618 1.0618

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 1.9981 1.9981

 Humanities 2.6549 2.6549

 Social/behavioral sciences 2.9651 2.9651

 Life sciences 5.3386 5.3386

 Physical sciences 7.0806 7.0806

 Math ‡ ‡

 Computer/information science 4.8075 4.8075

 Engineering 6.0671 6.0671

 Education 3.5816 3.5816

 Business/management 2.1134 2.1134

 Health 2.5411 2.5411

 Vocational/technical 3.3525 3.3525

 Other technical/professional 2.9354 2.9354

Purpose (1st school) 2004: job skills

Page 39 of 148

Weighted Sample sizes(n/1,000s)

 Total 2215.6374

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 437.5167

 Humanities 190.6211

 Social/behavioral sciences 118.5513

 Life sciences 32.6606

 Physical sciences 28.8961

 Math ‡

 Computer/information science 75.1797

 Engineering 39.9486

 Education 107.6768

 Business/management 236.3672

 Health 184.3408

 Vocational/technical 87.747

 Other technical/professional 150.2807

Page 40 of 148

No Yes
(%) (%)

Total 23.3 76.7

 Undeclared or not in a degree program 21.9 78.1
 Humanities 29.2 70.8
 Social/behavioral sciences 25.9 74.1
 Life sciences 24.6 75.4
 Physical sciences 29.3 70.7
 Math 32.8 67.2
 Computer/information science 21.9 78.1
 Engineering 24.6 75.4
 Education 32.8 67.2
 Business/management 16.6 83.4
 Health 21.8 78.2
 Vocational/technical 19.8 80.2
 Other technical/professional 22.2 77.8

Total 0.46 0.46

 Undeclared or not in a degree program 1.15 1.15
 Humanities 1.7 1.7
 Social/behavioral sciences 1.37 1.37
 Life sciences 2.12 2.12
 Physical sciences 3.88 3.88
 Math 5.64 5.64
 Computer/information science 2.77 2.77
 Engineering 3.64 3.64
 Education 2.2 2.2
 Business/management 1.08 1.08
 Health 1.58 1.58
 Vocational/technical 2.18 2.18
 Other technical/professional 1.61 1.61

Importance 2004: being
financially well off

Estimates

Major when last enrolled (12 cat) in 2006

Standard Error (BRR)

Major when last enrolled (12 cat) in 2006

Page 41 of 148

Total 3,832.70

 Undeclared or not in a degree program 605.9
 Humanities 391.6
 Social/behavioral sciences 337.8
 Life sciences 124.3
 Physical sciences 61.1
 Math 24.4
 Computer/information science 124.6
 Engineering 102.9
 Education 231.8
 Business/management 495.8
 Health 286.7
 Vocational/technical 136.6
 Other technical/professional 294.5

Weighted Sample sizes(n/1,000s)

Major when last enrolled (12 cat) in 2006

Page 42 of 148

No Yes

(%) (%)

Total 32.2 67.8

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 29.6 70.4

 Humanities 39.8 60.2

 Social/behavioral sciences 38.4 61.6

 Life sciences 42.4 57.6

 Physical sciences 37 63

 Math 54.2 45.8

 Computer/information science 28.6 71.4

 Engineering 26.9 73.1

 Education 47 53

 Business/management 25.2 74.8

 Health 30 70

 Vocational/technical 27.6 72.4

 Other technical/professional 31.4 68.6

Total 0.51 0.51

 Undeclared or not in a degree program 1.4 1.4

 Humanities 1.46 1.46

 Social/behavioral sciences 1.57 1.57

 Life sciences 2.57 2.57

 Physical sciences 3.69 3.69

 Math 5.81 5.81

 Computer/information science 2.74 2.74

 Engineering 2.17 2.17

 Education 2.21 2.21

 Business/management 1.25 1.25

 Health 1.68 1.68

 Vocational/technical 2.27 2.27

 Other technical/professional 1.75 1.75

Importance 2006: being

financially well off

Estimates

Standard Error (BRR)

Major when last enrolled (12 cat) in 2006

Page 43 of 148

Total 3,832.70

 Undeclared or not in a degree program 605.9

 Humanities 391.6

 Social/behavioral sciences 337.8

 Life sciences 124.3

 Physical sciences 61.1

 Math 24.4

 Computer/information science 124.6

 Engineering 102.9

 Education 231.8

 Business/management 495.8

 Health 286.7

 Vocational/technical 136.6

 Other technical/professional 294.5

Weighted Sample sizes(n/1,000s)

Major when last enrolled (12 cat) in 2006

Page 44 of 148

 No degree or certificate Certificate Associate's degree

 (%) (%) (%)

Estimates

 Total 1.0629 4.7807 9.4589

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 1.5981 6.4293 11.1388

 Humanities 0.3603 3.7838 5.521

 Social/behavioral sciences 0.1152 2.3711 3.1417

 Life sciences 0.0419 1.3079 2.0076

 Physical sciences 0.5701 6.9495 3.2244

 Math 0 0 1.5744

 Computer/information science 0.9088 3.0311 10.7322

 Engineering 0.0384 4.2655 6.5924

 Education 0.0693 0.7648 6.3743

 Business/management 0.3081 2.5209 6.3522

 Health 0.8716 4.3515 13.8551

 Vocational/technical 1.4166 7.2528 13.5457

 Other technical/professional 0.3184 5.0515 10.6365

Standard Error (BRR)

 Total 0.1291 0.2716 0.4273

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 0.366 0.6351 1.1459

 Humanities 0.0947 0.6343 0.9297

 Social/behavioral sciences 0.0669 0.4578 0.5394

 Life sciences 0.051 0.7399 0.7433

 Physical sciences 0.228 1.7637 1.4054

 Math 0 0 1.5447

 Computer/information science 0.526 0.9621 2.1058

 Engineering 0.0416 1.4246 1.4648

 Education 0.0833 0.2493 1.3507

 Business/management 0.1284 0.3872 0.7107

 Health 0.5382 0.7571 1.3036

 Vocational/technical 0.6282 1.4184 2.4919

 Other technical/professional 0.1135 0.7905 1.3625

Highest degree expected, 2003-04

Page 45 of 148

Bachelor's degree Post-BA/post-MA certificate Master's degree Doctoral degree Professional degree

(%) (%) (%) (%) (%)

31.706 0.414 35.4061 11.9008 5.2705

33.8251 0.2798 31.4976 11.4101 3.8213

31.6523 0.231 40.3548 13.8309 4.266

23.8314 0.305 40.4562 20.1498 9.6296

17.1797 0.0118 24.537 28.8159 26.0983

19.8097 0.8179 32.9621 26.5399 9.1265

25.7062 0 46.5176 22.5246 3.6771

38.9682 0.8753 33.1643 9.6087 2.7115

27.1385 0.2074 41.9053 17.5515 2.301

26.5975 0.9907 51.2915 10.5596 3.3524

31.2546 0.4757 45.3982 9.7773 3.913

32.7144 0.6366 31.8397 10.2105 5.5206

35.8378 0.1861 30.6882 6.2482 4.8245

32.638 0.2019 37.7924 9.0413 4.3199

0.5651 0.0674 0.5524 0.3831 0.2159

1.4082 0.1142 1.3027 1.2236 0.4865

1.8745 0.072 1.8537 1.0436 0.5519

1.5248 0.1558 1.509 1.282 0.8735

1.9666 0.0118 2.0986 2.1995 1.999

3.4771 0.631 4.5504 3.172 2.006

4.7096 0 5.6543 4.4413 1.5671

2.9391 0.81 2.6192 2.8014 1.0011

2.6985 0.2217 3.1214 2.1001 0.8094

1.9639 0.3797 2.1369 1.0812 0.7551

1.4023 0.1482 1.546 0.7512 0.5058

1.6161 0.2498 1.5531 1.1167 0.7684

2.7555 0.2046 3.2022 1.2225 1.332

1.6488 0.114 1.9291 1.1839 0.6333

Page 46 of 148

Weighted Sample sizes(n/1,000s)

 Total 3832.6796

Major when last enrolled (12 cat) in 2006

 Undeclared or not in a degree program 605.9075

 Humanities 391.6472

 Social/behavioral sciences 337.7749

 Life sciences 124.2804

 Physical sciences 61.1235

 Math 24.3861

 Computer/information science 124.6423

 Engineering 102.887

 Education 231.751

 Business/management 495.8342

 Health 286.6998

 Vocational/technical 136.578

 Other technical/professional 294.5007

Page 47 of 148

Highest degree expected, 2006

No
degree

Undergra
d
certificate AA/AS BA/BS

Post-
BA/BS MA/MS

Post-
MA/MS

Professio
nal Doctoral

 (%) (%) (%) (%) (%) (%) (%) (%) (%)

Estimates
 Total 4.8528 6.4415 12.2807 31.5536 0.7614 29.6356 0.4284 5.7049 8.3411

 Major when last enrolled (12 cat) in 2006

 Undeclared or nondegree 4.9395 9.7276 13.7125 33.5139 0.6624 25.9679 0.2729 4.9293 6.274

 Humanities 2.0765 3.908 7.154 34.656 0.9945 34.3373 0.2565 6.8606 9.7566

 Social/behavioral sciences 1.5239 2.4374 6.2595 21.0731 0.8412 35.7214 0.8669 11.7991 19.4775

 Life sciences 0.159 2.3815 1.7728 17.3755 1.384 25.2292 1.0564 29.2344 21.4073

 Physical sciences 2.8292 8.0858 4.3676 14.1006 0 30.0167 0.1798 12.7415 27.6787

 Math 0.1612 1.9872 1.2661 20.9466 0.128 54.1184 0 4.6413 16.7512

 Computer/information
science 4.4723 2.4442 17.5124 39.8122 1.2553 25.3483 0.1861 0.741 8.2281

 Engineering 3.1662 6.0711 5.1796 30.3135 0.5809 37.8199 0.4218 4.44 12.0069

 Education 2.1011 2.8212 6.1554 25.3227 0.7718 51.0096 0.9034 1.9383 8.9766

 Business/management 1.8626 2.0717 8.8933 37.8647 0.8668 37.7785 0.5409 3.6361 6.4854

 Health 1.3706 6.8479 19.6969 31.1506 0.9399 27.5177 0.7408 4.4601 7.2754

 Vocational/technical 3.6452 10.2472 19.0992 36.9081 1.2111 21.6918 0.0776 4.527 2.5928

 Other
technical/professional 3.4174 6.8306 12.9864 35.5368 0.6908 30.9277 0.4034 4.214 4.9928

Page 48 of 148

Standard Error (BRR)

 Total 0.3443 0.3267 0.4746 0.5227 0.099 0.5068 0.0542 0.2092 0.2868

 Major when last enrolled (12 cat) in 2006

 Undeclared or nondegree 0.976 0.8183 1.0403 1.3135 0.1916 1.2328 0.1308 0.6563 0.7533

 Humanities 0.436 0.5227 0.9116 1.7746 0.4115 1.7937 0.1019 0.7677 0.9113

 Social/behavioral sciences 0.354 0.4519 0.8515 1.2346 0.2426 1.4181 0.236 0.9925 1.2141

 Life sciences 0.1583 0.9921 0.6409 2.3664 0.7658 2.058 0.5774 2.1893 1.8671

 Physical sciences 0.9924 1.8887 1.7028 2.6405 0 4.6995 0.1802 2.3943 3.7098

 Math 0.1669 1.4185 1.105 4.4468 0.1277 5.4665 0 2.1021 3.5384

 Computer/information
science 1.701 0.7798 2.4885 3.0884 0.4678 2.6497 0.1417 0.4549 1.6785

 Engineering 1.545 3.0294 1.0867 3.1368 0.2812 3.089 0.2753 1.055 1.881

 Education 0.6458 0.693 1.1819 1.9494 0.295 2.3102 0.3032 0.5528 1.1654

 Business/management 0.3594 0.381 0.929 1.4106 0.368 1.4317 0.1468 0.4554 0.7403

 Health 0.324 0.9794 1.9046 1.8549 0.3777 1.5231 0.3402 0.6918 0.7925

 Vocational/technical 0.7489 1.6966 2.9384 2.893 0.4569 2.5906 0.0751 0.9949 0.8337

 Other
technical/professional 0.7205 1.0224 1.4835 1.8087 0.2827 1.7558 0.1913 0.599 0.7073

Page 49 of 148

Weighted Sample sizes(n/1,000s)

 Total 3832.68

 Major when last enrolled (12 cat) in 2006

 Undeclared or nondegree 605.9075

 Humanities 391.6472

 Social/behavioral sciences 337.7749

 Life sciences 124.2804

 Physical sciences 61.1235

 Math 24.3861

 Computer/information science 124.6423

 Engineering 102.887

 Education 231.751

 Business/management 495.8342

 Health 286.6998

 Vocational/technical 136.578

 Other technical/professional 294.5007

Page 50 of 148

The Relationship between Educational Theory and Educational Practice in Undergraduate

Computer Science Education

For decades, educational researchers have argued that the gap between educational theory

and practice must be bridged. Researchers and practitioners have attempted to define roles that

they should play in the educational process, and entire subfields have sprung up in an attempt to

translate educational theory to educational policy. Despite these efforts, the gap has persisted

across all levels of education.

The theory-practice gap, while significant, is even more complicated at the level of

higher education: each field has its own educationalists who sit between the practitioners of the

field and the more general educational theorists. The classic gap between theory and practice is,

in higher education, fracturing into two: a gap between the specialized educationalists of each

field and the general educational community, and a gap between those educationalists and their

corresponding practitioners.
1
 These gaps make it more difficult to effect change in educational

practice, and serve to further remove practitioners and theorists from one another. The gaps also

lead to redundancy in educational research, with educationalists of each field attempting to solve

many of the same problems.

Computer science educational researchers are beginning to argue against this isolated

approach (see Almstrum in Hazzan et al., Hazzan in Almstrum et al.). However, they are still

early in the process of response, and it seems likely that their response will only address the

isolation of computer science educators from the larger educational community. While

addressing that isolation is beneficial, an approach that integrated the existing educational

structure with the work of both educational researchers and educationalists from different

1
 A note on terminology used in this paper: Educational researchers are those who produce and discuss general

educational theory. ‘Educationalist’ refers to those in each field who write about the educational process in that
field. ‘Practitioner’ refers to the professors, adjuncts, or TAs who actually teach the classes.

Page 51 of 148

disciplines would allow the harnessing of the benefits presented by the current model while

ameliorating many of its shortcomings.

Guzdial, in Almstrum et al., summarizes the problem:

The real challenge to computing education is to avoid the temptation to re-invent

the wheel. Computers are a revolutionary human invention, so we might think that

teaching and learning about computers requires a new kind of education. That‟s

completely false: The basic mechanisms of human learning haven‟t changed in

the last 50 years.

Too much of the research in computing education ignores the hundreds of years

of education, cognitive science, and learning sciences research that have gone

before us.

This is not the first time that computer science has had difficulties with reinventing the wheel—

in “One Man‟s View of Computer Science,” Richard Hamming states:

 “[…] one of my major complains about the computer field is that whereas

Newton could say „If I have seen a little farther than others, it is because I have

stood on the shoulders of giants,‟ I am forced to say, „Today we stand on each

other‟s feet.‟ Perhaps the central problem we face in all of computer science is

how we are to get to the situation where we build on top of the work of others

rather than redoing so much of it in a trivially different way.”

Randolph et al. (2008), in a review of computer science education research, offer more

explanation of the drawbacks of ignoring the work of educational researchers. Their paper

concludes that computer science educationalists often perform their research with practices that

the educational and psychological research communities have established as ineffective, thus

making the educationalists‟ results insufficiently validated. In his dissertation, Randolph (2006)

also examines computer science education research and looks for the presence of literature

reviews in articles. His findings are inconclusive, but he believes that the majority of computer

science education research is conducted without a proper preceding literature review. If

Randolph is correct, the problem noticed by Guzdial is broader than he describes it: computer

Page 52 of 148

science educators, along with ignoring the work of educational theorists and cognitive

researchers, also ignore each other‟s work.

 The solution supported by Guzdial, Randolph, and others is that computer science

educationalists should build their work atop that of others. Petre and Hazzan, among others,

write as though computer science educationalists must “borrow” ideas from other disciplines and

the question at hand has become that of what should be borrowed and how it should be borrowed

(Petre in Hazzan et al., Hazzan in Almstrum et al.). This argument, though, promotes a

unidirectional flow of ideas and research—the educationalists would borrow without offering in

return the ideas built on the work of the lenders.

 Instead of solving the problem, then, this merely moves it: the educationalists will not

have to reinvent the wheel, but without the educationalists‟ researchers being published in

general educational journals, the educational researchers will. That in and of itself is not

terrible—educational researchers have been working as they have for many years and have

produced a great deal of useful research and theory in that time. However, the two theory-

practice gaps magnify the problem: computer science educationalists will not only be borrowing

from educational researchers, behavioral researchers, and psychologists, but also from

educationalists in many other fields. The sheer number of educationalists in different fields

makes it critical that these educationalists build on each other‟s work rather than duplicating it.

 The discussion of whether computer science educationalists properly build on the work of

education theorists or each other is moot if computer science educational practitioners do not pay

attention to the work of those educationalists. Unfortunately, there is little data on the factors that

contribute to computer science educational practice. Tutty et al. (2008) discuss the teaching of IT

academics, citing an article stating that many academics in accounting are unaware of the

Page 53 of 148

majority of educational methods. Almstrum‟s (2005) statement that colleagues may “convey the

attitude that educational research is not real research” suggests that computer science educational

practice is not significantly shaped by educational theory either. Ni et al. (2010) discuss the

implementation of curricular innovation in computer science, finding that even after a new

computer science course was presented to several professors in a series of workshops, the

majority of the professors did not even adopt ideas from the course. In order for computer

science educationalists to play a larger role in determining the practice of computer science

education, it is important that these educationalists work to see their ideas implemented.

 Computer science educationalists recognize the challenge of selecting and adapting

others‟ research to better their own, but have not discussed the difficulties of how to best present

their own results and discoveries to ease adaptation by others. This is less of an issue when

results are presented for implementation by another educator in a similar situation, but if results

are being shared with a larger audience, it becomes much more important. The recommendations

made by Randolph et al. provide a base for such a presentation—results will not be useful to

others if they cannot be firmly established as valid under certain conditions—but the later steps

are not as clear. The question of how to present new ideas or results so that others will adapt

them is an open one in the world of education, but there are several reasons why a three-tiered

system such as that which exists can be beneficial to the interactions between theory and

practice.

 One common criticism of theorists by practitioners is that the theorists are often too

removed from the actual practice, and thus their theory is often inapplicable to real situations.

Educationalists, often being practitioners in their respective fields, are better informed about the

realities of practice in those fields. If they were to work to communicate those realities to the

Page 54 of 148

educational theorists, the theorists would learn how their ideas played out in practice and the

educationalists would be able to advantage themselves of educational theory that was produced

by better-informed theorists.

 Similarly, one difficulty in the implementation of educational theory by practitioners is

that actual implementation is a complicated process—theory must often be promoted, modified,

or even required by policymakers before it is enacted in schools. The teacher-researcher

movement supports the idea that each individual practitioner should assess the suitability of new

theory to fit their needs and modify theory, but this is often difficult in a higher education

environment, where each professor is expected to be a research in his or her own field and does

not have time to also be a research-practitioner. Meanwhile, those who favor centralized

direction of theory are faced with the decentralized authority and different contexts of higher

education, making it difficult to prescribe a theory that would both work and be adopted in every

context.

The educationalists of each field, however, in standing between the practitioners and the

educational theorists, can act both as teacher-researchers and as educational theorists. In

computer science, there are educationalists at large research universities, small liberal arts

schools, and almost every situation in between. If these educationalists avail themselves of

educational theory and translate it so that it fits their situations, they can then present it to other

practitioners in more concrete forms, thus greatly increasing the chances of its adoption.

Although computer science is only now developing its process of educational research,

its situation is far from unique. Computer science educationalists should look to the experiences

of educationalists in other fields to gain insight into how they can best build their own system of

educational research. While creating such a system, however, they should do more than just

Page 55 of 148

borrow the work of others; they should contribute their own work to the educational

conversation. If their experiences are then helpful to other educationalists and educational

theorists, they will have done more than just dealing with the gap between educational theory

and practice—they will have helped to close it.

Page 56 of 148

References

Almstrum, V. L., Hazzan, O., Ginat, D., & Morley, T. Import and Export to/from Computing

Science Education: The Case of Mathematics Education Research. Proceedings of

ITiCSE’02, 193-194. Retrieved from ACM Digital Library.

Hamming, R. W. (2007). One man's view of computer science. In ACM Turing award lectures.

Retrieved from ACM Digital Library.

Hazzan, O., Almstrum, V. L., Guzdial, M. & Petre, M. Challenges to Computer Science

Education Research. Proceedings of SIGCSE, 05, 191-192. Retrieved from ACM Digital

Library.

Ni, L., McKlin, T., and Guzdial, M., (2010, March) "How Do Computing Faculty Adopt

Curricular Innovations? The Story from Instructors." ACM Digital Library. Proceedings

of SIGCSE '10, 544-548. Retrieved from ACM Digital Library.

Randolph, J. (2007). Computer science education research at the crossroads: A methodological

review of computer science education research: 2000-2005. Retrieved from

http://www.archive.org/details/randolph_dissertation.

Randolph, J., Julnes, G., Sutinen, E., & Lehman, S. (2008). A Methodological Review of

Computer Science Education Research. Journal of Information Technology Education, 7,

135-162.

Tutty, J., Sheard., J., & Avram, C. (2008). Teaching in the current higher education environment:

perceptions of IT academics. Computer Science Education 18 (3), 171-185.

Page 57 of 148

http://www.archive.org/details/randolph_dissertation

Programming Project Postmortem

My initial plan for this project was to write a program that would calculate shortest

distances for round-the-world air itineraries. Round-the-world plane tickets are offered by the

three major airline alliances and allow the purchaser to plan their own itinerary and visit a

number of destinations. These tickets are priced by total flight distance - Star Alliance, for

example, offers 29,000, 34,000, and 39,000 mile tiers. The purchaser can then visit up to a

certain number of cities, typically fifteen or less, as long as his or her itinerary satisfies certain

other minor conditions. To save money, the purchaser would want to travel the shortest possible

route, but the creation of such a route is difficult. I wanted to write a program that would ask the

user for the cities that they wished to visit and then give them the shortest itinerary that visited

those cities.

From a programming perspective, the problem has several aspects. The airlines offer data

about their flight schedules; this data must be processed to convert it to a form such that a

traveling salesman algorithm may be run on it to find the shortest itinerary. After finding that

itinerary, the data would then be presented to the user. I wanted to get the airlines' flight data,

which is available as a PDF, process it with regular expressions to get all the distances of the

existing flights, run Djikstra's algorithm on the resulting data to create a complete graph of cities,

use the Lin-Kernighan heuristic to find the shortest path that visited all the cities, and output the

data as a web page that drew the route with Google Maps.

Unfortunately, I bit off a good bit more than I could chew, and only a minority of this

project ended up being finished. I started by implementing Djikstra's algorithm, as I thought it

was the simplest part of the project. It's currently the only part that works correctly and is

finished. When I started to write the code for the Lin-Kernighan heuristic, I discovered that many

Page 58 of 148

of the descriptions of the heuristic that I was using left various implementation details up in the

air. I made assumptions for the details, but in the process of programming and debugging, I

found that my assumptions were flawed. Due to some terrible coding style choices, it took me far

longer than it should have to discover this, and by the time I realized what I had done wrong, a

lot of the structure of the code depended on things that would have to be changed.

Before I talk in more detail about the traveling salesman portion of the project, I will

introduce the problem in a little more detail. The traveling salesman problem is one of the more

studied problems in computer science. It can be modeled with a traveling salesman who needs to

visit several cities and return to his starting city in the shortest possible distance. It has a number

of applications-the most obvious having to do with routing, but others include circuit design and

even telescope aiming (Applegate et al.). The problem can either be exactly solved or

approximately solved; as I had read that exact solvers were more complex to implement, I

decided to write an approximate solver-with the small size of the problems I anticipated solving,

I would have been able to run the solver several times from different starting tours, which would

have produced an optimal tour with high probability. I chose to implement the Lin-Kernighan

heuristic as it seemed to strike a good balance between performance and complexity.

The Lin-Kernighan heuristic (which is different from the Kernighan-Lin algorithm) was

devised by Lin and Kernighan in 1973. It is a tour improvement method, meaning it starts with a

random tour visiting all the cities then improves that tour as much as it can. The simplest such

method is 2-opt, which swaps pairs of edges in the tour so as to shorten it. A tour that cannot be

further improved by 2-opt swaps is called 2-optimal. 3-opt is a similar method, making swaps of

trios of edges. 3-opt can overcome some local minima that 2-opt cannot, but it is only another

step. Lin and Kernighan noticed that while 3-opt produced shorter tours than 2-opt, their returns

Page 59 of 148

diminished when expanding to 4-opt, and the computation required to calculate optimal tours

increased significantly with the larger number of swaps (Lin and Kernighan).

Their idea was to create a k-opt algorithm that could make 2 swaps, 3, or more as the

situation demanded. Essentially, as long as the total gain of the swaps was positive, they could

add more swaps to their current attempt. This allowed them to make some swaps that added to

the tour length, enabling them to overcome local minima better than other methods. Even in their

paper, where the heuristic is first presented, they immediately present refinements that allow it to

find better solutions while examining fewer tours and edges (Lin and Kernighan).

When I started working on this project, I expected that the implementation of the

traveling salesman heuristic itself would not be very difficult—after all, it was a problem that

had a great deal of discussion; there were bound to be several implementations I could look at to

see how it was done. I thought that the project was more about the sum of the parts, and the

traveling salesman implementation itself would be a matter of looking at a discussion of the

algorithm and implementing some pseudocode.

Once I had written code for Djikstra’s algorithm, I already had some structure to my

project, so when I started reading about Lin-Kernighan, I thought about how I could implement it

on top of what I already had. That was probably my first mistake-the structure that worked for

Djikstra’s did not work as well for Lin-Kernighan.

I started writing code for Lin-Kernighan without fully understanding the algorithm-

although I thought I did—and I didn't understand how I would deal with the implementation

details that the various papers and pseudocodes did not really mention. In fact, I didn't realize

that some of those implementation details, particularly those having to do with roads, existed at

all. There are indeed many papers that discuss the Lin-Kernighan heuristic, but many of them do

Page 60 of 148

not offer implementation details or pseudocode. Worse yet, as the Lin-Kernighan heuristic is

dated, most of the papers that do offer implementations have made some attempt to improve or

modify it; this makes it difficult to look at another paper when having difficulties understanding

one author’s explanation.

I'd never tried to program a project of any magnitude before, and while I'd been told time

and time again that it's impossible to keep track of everything in your head, I still tried to. This

wasn't a problem when implementing Djikstra's as the code was small enough that I could keep it

in my head, but once I started with the TSP, it became a serious issue. I should have decided

what each class was meant to do first, but I wasn't totally sure what I needed each class to do-and

as I implemented more of Lin-Kernighan, what I thought I needed from each class changed.

Since I didn't have tests, or even a clear specification for classes, the interfaces changed; I

attempted to change the rest of the code to keep up with that, but quite a few bugs were created.

It didn't actually take that long to get some code for Lin-Kernighan, but there were many

bugs in it at first. I had to get rid of quite a few of them before the program worked enough for

me to figure out that there were flaws in its implementation of Lin-Kernighan itself. The

pseudocodes of Lin-Kernighan that I had seen were usually not clear on exactly how they

implemented the connections between cities. I had initially used directional Road objects as that

was intuitive for implementing Djikstra’s, but using directional objects when doing Lin-

Kernighan creates issues when closing tours-see below.

Page 61 of 148

The above is a four-city instance. The highlighted red path from B to C is being cut.

Depending on the implementation, either a path from C to A or from B to D would be added; the

directional issues appear in either case. I’ll add a path from C to A.

Page 62 of 148

After adding the blue path from C to A, there are three paths connected to A. Either A to

B or D to A can be removed, but removing A to B closes off part of the tour and isolates it from

the last city. Thus, I next remove D to A. As I will have modified roads going to all the cities at

this point, I will then close the tour by connecting D to B.

At this point, there are two paths entering B and leaving it, and two paths leaving C and

none entering it. Half of the tour should be reversed to make the tour valid.

Page 63 of 148

The green paths were reversed, making the tour valid. Unfortunately, the structure I had

in my program did not allow for easy reversing of directional paths, so I sought another solution.

My initial solution was to replace the Roads with nondirectional Connector objects (see

second version of ‘tsp.py’). However, after reworking much of the rest of the code to handle

those objects, I discovered that modifying tours with nondirectional edges was not that much

easier than modifying tours with directional edges-it became more difficult to figure out where

exactly I was when I was walking the tour to cut and add edges.

I next attempted to implement a simpler 2-opt solver. When building it on top of the

Connectors, I had difficulty figuring out which ends had to be reconnected, and when building it

on top of the Roads, I ran into the same issue with closing tours creating cycles. At that point, the

semester was starting to end, and I ran out of time to get the code working.

Designing a program that does one thing is significantly different from designing a

program that performs several functions that do not necessarily depend on each other. When

Page 64 of 148

designing this project, I did not have a process that dealt with this well: I thought about the

suitability of the structure for only the part of the project that I was currently working on, but

then once I started working on another part, I assumed that the structure I had would work for

that as well. I should have either planned for the needs of each part - which would have been

exceedingly difficult - or not planned on any carryover between the parts, instead devising new

structures that stored and provided access to the data in such ways that it was easy to deal with it

in that part, then programming functions that translated the data between the parts. Had I done

that, changing the data structure for the traveling salesman solver would have only affected the

solver, not the code for Djikstra's algorithm or the rest of the problem. In retrospect, I should

have stopped trying to use the same Road structure I had for Djikstra's altogether and instead

written something else that better fit the needs of Lin-Kernighan.

The bigger problem, though, happened when trying to implement the Lin-Kernighan

heuristic. Implementing an algorithm that one doesn't understand is always going to be

challenging, but I think that there are several things I could have done differently that would

have ameliorated some of the difficulties. First, my understanding of exactly how the heuristic

worked changed several times, and each time I tried to change my code to fit what I thought

should be happening. However, each time, I had to reread the code, try to figure out what I had

thought was happening, and try to change it to fit what I now thought should happen. Writing a

clear specification for each function and class helps when writing new functions that build on

those others, but when writing code for a poorly-understood algorithm, I think it is very

important to describe not only what the code should do, but how it is doing that.

Properly dividing the code would also have made it easier to modify and fix, although

there were several factors that made it difficult to do this. Subdividing an algorithm that is poorly

Page 65 of 148

understood often leads to—and did, in this case, lead to—functions that weren't divided on a

proper boundary and have to clumsily modify data that should be modified elsewhere. In

attempting to implement the Lin-Kernighan heuristic, though, each pseudocode I saw divided the

problem differently and I didn't understand why they divided it where they did. I again was too

wedded to the divisions I first made and had difficulty significantly changing how the code

worked.

I see flexibility as one of the cornerstones of computer science. In the course of working

on this project, there were several instances where I considered throwing out much of the code

and starting over, but each time, remembering how long it had taken to create the existent code, I

decided to keep the code there was and make it work somehow. By the time I realized I would be

better off throwing it out, I did not have the time to rewrite it and the numerous issues it had

prevented me from getting a real solver working at all.

Page 66 of 148

References

Applegate, D. L., Bixby, R., Chvátal, V., & Cook, W. (2006). The traveling salesman problem: a

computational study. Princeton: Princeton University Press.

Lin, S., & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations Research, 21, 498–516. Retrieved December 6, 2010,

from the JSTOR database.

Helsgaun, K. (2000). An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic. European Journal of Operational Research, 126(1), 106-130. Retrieved

December 6, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.4908&rep=rep1&t

Johnson, David S., & McGeoch, L. A. (1997). The Traveling Salesman Problem: A Case Study

in Local Optimization. In E. H. Aarts, & J. K. Lenstra (Eds.), Local search in

combinatorial optimization (p. 215–310). Chichester: Wiley.

Round the World Fare – Star Alliance. (n.d.). Star Alliance. Retrieved December 6, 2010, from

http://www.staralliance.com/en/fares/round-the-world-fare/

Page 67 of 148

This is a Python implementation of the Lin-Kernigha n heuristic for
solving the Euclidean traveling salesman problem. V arious parts of this
code do not work as intended; other parts of the co de may not work at
all.

It was programmed for Python 2.7 and was not tested on other versions of
Python.

That said, all of this is licensed under the Creati ve Commons Attribution
3.0 Unported License (see http://creativecommons.or g/licenses/by/3.0/ for
license text), so if you think you can take it and make it into something
useful, go for it.

Richard Scruggs
December, 2010

=== ======================
=======

This program is intended to solve a particular clas s of traveling
salesman problems - mapping the shortest path for a round the world air
itinerary.

There are two different versions of this code: the older version uses
directional Road objects, the newer uses nondirecte d Connector objects.
Neither works, but they don't work for different re asons, so I have
included both.

When you run tests.py, it will ask you if you'd lik e to load a file or
use random data. I've provided two data files, 'thr ee' and 'twelve', each
with the indicated number of cities. The order in w hich they appear in
the file (and thus the default tour the program wil l create) is also the
order of the shortest tour - for 'three', the tour distance is about 57;
for 'twelve' it's about 151.

If you'd like to create your own small instance, th ere are two methods to
do so: The Windows port of Concorde provides a GUI that can be used to
add cities to a map and save that map, which this p rogram can then read.
Alternately, the city data files may be edited by h and. The file format
the program uses is very simple and is described at readCities in
'utils.py'.

'djikstra.py' also offers a test function that time s how long it takes to
run Djikstra's algorithm on some cities.

Page 68 of 148

 1 from utils import *
 2 import copy
 3 from itertools import permutations
 4
 5 """
 6 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 7 solving the Euclidean traveling salesman problem. Various parts of this code do
 8 not work as intended; other parts of the code may not work at all.
 9
 10 That said, all of this is licensed under the Creative Commons Attribution 3.0
 11 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 12 text), so if you think you can take it and make it into something useful, go for
 13 it.
 14
 15 Richard Scruggs
 16 December, 2010
 17 """
 18
 19 """This is the module that implements the TSP solving functions. It is the
 20 later version, so its functions deal with Connectors rather than with Roads."""
 21
 22 class TSP():
 23 """This class ties together the TSP. It loads all the precomputed data and
 24 contains methods to do all the preprocessing before handing it off to a
 25 TSPSolver. After it is solved, it then tidies the result and prints it
 26 out."""
 27 #At least, that's what it would ideally do.
 28
 29 class TSPSolver():
 30 """This is a superclass for a solver for TSPs. It lays out all the methods
 31 that a solver should implement. At present, it only exists to raise errors
 32 if those methods are not implemented."""
 33 def __init__(self):
 34 raise NotImplementedError()
 35 def solve(self, cities):
 36 """Each Solver should be able to create a solution from just a list of
 37 cities (with populated Reachables)."""
 38 raise NotImplementedError()
 39
 40 class BruteForce(TSPSolver):
 41 """Solves a TSP by checking all possible tours to find the shortest. This is
 42 O(n!), so it is essentially useless on tours of more than eight or nine
 43 cities."""
 44 def __init__(self):
 45 pass
 46 def solve(self, cityList):
 47 if isinstance(cityList, Cities):
 48 cityList = cityList.cityList
 49 perms = permutations(cityList)
 50 shortest = Tour(perms.next())
 51 for perm in perms:
 52 tempTour = Tour(perm)
 53 if tempTour < shortest:
 54 shortest = tempTour
 55 return shortest
 56
 57 class TwoOpt(TSPSolver):
 58 """This TSP solver attempts to solve the problem with 2-opt - removing two
 59 roads and replacing them with two others that connect those four cities
 60 differently in an attempt to create a shorter tour."""
 61 def __init__(self):
 62 pass
 63 def solve(self, cities):
 64 """Returns a 2-optimal tour of the given cities."""
 65 if isinstance(cities, Tour):
 66 T = copy.copy(cities)
 67 else:
 68 T = Tour(cities)
 69 return self.twoOptSolve(T)
 70 def twoOptSolve(self, T):
 71 """Calculates the two-optimal path for the given tour."""

1 of 3

Page 69 of 148

 72 initialDistance = T.updateDistance()
 73 for optOne in T.insideRoads[:]:
 74 for optTwo in T.insideRoads[:]:
 75 if shares(optOne, optTwo):
 76 continue
 77 #I'm being clever. If a given pair is valid, the other one isn't
 78 T.remove(optOne)
 79 T.remove(optTwo)
 80 swapOne = optOne.endpoints[0].getRoad(optTwo.endpoints[0])
 81 swapTwo = optOne.endpoints[1].getRoad(optTwo.endpoints[1])
 82 if not (swapOne in T or swapTwo in T):
 83 T.add(swapOne)
 84 T.add(swapTwo)
 85 if T.isValid():
 86 if T.updateDistance() < initialDistance:
 87 return twoOptSolve(T)
 88 T.remove(swapOne)
 89 T.remove(swapTwo)
 90 T.add(optOne)
 91 T.add(optTwo)
 92 continue
 93 T.remove(swapOne)
 94 T.remove(swapTwo)
 95 swapOne = optOne.endpoints[0].getRoad(optTwo.endpoints[1])
 96 swapTwo = optOne.endpoints[1].getRoad(optTwo.endpoints[0])
 97 T.add(swapOne)
 98 T.add(swapTwo)
 99 if T.updateDistance() < initialDistance:
 100 return twoOptSolve(T)
 101 T.remove(swapOne)
 102 T.remove(swapTwo)
 103 T.add(optOne)
 104 T.add(optTwo)
 105
 106 class SimpleLK(TSPSolver):
 107 """This TSP solver is a simple version of the Lin-Kernighan heuristic,
 108 without any of the enhancements discussed by Lin and Kernighan in their
 109 orignial paper. I did add one enhancement mentioned by Helsgaun - when it
 110 finds a new shorter tour, it is supposed to start solving that tour
 111 immediately."""
 112 def __init__(self):
 113 """This Java-ish model probably isn't the best."""
 114 pass
 115 def solve(self, cities):
 116 """Returns the shortest tour that visits all the given cities."""
 117 if isinstance(cities, Tour):
 118 T = copy.copy(cities)
 119 else:
 120 T = Tour(cities)
 121 if not T.isValid():
 122 print "Invalid Tour."
 123 return T
 124 return self.recursiveSearch(T, T.insideRoads[:])
 125
 126 def recursiveSearch(self, T, cutRoads, visited=[], gain=0):
 127 """Performs a recursive Lin-Kernighan search to find the shortest tour.
 128
 129 The search is performed like this: Each road i is removed, one at a
 130 time. I get a list of roads shorter than i from i's destination to any
 131 other cities. I try adding each of those roads to the tour; their
 132 destinations then have three roads connected to them. I check to see if
 133 the two pre-existing roads can be cut and the other ends of those roads
 134 can be connected to the starting city - the source of i - to produce a
 135 valid tour. If it can and the valid tour is shorter, the search is
 136 restarted with that tour; if the valid tour is longer, the search
 137 deepens, trying to find another cut and add that will produce a shorter
 138 tour."""
 139 for cutRoad in cutRoads:
 140 gain += cutRoad.distance
 141 if visited:
 142 addRoads = T.getAddRoads(visited[-1], cutRoad.distance)
 143 else :
 144 addRoads = T.getAddRoads(cutRoad.endpoints[0], cutRoad.distance)

2 of 3

Page 70 of 148

 145 T.remove(cutRoad)
 146 visited.append(cutRoad.otherEnd(visited[-1]))
 147 for x in range(len(addRoads)):
 148 tempAdd = addRoads.pop()
 149 gain -= tempAdd.distance
 150 nextCuts, shortCuts = getCuts(T, visited, gain, tempAdd)
 151 #getCuts adds tempAdd to T.
 152 if shortCuts:
 153 return self.recursiveSearch(T, T.insideRoads)
 154 if nextCuts:
 155 U = copy.copy(T)
 156 recurseBest = self.recursiveSearch(U, nextCuts, visited, gain)
 157 if recurseBest < T:
 158 return self.recursiveSearch(recurseBest, recurseBest.insideRoads,
 159 gain += tempAdd.distance
 160 T.remove(tempAdd)
 161 visited.pop()
 162 gain -= cutRoad.distance
 163 T.add(cutRoad)
 164 visited.pop()
 165 visited.pop()
 166 if not T.isValid():
 167 #I'm under the assumption here that I only need to return a valid
 168 #tour if I was passed one. Otherwise, I need to return something
 169 #that definitely won't be passed up as it's longer than what there was.
 170 return float('Inf')
 171 return T #if our starting tour is best.
 172
 173 def getCuts(tour, visited, gain, addRoad):
 174 """Returns the possible cuts from addRoad's destination, paired with their
 175 closing roads. If a closing road is found that shortens the tour, it returns
 176 an empty list of cuts and a True. The tour will have been modified in the
 177 testing process - and we just jump out when we see the new one is shorter -
 178 so it doesn't need to return the particular cut or close."""
 179 #AddRoad should not be added to the tour yet or we might return it as a
 180 #possible cut. Note that we add it here and don't remove it after.
 181 cuts = []
 182 closeDistances = []
 183 for road in tour.insideRoads:
 184 if addRoad.otherEnd(visited[-1]) in road.endpoints:
 185 if (road.endpoints[0] not in visited) and (road.endpoints[1] not in visited):
 186 cuts.append(road)
 187 #Now, cuts is a list of roads from addRoad.destCity to anywhere we haven't
 188 #modified.
 189 tour.add(addRoad)
 190 visited.append(addRoad.otherEnd(visited[-1]))
 191 #For each road in cuts, I try to remove it and close the tour.
 192 for road in cuts:
 193 tour.remove(road)
 194 visited.append(road.otherEnd(visited[-1]))
 195 closeRoad = visited[-1].getRoad(visited[0])
 196 tour.add(closeRoad)
 197 visited.append(closeRoad.otherEnd(visited[-1]))
 198 cuts.remove(road)
 199 if tour.isValid():
 200 if (road.distance + closeRoad.distance < gain):
 201 return [],True
 202 else:
 203 pass
 204 cuts.append(road)
 205 tour.add(road)
 206 visited.pop()
 207 tour.remove(closeRoad)
 208 visited.pop()
 209 tour.updateDistance
 210 return cuts, False

3 of 3

Page 71 of 148

 1 #!/usr/bin/env python
 2 import random
 3 from math import sqrt
 4 import bisect
 5
 6 """
 7 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 8 solving the Euclidean traveling salesman problem. Various parts of this code do
 9 not work as intended; other parts of the code may not work at all.
 10
 11 That said, all of this is licensed under the Creative Commons Attribution 3.0
 12 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 13 text), so if you think you can take it and make it into something useful, go for
 14 it.
 15
 16 Richard Scruggs
 17 December, 2010
 18 """
 19
 20 """This module provides many utility functions that the rest of the code uses.
 21 This is the later version of this file, so many of the functions it implements
 22 deal with Connectors rather than with Roads."""
 23
 24 def measureDistance(cityA, cityB):
 25 """Returns the distance between city A and city B using the Pythagorean
 26 theorem."""
 27 return sqrt((max(cityA.y, cityB.y) - min(cityA.y, cityB.y))**2 + \
 28 (max(cityA.x, cityB.x) - min(cityA.x, cityB.x))**2)
 29
 30 def shares(connectorA, connectorB):
 31 """Returns True if the connectors share an endpoint, False otherwise."""
 32 for endpoint in connectorA.endpoints:
 33 if endpoint in connectorB.endpoints:
 34 return True
 35 return False
 36
 37 def createConnections(cities, connectedness):
 38 """Creates connections among the cities. Connectedness should be between 0
 39 and 1, and controls how many other cities each city is connected to.
 40 Destroys the passed list or Cities object and returns a new one."""
 41 #Note that I want each city connected to at least one other. That won't
 42 #always happen with this.
 43 if isinstance(cities, Cities):
 44 cities = cities.cityList
 45 newCities = []
 46 while cities:
 47 city = cities.pop()
 48 for destination in cities:
 49 if (connectedness > random.random()):
 50 tempDistance = measureDistance(city, destination)
 51 city.reachables.append(Road(city, destination, [city, destination], tempDistance
 52 destination.reachables.append(Road(destination, city, [destination, city], tempDistance
 53 newCities.append(city)
 54 return Cities(newCities)
 55
 56 def readCities(filename):
 57 """Reads cities from the given filename. Returns a Cities object.
 58 As far as input format, I'm trying to follow the format used by the Windows
 59 version of Concorde, for simplicity, but I want more things than it expects,
 60 so I'm tacking things on in places it doesn't notice.
 61
 62 The file is expected to be formatted like:
 63 6 0 0.75
 64 21.239837 89.716312 New York
 65 17.987805 79.787234 Atlanta
 66 17.987805 68.794326 Philadelphia
 67 25.406504 79.787234 Chicago
 68 25.406504 69.858156 Houston
 69 22.256098 59.929078 Miami
 70
 71 with the first line being: cityCount segmentCount connectedness
 72 I'll read cityCount and use it to not read segments; I do not yet read or
 73 write segments.
 74 Connectedness is something I tacked on; Concorde ignores it; my code does
 75 not require it but will use it if present.
 76

1 of 9

Page 72 of 148

 77 I believe that the default Concorde save format is .qs - although it doesn't
 78 use that extension and I'm not sure what exactly the specifications of the
 79 format are.
 80 """
 81 cities = Cities([])
 82 f = open(filename)
 83 line = f.readline()
 84 line = line.split()
 85 if len(line) > 2:
 86 connectedness = float(line[-1])
 87 else:
 88 connectedness = 0
 89 cityCount = int(line[0])
 90 for x in range(cityCount):
 91 line = f.readline()
 92 if not line:
 93 break
 94 #The below call is being clever. If lineParse gets a name from the line,
 95 #the string is never used; otherwise the string is used as a city name.
 96 cities.append(City(*lineParse(line, str(x))))
 97 f.close()
 98 return cities, connectedness
 99
 100 def lineParse(line, name):
 101 """Parses the given line to get values that can be used to create a City.
 102 Uses defaultName for the city's name if unable to find one on the line.
 103 >>> lineParse("17.987805 79.787234 Atlanta", "0")
 104 ([17.987805, 79.787234], 'Atlanta')
 105
 106 >>> lineParse("17.987805 79.787234", "0")
 107 ([17.987805, 79.787234], '0')
 108 """
 109 words = line.split()
 110 x = float(words[0])
 111 y = float(words[1])
 112 if len(words) > 2:
 113 name = " ".join(words[2:])
 114 return [[x,y], name]
 115
 116 def YesOrNo(question, default=-1):
 117 """Asks the user the passed question. Returns True if their answer is yes,
 118 False if it isn't. If default is passed, returns it on null input."""
 119 answer = raw_input(question)
 120 while True:
 121 answer = answer.strip()
 122 if answer == "":
 123 if default != -1:
 124 return default
 125 print "Your answer was not parsed properly. Please enter 'yes' or 'no'."
 126 answer = raw_input(question)
 127 continue
 128 answer = answer.lower()
 129 if answer[0] == 'y':
 130 return True
 131 if answer[0] == 'n':
 132 return False
 133 print "Your answer was not parsed properly. Please enter 'yes' or 'no'."
 134 answer = raw_input(question)
 135
 136 class Cities:
 137 """A class for a group of cities. This allows various list-like methods of
 138 accessing the group, but is mostly just a wrapper around a list of City
 139 objects."""
 140 def __init__(self, cityList):
 141 self.cities = {}
 142 for city in cityList:
 143 self.cities[city.name] = city
 144 self.cityList = cityList
 145 def __getitem__(self, key):
 146 if type(key) is int:
 147 return self.cityList[key]
 148 elif type(key) is str:
 149 return self.cities[key]
 150 def __len__(self):
 151 """Returns the number of cities in the given Cities object."""
 152 return len(self.cityList)
 153 def __setitem__(self, key, value):
 154 raise NotImplementedError("Use .append() to add to a CityMap.")

2 of 9

Page 73 of 148

 155 def __delitem__(self, key):
 156 """Deletes the given item from the collection of cities. Does not tidy
 157 reachables, however."""
 158 if type(key) is str:
 159 self.cityList.remove(self.cities[key])
 160 del self.cities[key]
 161 else:
 162 del self.cities[key.name]
 163 self.cityList.remove(key)
 164 def __iter__(self):
 165 """Returns an iterator over the cities in the given Cities object."""
 166 return self.cityList.__iter__()
 167 def __contains__(self, item):
 168 """Returns True if the group of cities has a particular city instance,
 169 or if a group of cities has a city with the given name."""
 170 return (item in self.cityList) or (item in self.cities.keys())
 171 def __str__(self):
 172 "Returns a string suitable for exporting with city coordinates."
 173 outStr = ""
 174 for city in self.cityList:
 175 outStr += str(city)
 176 outStr += "\n"
 177 return outStr
 178 def append(self, item):
 179 """Adds the given City to the Cities object."""
 180 if isinstance(item, City):
 181 self.cities[item.name] = item
 182 self.cityList.append(item)
 183 else:
 184 raise ValueError("Cannot add non-City to Cities.")
 185 def pop(self):
 186 """Returns and removes the first City in the given Cities object."""
 187 city = self.cityList[0]
 188 self.remove(city)
 189 return city
 190 def remove(self, item):
 191 """Removes the given City from the Cities object either by name or by
 192 instance."""
 193 self.__delitem__(item)
 194 def index(self, item):
 195 """Returns the index of the given City in the underlying list of the
 196 Cities object."""
 197 if type(item) is str:
 198 return self.cityList.index(self.cities[item])
 199 return self.cities.index(item)
 200 def hasOrphans(self):
 201 """Returns True if there are any cities that are not connected to any
 202 others. Does not test for disconnected clusters."""
 203 for city in self.cityList:
 204 if len(city.reachables) == 1:
 205 return True
 206 return False
 207
 208 class Tour(Cities):
 209 """A Tour is a structure that stores cities and provides methods to make the
 210 implementation of the traveling salesman solver easier.
 211
 212 A Tour is an itinerary that visits each city once and returns to its source.
 213 This class stores a list of Connectors that are used in that itinerary and
 214 the Connectors that connect the cities in the tour but are not used in the
 215 itinerary. It provides methods to add and remove Connectors, and check to
 216 see if a given tour is valid."""
 217 def __init__(self, cityList, randomize=False):
 218 """Creates a Tour from the passed list of cities. At this point, it's
 219 assumed that each city has a fully populated list of reachables."""
 220 #The actual 'order' of the tour is clumsy to access at present.
 221 self.cities = {}
 222 if isinstance(cityList, Cities):
 223 cityList = cityList.cityList #that could be named better...
 224 for city in cityList:
 225 self.cities[city.name] = city
 226 self.cityList = cityList
 227 if randomize:
 228 self.shuffle()
 229 self.insideRoads, self.outsideRoads = getRoads(self.cityList)
 230 self.updateDistance()
 231 def __cmp__(self, other):
 232 """Compares two Tours by their distance. Assumes both are valid."""

3 of 9

Page 74 of 148

 233 return cmp(self.distance, other)
 234 def __str__(self):
 235 """Returns a string that describes the tour. Expects the tour to be valid.
 236 >>> T
 237 <utils.Tour instance at 0x0279FF80>
 238 >>> print T
 239 A tour of 3 cities, with total distance 57.
 240 The cities, in the order they are visited:
 241 New York, Boston, Washington, New York.
 242
 243 (note that the first city is at both ends; this was not by design but
 244 I thought it looked better and decided to keep it.)
 245 """
 246 outStr = "A tour of %d cities, with total distance %d.\n" % (len(self.cityList), self.distance
 247 outStr += "The cities, in the order they are visited:\n"
 248 insideCopy = self.insideRoads[:]
 249 startCity = insideCopy[0].endpoints[0]
 250 walkCity = insideCopy[0].endpoints[1]
 251 walkRoad = insideCopy[0]
 252 visited = [startCity]
 253 while walkCity != startCity:
 254 visited.append(walkCity)
 255 insideCopy.remove(walkRoad)
 256 for road in insideCopy:
 257 if walkCity in road.endpoints:
 258 walkRoad = road
 259 found = True
 260 break
 261 walkCity = road.otherEnd(walkCity)
 262 visited.append(self.insideRoads[0].endpoints[0])
 263 for city in visited:
 264 outStr += (city.name + ", ")
 265 outStr = outStr[:-2] + "."
 266 return outStr
 267 def add(self, road):
 268 """Adds the given road to the tour, removing it from tour.outsideRoads
 269 and adding it to tour.insideRoads."""
 270 self.outsideRoads[road.endpoints[0].name].remove(road)
 271 self.outsideRoads[road.endpoints[1].name].remove(road)
 272 self.insideRoads.append(road)
 273 def getRoad(self, cityA, cityB):
 274 """Returns the road from cityA to cityB."""
 275 return cityA.getRoad(cityB)
 276 def isValid(self):
 277 """Returns True if the tour is valid - that is, if all the cities in it
 278 are visited exactly once and if it's closed."""
 279 '''Walking a tour of Connectors is more complicated than walking one of
 280 Roads. I start with the first road in insideRoads and get a startCity,
 281 walkCity, and walkRoad from that. I also keep track of the visited
 282 cities to avoid loops. I look for the other road that contains walkCity,
 283 set it as walkRoad, and remove the old walkRoad from the list of roads
 284 to examine. If all roads but the inital one are removed from the list
 285 after a walk in this fashion, the tour is valid.'''
 286 insideCopy = self.insideRoads[:]
 287 startCity = insideCopy[0].endpoints[0]
 288 walkCity = insideCopy[0].endpoints[1]
 289 walkRoad = insideCopy[0]
 290 visited = [startCity]
 291 while walkCity != startCity:
 292 found = False
 293 if walkCity in visited:
 294 return False
 295 visited.append(walkCity)
 296 insideCopy.remove(walkRoad)
 297 for road in insideCopy:
 298 if walkCity in road.endpoints:
 299 walkRoad = road
 300 found = True
 301 break
 302 if not found:
 303 return False
 304 walkCity = walkRoad.otherEnd(walkCity)
 305 return len(insideCopy) == 1
 306 def getAddRoads(self, city, distance=float('Inf')):
 307 """Returns the roads from the given city with lengths less than
 308 distance."""
 309 addRoads = []
 310 for road in self.outsideRoads[city.name]:

4 of 9

Page 75 of 148

 311 if road.distance < distance:
 312 addRoads.append(road)
 313 else:
 314 break
 315 return addRoads
 316 def printRoads(self):
 317 """Prints the roads in the tour. Meant to be used on invalid tours,
 318 where str() will fail."""
 319 print "Roads in tour:"
 320 for road in self.insideRoads:
 321 print road
 322 print
 323 def shuffle(self):
 324 """Shuffles the cityList. Only used at init as the road structure is not
 325 changed."""
 326 random.shuffle(self.cityList)
 327 def remove(self, road):
 328 """Removes the given road from the tour, assuming it is present. Does
 329 not check to see if the road is in the tour first."""
 330 self.insideRoads.remove(road)
 331 bisect.insort(self.outsideRoads[road.endpoints[0].name], road)
 332 bisect.insort(self.outsideRoads[road.endpoints[1].name], road)
 333 def updateDistance(self):
 334 """Updates the tour's distance. Returns that distance."""
 335 distance = 0
 336 for road in self.insideRoads:
 337 distance += road.distance
 338 self.distance = distance
 339 return distance
 340
 341 def getRoads(cityList):
 342 """When passed the given cityList, returns two lists: the list of Roads that
 343 are needed to connect the given cities in a closed circuit in the given
 344 order, and the list of Roads that are not."""
 345 outsideRoads = []
 346 for city in cityList:
 347 outsideRoads.extend(city.reachables)
 348 removeDuplicates(outsideRoads)
 349 insideRoads = []
 350 for x in range(len(cityList) - 1):
 351 tempRoad = cityList[x].getRoad(cityList[x+1])
 352 insideRoads.append(tempRoad)
 353 outsideRoads.remove(tempRoad)
 354 tempRoad = cityList[-1].getRoad(cityList[0])
 355 insideRoads.append(tempRoad)
 356 outsideRoads.remove(tempRoad)
 357 outsideDict = {}
 358 for city in cityList:
 359 outsideDict[city.name] = []
 360 for road in outsideRoads:
 361 outsideDict[road.endpoints[0].name].append(road)
 362 outsideDict[road.endpoints[0].name].append(road)
 363 # bisect.insort(outsideDict[road.endpoints[0].name], road)
 364 # bisect.insort(outsideDict[road.endpoints[1].name], road)
 365 return insideRoads, outsideDict
 366
 367 def removeDuplicates(duplicatedList):
 368 """Removes duplicates from the given list, in place. Assumes the items in
 369 the list are comparable, but not hashable."""
 370 #from the Python FAQ.
 371 duplicatedList.sort()
 372 last = duplicatedList[-1]
 373 for i in range(len(duplicatedList) -2, -1, -1):
 374 if last == duplicatedList[i]:
 375 del duplicatedList[i]
 376 else:
 377 last = duplicatedList[i]
 378
 379 class DistanceMatrix():
 380 """A DistanceMatrix is a matrix that stores the shortest distance from each
 381 city to each other city. It is used when running Djikstra's algorithm.
 382
 383 The data is not actually stored as a matrix, but as a multidimensional
 384 Python dictionary. Each source city maps to a dictionary of destination
 385 cities; each destination city maps to a Road that goes from the source to
 386 the destination."""
 387 def __init__(self, cities):
 388 """Creates a distance matrix with data from the given cities. Sets all

5 of 9

Page 76 of 148

 389 unknown distances to infinity."""
 390 self.matrix = {}
 391 for source in cities:
 392 self.matrix[source.name] = {}
 393 for dest in cities:
 394 self.matrix[source.name][dest.name] = Road(source, dest, [], float('Inf'))
 395 for source in cities:
 396 for road in source.reachables:
 397 self.setRoad(source, road.destCity, road)
 398 def __str__(self):
 399 """Returns a string representation of the given distance matrix."""
 400 cityNames = self.matrix.keys()
 401 cityNames.sort()
 402 outStr = "\t"
 403 #first line
 404 for name in cityNames:
 405 outStr += name
 406 outStr += "\t"
 407 outStr += "\n"
 408 for source in cityNames:
 409 outStr += source
 410 outStr += "\t"
 411 for dest in cityNames:
 412 outStr += "%.2f" % float(self.getDistance(source, dest))
 413 outStr += "\t"
 414 outStr += "\n"
 415 return outStr
 416 def getDistance(self, source, dest):
 417 """Returns the distance from source to dest; source and dest can be
 418 cities or names of cities."""
 419 if isinstance(source, City):
 420 source = source.name
 421 if isinstance(dest, City):
 422 dest = dest.name
 423 return self.matrix[source][dest].distance
 424 def getRoad(self, source, dest):
 425 """Returns the road from source to dest. If the matrix is newly created,
 426 it may return infinity instead of a Road object."""
 427 if isinstance(source, City):
 428 source = source.name
 429 if isinstance(dest, City):
 430 dest = dest.name
 431 return self.matrix[source][dest]
 432 def setRoad(self, source, dest, road):
 433 """Sets the road from source to destination in the matrix to the given
 434 road."""
 435 if isinstance(source, City):
 436 source = source.name
 437 if isinstance(dest, City):
 438 dest = dest.name
 439 self.matrix[source][dest] = road
 440 def roadsFrom(self, source):
 441 """Returns a list of roads leading from source to any other cities."""
 442 if isinstance(source, City):
 443 source = source.name
 444 roadList = self.matrix[source].values()
 445 return roadList
 446 def toConnectors(self):
 447 """Turns all of the Roads in the given matrix to Connectors."""
 448 sources = self.matrix.keys()
 449 list.sort(sources)
 450 for source in sources:
 451 dests = self.matrix[source].keys()
 452 for dest in dests:
 453 if source < dest:
 454 self.matrix[source][dest] = self.matrix[source][dest].toConnector()
 455 else:
 456 self.matrix[source][dest] = self.matrix[dest][source]
 457 def values(self):
 458 """Returns all the destination dictionaries in the given matrix."""
 459 return self.matrix.values()
 460
 461 class CityMap(Cities):
 462 """A CityMap is a class that provides some structure for storing a
 463 two-dimensional "map" of cities. It stores the size of the map and can print
 464 a representation of it."""
 465 def __init__(self, cityList, mapX, mapY, connectedness=None):
 466 self.connectedness = connectedness

6 of 9

Page 77 of 148

 467 self.cities = {}
 468 for city in cityList:
 469 self.cities[city.name] = city
 470 if isinstance(cityList, Cities):
 471 self.cityList = cityList.cityList #Sorry.
 472 else:
 473 self.cityList = cityList #Again, sorry.
 474 self.x = mapX
 475 self.y = mapY
 476 def printMap(self):
 477 """Constructs and prints a graphical representation of the city
 478 locations. Does not feature connections on the map yet."""
 479 printList = []
 480 for x in range(self.y):
 481 printList.append("." * self.x)
 482 for city in self.cityList:
 483 printList[city.y] = printList[city.y][:city.x] + "X" + printList[city.y]
[city.x+1:]
 484 for line in printList:
 485 print line
 486 def __str__(self):
 487 "Returns a string suitable for exporting with city coordinates."
 488 outStr = ""
 489 outStr += "Map Width:\t%d\nMap Height:\t%d\n" % (self.x, self.y)
 490 outStr += "Cities:\n"
 491 for city in self.cityList:
 492 outStr += str(city)
 493 outStr += "\n"
 494 return outStr
 495
 496 def getDistance(path):
 497 """Returns the length of the given path - a list of cities. Expects each
 498 city in the path to have a distance to at least the next one."""
 499 distance = 0
 500 for x in range(len(path) - 1):
 501 distance += path[x].getRoad(path[x+1]).distance
 502 return distance
 503
 504 class Connector:
 505 """A class for Connectors. A Connector is an undirected segment from one
 506 city to another."""
 507 def __init__(self, cityA, cityB, path, distance=None):
 508 """Inititalizes a connector. Sorts the passed cities and reverses the
 509 path as necessary to ensure a connector between two cities will be the
 510 same regardless of order."""
 511 self.endpoints = [cityA, cityB]
 512 self.endpoints.sort()
 513 if self.endpoints[0] != path[0]:
 514 path.reverse()
 515 self.path = path
 516 if not distance:
 517 distance = getDistance(path)
 518 self.distance = distance
 519 def __cmp__(self, other):
 520 """Compares two Connectors by distance."""
 521 return cmp(self.distance, other)
 522 def __str__(self):
 523 """Prints a string representation of the connector."""
 524 #From Jim
 525 return " %s - %s (%.2f) " % \
 526 (self.endpoints[0].name, self.endpoints[1].name, self.distance)
 527 def __eq__(self, other):
 528 """Returns True if the other object is a connector that connects the
 529 same two cities.
 530
 531 Note that if there is a Connector A connecting New York and Chicago,
 532 and a Road B connecting New York and Chicago, A == B will evaluate to
 533 True, but B == A will not."""
 534 if isinstance(other, Connector):
 535 return self.endpoints == other.endpoints
 536 return False
 537 def otherEnd(self, city):
 538 """When given one end of a connector, returns the other. Doesn't check
 539 to see if the passed city _is_ one end of the connector."""
 540 if city is self.endpoints[0]:
 541 return self.endpoints[1]
 542 return self.endpoints[0]
 543

7 of 9

Page 78 of 148

 544 class Road(Connector):
 545 """A class for roads; a road is a directed path from one city to another."""
 546 def __init__(self, cityA, cityB, path, distance=0):
 547 """Creates a Road. The two cities are the endpoints, path is a list of
 548 cities that are traveled through. It cannot be null; should always
 549 contain at least two cities - one iff cityA is cityB."""
 550 #all the different accessors for endpoints were added at different times
 551 #as I thought I needed them. Most are no longer used.
 552 self.endpoints = [cityA, cityB]
 553 self.endpoints.sort()
 554 self.source = [cityA, cityA.name]
 555 self.destination = [cityB, cityB.name]
 556 self.sourceName = cityA.name
 557 self.destName = cityB.name
 558 self.sourceCity = cityA
 559 self.destCity = cityB
 560 self.path=path
 561 if not distance:
 562 distance = getDistance(path)
 563 self.distance = distance
 564 def __eq__(self, other):
 565 """Returns True if the two roads are the same. See the note at
 566 Connector.__eq__."""
 567 return isinstance(other, Road) and self.path == other.path
 568 def __str__(self):
 569 """Prints a string representation of the given road."""
 570 #From Jim
 571 return " %s -> %s (%.2f) " % \
 572 (self.sourceName, self.destName, self.distance)
 573 def toConnector(self):
 574 """Returns a Connector with the same endpoints as the given road."""
 575 return Connector(self.sourceCity, self.destCity, self.path, self.distance)
 576
 577 class City:
 578 """A class for cities. A city has a name and x-y coordinates as a location,
 579 although the coordinates are not used for anything other than to create
 580 roads as yet. Cities also store a list of the other cities that are
 581 reachable from them and which roads lead to those other cities."""
 582 def __init__(self, location, name=None, continent=None):
 583 """Creates a City. Location is an (x,y) tuple of coordinates, name is
 584 self-explanatory, and continent has to do with a specific constraint of
 585 the problem that is not implemented.
 586
 587 >>> testCity = City((5,10), "New York")
 588 >>> print testCity
 589 City New York at (5, 10), connected to 1 cities: New York.
 590 """
 591 #Note that this init routine adds a road from the new city to itself.
 592 self.x = location[0]
 593 self.y = location[1]
 594 self.continent = continent
 595 self.name = name
 596 self.reachables = [Road(self, self, [self], 0)]
 597 def __cmp__(self, other):
 598 """Compares two City objects by name."""
 599 return isinstance(other, City) and cmp(self.name, other)
 600 def __str__(self):
 601 """Returns a string representation of the given city and which other
 602 cities are reachable from it."""
 603 reachableString = ""
 604 for road in self.reachables:
 605 reachableString += road.destName
 606 reachableString += ", "
 607 reachableString = reachableString[:-2]
 608 outStr = "City %s at (%d, %d), connected to %d cities: %s." % \
 609 (self.name, self.x, self.y, len(self.reachables), reachableString)
 610 return outStr
 611 def getRoad(self, destination):
 612 """Returns the Connector from this city to the given destination."""
 613 for connector in self.reachables:
 614 if destination in connector.endpoints:
 615 return connector
 616 raise Exception("There is no connector from %s to %s." % (str(self), str(destination)))
 617 def reachableCities(self):
 618 """Returns a list of cities that are reachable from the current city.
 619 Does not work with the Connector interface currently in place."""
 620 cityList = []
 621 for road in self.reachables:

8 of 9

Page 79 of 148

 622 cityList.append(road.destCity)
 623 return cityList

9 of 9

Page 80 of 148

 1 #!/usr/bin/env python
 2 from utils import *
 3 from itertools import permutations
 4 import copy
 5
 6 """
 7 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 8 solving the Euclidean traveling salesman problem. Various parts of this code do
 9 not work as intended; other parts of the code may not work at all.
 10
 11 That said, all of this is licensed under the Creative Commons Attribution 3.0
 12 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 13 text), so if you think you can take it and make it into something useful, go for
 14 it.
 15
 16 Richard Scruggs
 17 December, 2010
 18 """
 19
 20 """This is the module that implements the TSP solving functions. It is the
 21 earlier version, so its functions deal with Roads rather than with
 22 Connectors."""
 23
 24 class TSP():
 25 """This class ties together the TSP. It loads all the precomputed data and
 26 contains methods to do all the preprocessing before handing it off to a
 27 TSPSolver. After it is solved, it then tidies the result and prints it
 28 out."""
 29 #At least, that's what it would ideally do.
 30
 31 class TSPSolver():
 32 """This is a superclass for a solver for TSPs. It lays out all the methods
 33 that a solver should implement. At present, it only exists to raise errors
 34 if those methods are not implemented."""
 35 def __init__(self):
 36 raise NotImplementedError()
 37 def solve(self, cities):
 38 """Each Solver should be able to create a solution from just a list of
 39 cities (with populated Reachables)."""
 40 raise NotImplementedError()
 41
 42 class BruteForce(TSPSolver):
 43 """Solves a TSP by checking all possible tours to find the shortest. This is
 44 O(n!), so it is essentially useless on tours of more than eight or nine
 45 cities."""
 46 def __init__(self):
 47 pass
 48 def solve(self, cities):
 49 """Returns an optimal tour that visits the given cities. As stated
 50 above, calling this on tours longer than nine cities takes forever."""
 51 if isinstance(cityList, Cities):
 52 cityList = cityList.cityList
 53 perms = permutations(cityList)
 54 shortest = Tour(perms.next())
 55 for perm in perms:
 56 tempTour = Tour(perm)
 57 if tempTour < shortest:
 58 shortest = tempTour
 59 return shortest
 60
 61 class TwoOpt(TSPSolver):
 62 """This TSP solver attempts to solve the problem with 2-opt - removing two
 63 roads and replacing them with two others that connect those four cities
 64 differently in an attempt to create a shorter tour."""

1 of 3

Page 81 of 148

 65 def __init__(self):
 66 pass
 67 def solve(self, cities):
 68 """Returns a 2-optimal tour of the given cities."""
 69 if isinstance(cities, Tour):
 70 T = copy.copy(cities)
 71 else:
 72 T = Tour(cities)
 73 return self.twoOptSolve(T)
 74 def twoOptSolve(self, T):
 75 """Calculates the two-optimal path for the given tour."""
 76 initialDistance = T.updateDistance()
 77 for optOne in T.insideRoads[:]:
 78 for optTwo in T.insideRoads[:]:
 79 if shares(optOne, optTwo):
 80 continue
 81 #We're being clever. If a given pair is valid, the other one isn't
 82 T.remove(optOne)
 83 T.remove(optTwo)
 84 swapOne = optOne.sourceCity.getRoad(optTwo.sourceCity)
 85 swapTwo = optOne.destCity.getRoad(optTwo.destCity)
 86 if not (swapOne in T or swapTwo in T):
 87 T.add(swapOne)
 88 T.add(swapTwo)
 89 if T.updateDistance() < initialDistance:
 90 return twoOptSolve(T)
 91 T.remove(swapOne)
 92 T.remove(swapTwo)
 93 T.add(optOne)
 94 T.add(optTwo)
 95 return T
 96
 97 class SimpleLK(TSPSolver):
 98 """This TSP solver is a simple version of the Lin-Kernighan heuristic,
 99 without any of the enhancements discussed by Lin and Kernighan in their
 100 orignial paper. I did add one enhancement mentioned by Helsgaun - when it
 101 finds a new shorter tour, it is supposed to start solving that tour
 102 immediately."""
 103 def __init__(self):
 104 """This Java-ish model probably isn't the best."""
 105 pass
 106 def solve(self, cities):
 107 """Returns the shortest tour that visits all the given cities."""
 108 if isinstance(cities, Tour):
 109 return self.recursiveSearch(cities, cities.insideRoads[:])
 110 T = Tour(cities)
 111 return self.recursiveSearch(T, T.insideRoads)
 112 def recursiveSearch(self, T, cutRoads, visited=[], gain=0):
 113 """Performs a recursive Lin-Kernighan search to find the shortest tour.
 114
 115 The search is performed like this: Each road i is removed, one at a
 116 time. I get a list of roads shorter than i from i's destination to any
 117 other cities. I try adding each of those roads to the tour; their
 118 destinations then have three roads connected to them. I check to see if
 119 the two pre-existing roads can be cut and the other ends of those roads
 120 can be connected to the starting city - the source of i - to produce a
 121 valid tour. If it can and the valid tour is shorter, the search is
 122 restarted with that tour; if the valid tour is longer, the search
 123 deepens, trying to find another cut and add that will produce a shorter
 124 tour."""
 125 for cutRoad in cutRoads:
 126 visited.append(cutRoad.sourceCity)
 127 #The above lets the function be more purely recursive. (For all
 128 #calls after the first, the sourceCity will be the same)
 129 gain += cutRoad.distance
 130 addRoads = T.getAddRoads(cutRoad.destCity, cutRoad.distance)

2 of 3

Page 82 of 148

 131 T.remove(cutRoad)
 132 for x in range(len(addRoads)):
 133 tempAdd = addRoads.pop()
 134 gain -= tempAdd.distance
 135 nextCuts, shortCuts = getCuts(T, visited, gain, tempAdd)
 136 #getCuts modifies T, which isn't totally clear.
 137 if shortCuts:
 138 return self.recursiveSearch(T, T.insideRoads)
 139 if nextCuts:
 140 U = copy.copy(T)
 141 recurseBest = self.recursiveSearch(U, nextCuts, visited, gain
 142 if recurseBest < T:
 143 return self.recursiveSearch(recurseBest, recurseBest.insideRoads
 144 gain += tempAdd.distance
 145 T.remove(tempAdd)
 146 gain -= cutRoad.distance
 147 T.add(cutRoad)
 148 visited.remove(cutRoad.sourceCity)
 149 if not T.isValid():
 150 #I'm under the assumption here that I only need to return a valid
 151 #tour if I was passed one. Otherwise, I need to return something
 152 #that definitely won't be passed up as it's longer than what there was.
 153 return float('Inf')
 154 return T #if our starting tour is best.
 155
 156 def getCuts(tour, visited, gain, addRoad):
 157 """Returns the possible cuts from addRoad's destination, paired with their
 158 closing roads. If a closing road is found that shortens the tour, it returns
 159 an empty list of cuts and a True. The tour is modified in the testing
 160 process - and we just jump out when we see the new one is shorter - so it
 161 doesn't need to return the particular cut or close."""
 162 #addRoad should not be added to the tour yet or this might return it as a
 163 #possible cut. Note that it's added here, modifying the tour.
 164 cuts = []
 165 closeDistances = []
 166 for road in tour.insideRoads:
 167 if addRoad.destCity in road.endpoints:
 168 if (road.destCity not in visited) and (road.sourceCity not in visited
 169 cuts.append(road)
 170 #Now, cuts is a list of roads from addRoad.destCity to any city not yet
 171 #modified.
 172 tour.add(addRoad)
 173 #For each road in cuts, I try to remove it and close the tour. If the tour
 174 #produced thus is valid and shorter than the current shortest, this function
 175 #jumps out; otherwise it returns a list of cuts that produce valid but not
 176 #shorter tours.
 177 for road in cuts:
 178 tour.remove(road)
 179 closeRoad = tour.getRoad(road.otherEnd(addRoad.destCity), visited[0])
 180 tour.add(closeRoad)
 181 cuts.remove(road)
 182 if tour.isValid():
 183 if (road.distance + closeRoad.distance < gain):
 184 return [],True
 185 cuts.append(road)
 186 tour.add(road)
 187 tour.remove(closeRoad)
 188 tour.updateDistance
 189 return cuts, False

3 of 3

Page 83 of 148

 1 #!/usr/bin/env python
 2 import random
 3 from math import sqrt
 4 import random
 5
 6 """
 7 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 8 solving the Euclidean traveling salesman problem. Various parts of this code do
 9 not work as intended; other parts of the code may not work at all.
 10
 11 That said, all of this is licensed under the Creative Commons Attribution 3.0
 12 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 13 text), so if you think you can take it and make it into something useful, go for
 14 it.
 15
 16 Richard Scruggs
 17 December, 2010
 18 """
 19
 20 """This module provides many utility functions that the rest of the code uses.
 21 This is the older version of this file, so many of the functions it implements
 22 deal with Roads rather than with Connectors."""
 23
 24 def measureDistance(cityA, cityB):
 25 "Returns the distance between city A and city B using the Pythagorean theorem."
 26 return sqrt((max(cityA.y, cityB.y) - min(cityA.y, cityB.y))**2 + \
 27 (max(cityA.x, cityB.x) - min(cityA.x, cityB.x))**2)
 28
 29 def shares(connectorA, connectorB):
 30 """Returns True if the connectors share an endpoint, False otherwise."""
 31 for endpoint in connectorA.endpoints:
 32 if endpoint in connectorB.endpoints:
 33 return True
 34 return False
 35
 36 def createConnections(cities, connectedness):
 37 """Creates connections among the cities. Connectedness should be between 0
 38 and 1, and controls how many other cities each city is connected to.
 39 Destroys the passed list or Cities object and returns a new one."""
 40 #Note that we want each city connected to at least one other. That won't always
 41 #happen with this.
 42 if isinstance(cities, Cities):
 43 cities = cities.cityList
 44 newCities = []
 45 while cities:
 46 city = cities.pop()
 47 for destination in cities:
 48 if (connectedness > random.random()):
 49 tempDistance = measureDistance(city, destination)
 50 city.reachables.append(Road(city, destination, [city, destination], tempDistance
 51 destination.reachables.append(Road(destination, city, [destination, city],
 52 newCities.append(city)
 53 return Cities(newCities)
 54
 55 def readCities(filename):
 56 """Reads cities from the given filename. Returns a Cities object.
 57 As far as input format, I'm trying to follow the format used by the Windows
 58 version of Concorde, for simplicity, but I want more things than it expects,
 59 so I'm tacking things on in places it doesn't notice.
 60
 61 The file is expected to be formatted like:
 62 6 0 0.75
 63 21.239837 89.716312 New York
 64 17.987805 79.787234 Atlanta
 65 17.987805 68.794326 Philadelphia
 66 25.406504 79.787234 Chicago
 67 25.406504 69.858156 Houston
 68 22.256098 59.929078 Miami
 69
 70 with the first line being: cityCount segmentCount connectedness
 71 I'll read number_cities and use it to not read segments; I do not yet read
 72 or write segments.

1 of 8

Page 84 of 148

 73 Connectedness is something I tacked on; Concorde ignores it; my code does
 74 not require it but will use it if present.
 75
 76 I believe that the default Concorde save format is .qs - although it doesn't
 77 use that extension and I'm not sure what exactly the specifications of the
 78 format are.
 79 """
 80 cities = Cities([])
 81 f = open(filename)
 82 line = f.readline()
 83 line = line.split()
 84 if len(line) > 2:
 85 connectedness = float(line[-1])
 86 else:
 87 connectedness = 0
 88 cityCount = int(line[0])
 89 for x in range(cityCount):
 90 line = f.readline()
 91 if not line:
 92 break
 93 #The below call is being clever. If lineParse gets a name from the line,
 94 #the string is never used; otherwise the string is used as a city name.
 95 cities.append(City(*lineParse(line, str(x))))
 96 f.close()
 97 return cities, connectedness
 98
 99 def lineParse(line, name):
 100 """Parses the given line to get values that can be used to create a City.
 101 Uses defaultName for the city's name if unable to find one on the line.
 102 >>> lineParse("17.987805 79.787234 Atlanta", "0")
 103 ([17.987805, 79.787234], 'Atlanta')
 104
 105 >>> lineParse("17.987805 79.787234", "0")
 106 ([17.987805, 79.787234], '0')
 107 """
 108 words = line.split()
 109 x = float(words[0])
 110 y = float(words[1])
 111 if len(words) > 2:
 112 name = " ".join(words[2:])
 113 return [[x,y], name]
 114
 115 def YesOrNo(question, default=-1):
 116 """Asks the user the passed question. Returns True if their answer is yes,
 117 False if it isn't. If default is passed, returns it on null input."""
 118 answer = raw_input(question)
 119 while True:
 120 answer = answer.strip()
 121 if answer == "":
 122 if default != -1:
 123 return default
 124 print "Your answer was not parsed properly. Please enter 'yes' or 'no'."
 125 answer = raw_input(question)
 126 continue
 127 answer = answer.lower()
 128 if answer[0] == 'y':
 129 return True
 130 if answer[0] == 'n':
 131 return False
 132 print "Your answer was not parsed properly. Please enter 'yes' or 'no'."
 133 answer = raw_input(question)
 134
 135 class Cities:
 136 """A class for a group of cities. This allows various list-like methods of
 137 accessing the group, but is mostly just a wrapper around a list of City
 138 objects."""
 139 def __init__(self, cityList):
 140 self.cities = {}
 141 for city in cityList:
 142 self.cities[city.name] = city
 143 self.cityList = cityList
 144 def __getitem__(self, key):
 145 if type(key) is int:
 146 return self.cityList[key]

2 of 8

Page 85 of 148

 147 elif type(key) is str:
 148 return self.cities[key]
 149 def __len__(self):
 150 """Returns the number of cities in the given Cities object."""
 151 return len(self.cityList)
 152 def __setitem__(self, key, value):
 153 raise NotImplementedError("Use .append() to add to a CityMap.")
 154 def __delitem__(self, key):
 155 """Deletes the given item from the collection of cities. Does not tidy
 156 reachables, however."""
 157 if type(key) is str:
 158 self.cityList.remove(self.cities[key])
 159 del self.cities[key]
 160 else:
 161 del self.cities[key.name]
 162 self.cityList.remove(key)
 163 def __iter__(self):
 164 """Returns an iterator over the cities in the given Cities object."""
 165 return self.cityList.__iter__()
 166 def __contains__(self, item):
 167 """Returns True if the group of cities has a particular city instance,
 168 or if a group of cities has a city with the given name."""
 169 return (item in self.cityList) or (item in self.cities.keys())
 170 def __str__(self):
 171 "Returns a string suitable for exporting with city coordinates."
 172 outStr = ""
 173 for city in self.cityList:
 174 outStr += str(city)
 175 outStr += "\n"
 176 return outStr
 177 def append(self, item):
 178 """Adds the given City to the Cities object."""
 179 if isinstance(item, City):
 180 self.cities[item.name] = item
 181 self.cityList.append(item)
 182 else:
 183 raise ValueError("Cannot add non-City to Cities.")
 184 def pop(self):
 185 """Returns and removes the first City in the given Cities object."""
 186 city = self.cityList[0]
 187 self.remove(city)
 188 return city
 189 def remove(self, item):
 190 """Removes the given City from the Cities object either by name or by
 191 instance."""
 192 self.__delitem__(item)
 193 def index(self, item):
 194 """Returns the index of the given City in the underlying list of the
 195 Cities object."""
 196 if type(item) is str:
 197 return self.cityList.index(self.cities[item])
 198 return self.cities.index(item)
 199 def hasOrphans(self):
 200 """Returns True if there are any cities that are not connected to any
 201 others. Does not test for disconnected clusters."""
 202 for city in self.cityList:
 203 if len(city.reachables) == 1:
 204 return True
 205 return False
 206
 207 class Tour(Cities):
 208 """A Tour is a structure that stores cities and provides methods to make the
 209 implementation of the traveling salesman solver easier.
 210
 211 A Tour is an itinerary that visits each city once and returns to its source.
 212 This class stores a list of roads that are used in that itinerary and the
 213 roads that connect the cities in the tour but are not used in the itinerary.
 214 It provides methods to add and remove roads, and check to see if a given
 215 tour is valid."""
 216 def __init__(self, cityList, randomize=False):
 217 """Creates a Tour from the passed list of cities. At this point, it's
 218 assumed that each city has a fully populated list of reachables."""
 219 #The actual 'order' of the tour is clumsy to access at present.
 220 self.cities = {}

3 of 8

Page 86 of 148

 221 if isinstance(cityList, Cities):
 222 cityList = cityList.cityList #maybe that could be named better...
 223 for city in cityList:
 224 self.cities[city.name] = city
 225 self.cityList = cityList
 226 self.cityMatrix = DistanceMatrix(cityList)
 227 if randomize:
 228 self.shuffle()
 229 self.insideRoads, self.outsideRoads = getRoads(self.cityList)
 230 self.updateDistance()
 231 def __cmp__(self, other):
 232 """Compares two Tours by their distance. Assumes both are valid."""
 233 return cmp(self.distance, other)
 234 def __str__(self):
 235 """Returns a string that describes the tour. Expects the tour to be valid.
 236 >>> T
 237 <utils.Tour instance at 0x0279FF80>
 238 >>> print T
 239 A tour of 3 cities, with total distance 57.
 240 The cities, in the order they are visited:
 241 New York, Boston, Washington, New York.
 242
 243 (note that the first city is at both ends; this was not by design but
 244 I thought it looked better and decided to keep it.)
 245 """
 246 outStr = "A tour of %d cities, with total distance %d.\n" % (len(self.cityList), self
 247 outStr += "The cities, in the order they are visited:\n"
 248 testCities = []
 249 for road in self.insideRoads:
 250 testCities.append(road.sourceCity)
 251 currentRoad = self.insideRoads[0]
 252 outStr += (currentRoad.sourceName + ", ")
 253 for x in range(len(self.insideRoads)):
 254 currentRoad = self.insideRoads[testCities.index(currentRoad.destCity)]
 255 outStr += (currentRoad.sourceName + ", ")
 256 outStr = outStr[:-2] + "."
 257 return outStr
 258 def add(self, road):
 259 """Adds the given road to the tour, removing it from tour.outsideRoads
 260 and adding it to tour.insideRoads."""
 261 self.outsideRoads[road.sourceName].remove(road)
 262 self.insideRoads.append(road)
 263 def getRoad(self, cityA, cityB):
 264 """Returns the road from cityA to cityB."""
 265 return self.cityMatrix.getRoad(cityA, cityB)
 266 def isValid(self):
 267 """Returns True if the tour is valid - that is, if all the cities in it
 268 are visited exactly once and if it's closed."""
 269 '''How it works - as I don't think it's quite transparent: We start with
 270 insideRoads, which is a list of roads in any order. As walking that
 271 would be difficult, I first create a list of the sourceCities in the
 272 same order as they appear in insideRoads. I can then search that list to
 273 get the place of the next road in insideRoads, and can walk it that
 274 way.'''
 275 visited = self.cityList[:]
 276 testCities = []
 277 for road in self.insideRoads:
 278 testCities.append(road.sourceCity)
 279 currentRoad = self.insideRoads[0]
 280 for x in range(len(self.insideRoads)):
 281 try:
 282 visited.remove(currentRoad.sourceCity)
 283 currentRoad = self.insideRoads[testCities.index(currentRoad.destCity)]
 284 except ValueError:
 285 return False
 286 return currentRoad is self.insideRoads[0]
 287 def getAddRoads(self, city, distance=float('Inf')):
 288 """Returns the roads from the given city with lengths less than
 289 distance."""
 290 addRoads = []
 291 for road in self.outsideRoads[city.name]:
 292 if road.distance < distance:
 293 addRoads.append(road)
 294 return addRoads

4 of 8

Page 87 of 148

 295 def printRoads(self):
 296 """Prints the roads in the tour. Meant to be used on invalid tours,
 297 where str() will fail."""
 298 print "Roads in tour:"
 299 for road in self.insideRoads:
 300 print road
 301 print
 302 def shuffle(self):
 303 """Shuffles the cityList. Only used at init as it does not affect
 304 roads."""
 305 random.shuffle(self.cityList)
 306 def remove(self, road):
 307 """Removes the given road from the tour, assuming it is present. Does
 308 not check to see if a road is in the tour first."""
 309 self.insideRoads.remove(road)
 310 self.outsideRoads[road.sourceName].append(road)
 311 def updateDistance(self):
 312 """Updates the tour's distance. Returns that distance."""
 313 distance = 0
 314 for road in self.insideRoads:
 315 distance += road.distance
 316 self.distance = distance
 317 return distance
 318
 319 def getRoads(cityList):
 320 """When passed the given cityList, returns two lists: the list of Roads that
 321 are needed to connect the given cities in a closed circuit in the given
 322 order, and the list of roads that are not."""
 323 outsideRoads = []
 324 for city in cityList:
 325 outsideRoads.extend(city.reachables)
 326 insideRoads = []
 327 for x in range(len(cityList) - 1):
 328 tempRoad = cityList[x].getRoad(cityList[x+1])
 329 insideRoads.append(tempRoad)
 330 outsideRoads.remove(tempRoad)
 331 tempRoad = cityList[-1].getRoad(cityList[0])
 332 insideRoads.append(tempRoad)
 333 outsideRoads.remove(tempRoad)
 334 outsideDict = {}
 335 for city in cityList:
 336 outsideDict[city.name] = []
 337 for road in outsideRoads:
 338 outsideDict[road.sourceName].append(road)
 339 return insideRoads, outsideDict
 340
 341 def removeDuplicates(duplicatedList):
 342 """Removes duplicates from the given list, in place. Assumes the items in
 343 the list are comparable, but not hashable."""
 344 #from the Python FAQ.
 345 duplicatedList.sort()
 346 last = duplicatedList[-1]
 347 for i in range(len(duplicatedList) -2, -1, -1):
 348 if last == duplicatedList[i]:
 349 del duplicatedList[i]
 350 else:
 351 last = duplicatedList[i]
 352
 353 class DistanceMatrix():
 354 """A DistanceMatrix is a matrix that stores the shortest distance from each
 355 city to each other city. It is used when running Djikstra's algorithm.
 356
 357 The data is not actually stored as a matrix, but as a multidimensional
 358 Python dictionary. Each source city maps to a dictionary of destination
 359 cities; each destination city maps to a Road that goes from the source to
 360 the destination."""
 361 def __init__(self, cities):
 362 """Creates a distance matrix with data from the given cities. Sets all
 363 unknown distances to infinity."""
 364 self.matrix = {}
 365 for source in cities:
 366 self.matrix[source.name] = {}
 367 for dest in cities:
 368 self.matrix[source.name]

5 of 8

Page 88 of 148

[dest.name] = Road(source, dest, [], float('Inf'))
 369 for source in cities:
 370 for road in source.reachables:
 371 self.setRoad(source, road.destCity, road)
 372 def __str__(self):
 373 """Returns a string representation of the given distance matrix."""
 374 cityNames = self.matrix.keys()
 375 cityNames.sort()
 376 outStr = "\t"
 377 #first line#
 378 for name in cityNames:
 379 outStr += name
 380 outStr += "\t"
 381 outStr += "\n"
 382 for source in cityNames:
 383 outStr += source
 384 outStr += "\t"
 385 for dest in cityNames:
 386 outStr += "%.2f" % float(self.getDistance(source, dest))
 387 outStr += "\t"
 388 outStr += "\n"
 389 return outStr
 390 def getDistance(self, source, dest):
 391 """Returns the distance from source to dest; source and dest can be
 392 cities or names of cities."""
 393 if isinstance(source, City):
 394 source = source.name
 395 if isinstance(dest, City):
 396 dest = dest.name
 397 return self.matrix[source][dest].distance
 398 def getRoad(self, source, dest):
 399 """Returns the road from source to dest. If the matrix is newly created,
 400 it may return infinity instead of a Road object."""
 401 if isinstance(source, City):
 402 source = source.name
 403 if isinstance(dest, City):
 404 dest = dest.name
 405 return self.matrix[source][dest]
 406 def setRoad(self, source, dest, road):
 407 """Sets the road from source to destination in the matrix to the given
 408 road."""
 409 if isinstance(source, City):
 410 source = source.name
 411 if isinstance(dest, City):
 412 dest = dest.name
 413 self.matrix[source][dest] = road
 414 def roadsFrom(self, source):
 415 """Returns a list of roads leading from source to any other cities."""
 416 if isinstance(source, City):
 417 source = source.name
 418 roadList = self.matrix[source].values()
 419 return roadList
 420 def values(self):
 421 """Returns all the destination dictionaries in the given matrix."""
 422 return self.matrix.values()
 423
 424 class CityMap(Cities):
 425 """A CityMap is a class that provides some structure for storing a
 426 two-dimensional "map" of cities. It stores the size of the map and can print
 427 a representation of it."""
 428 def __init__(self, cityList, mapX, mapY, connectedness=None):
 429 self.connectedness = connectedness
 430 self.cities = {}
 431 for city in cityList:
 432 self.cities[city.name] = city
 433 if isinstance(cityList, Cities):
 434 self.cityList = cityList.cityList #Sorry.
 435 else:
 436 self.cityList = cityList #Again, sorry.
 437 self.x = mapX
 438 self.y = mapY
 439 def printMap(self):
 440 """Constructs and prints a graphical representation of the city
 441 locations. Does not feature connections on the map yet."""

6 of 8

Page 89 of 148

 442 printList = []
 443 for x in range(self.y):
 444 printList.append("." * self.x)
 445 for city in self.cityList:
 446 printList[city.y] = printList[city.y][:city.x] + "X" + printList[city.y]
[city.x+1:]
 447 for line in printList:
 448 print line
 449 def __str__(self):
 450 "Returns a string suitable for exporting with city coordinates."
 451 outStr = ""
 452 outStr += "Map Width:\t%d\nMap Height:\t%d\n" % (self.x, self.y)
 453 outStr += "Cities:\n"
 454 for city in self.cityList:
 455 outStr += str(city)
 456 outStr += "\n"
 457 return outStr
 458
 459 def getDistance(path):
 460 """Returns the length of the given Path. Expects each city in the path to
 461 have a distance to at least the next one."""
 462 distance = 0
 463 for x in range(len(path) - 1):
 464 distance += path[x].getRoad(path[x+1]).distance
 465 return distance
 466
 467 class Connector:
 468 """A class for Connectors. A Connector is an undirected segment from one
 469 city to another."""
 470 def __init__(self, cityA, cityB, path, distance=None):
 471 """Inititalizes a connector. Sorts the passed cities and reverses the
 472 path as necessary to ensure a connector between two cities will be the
 473 same regardless of order."""
 474 self.endpoints = [cityA, cityB]
 475 self.endpoints.sort()
 476 if self.endpoints[0] != path[0]:
 477 path.reverse()
 478 self.path = path
 479 if not distance:
 480 distance = getDistance(path)
 481 def __cmp__(self, other):
 482 """Compares two Connectors by distance."""
 483 return cmp(self.distance, other)
 484 def __str__(self):
 485 """Prints a string representation of the connector."""
 486 #From Jim
 487 return " %s - %s (%.2f) " % \
 488 (self.endpoints[0], self.endpoints[1], self.distance)
 489 def __eq__(self, other):
 490 """Returns True if the other object is a connector that connects the
 491 same two cities.
 492
 493 Note that if there is a Connector A connecting New York and Chicago,
 494 and a Road B connecting New York and Chicago, A == B will evaluate to
 495 True, but B == A will not."""
 496 if isinstance(other, Connector):
 497 return self.endpoints == other.endpoints
 498 return False
 499 def otherEnd(self, city):
 500 """When given one end of a connector, returns the other. Doesn't check
 501 to see if the passed city _is_ one end of the connector."""
 502 if city is self.endpoints[0]:
 503 return self.endpoints[1]
 504 return self.endpoints[0]
 505
 506 class Road(Connector):
 507 """A class for roads; a road is a directed path from one city to another."""
 508 def __init__(self, cityA, cityB, path, distance=0):
 509 """Creates a Road. The two cities are the endpoints, path is a list of
 510 cities that are traveled through. It cannot be null; should always
 511 contain at least two cities - one iff cityA is cityB."""
 512 #all the different accessors for endpoints were added at different times
 513 #as I thought I needed them. Most are no longer used.
 514 self.endpoints = [cityA, cityB]

7 of 8

Page 90 of 148

 515 self.endpoints.sort()
 516 self.source = [cityA, cityA.name]
 517 self.destination = [cityB, cityB.name]
 518 self.sourceName = cityA.name
 519 self.destName = cityB.name
 520 self.sourceCity = cityA
 521 self.destCity = cityB
 522 self.path=path
 523 if not distance:
 524 distance = getDistance(path)
 525 self.distance = distance
 526 def __eq__(self, other):
 527 """Returns True if the two roads are the same. See the note at
 528 Connector.__eq__."""
 529 if isinstance(other, Road):
 530 return self.path == other.path
 531 return False
 532 def __str__(self):
 533 """Prints a string representation of the given road."""
 534 #From Jim
 535 return " %s -> %s (%.2f) " % \
 536 (self.sourceName, self.destName, self.distance)
 537 def toConnector(self):
 538 """Returns a Connector with the same endpoints as the given road."""
 539 return Connector(self.sourceCity, self.destCity, self.path, self.distance)
 540
 541 class City:
 542 """A class for cities. A city has a name and x-y coordinates as a location,
 543 although the coordinates are not used for anything other than to create
 544 roads as yet. Cities also store a list of the other cities that are
 545 reachable from them and which roads lead to those other cities."""
 546 def __init__(self, location, name=None, continent=None):
 547 """
 548 >>> testCity = City((5,10), "New York")
 549 >>> print testCity
 550 City New York at (5, 10), connected to 1 cities: New York.
 551 """
 552 #Note that this init routine adds a road from the new city to itself.
 553 self.x = location[0]
 554 self.y = location[1]
 555 self.continent = continent
 556 self.name = name
 557 self.reachables = [Road(self, self, [self], 0)]
 558 def __cmp__(self, other):
 559 """Compares two City objects by name."""
 560 return cmp(self.name, other)
 561 def __str__(self):
 562 """Returns a string representation of the given city and which other
 563 cities are reachable from it."""
 564 reachableString = ""
 565 for road in self.reachables:
 566 reachableString += road.destName
 567 reachableString += ", "
 568 reachableString = reachableString[:-2]
 569 outStr = "City %s at (%d, %d), connected to %d cities: %s." % \
 570 (self.name, self.x, self.y, len(self.reachables), reachableString)
 571 return outStr
 572 def getRoad(self, destination):
 573 """Returns the Road from this city to the given destination."""
 574 for road in self.reachables:
 575 if destination in road.destination:
 576 return road
 577 raise Exception("There is no road from %s to %s." % (str(self), str(destination)))
 578 def reachableCities(self):
 579 """Returns a list of Roads that are reachable from the given city."""
 580 cityList = []
 581 for road in self.reachables:
 582 cityList.append(road.destCity)
 583 return cityList

8 of 8

Page 91 of 148

 1 #!/usr/bin/env python
 2
 3 """
 4 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 5 solving the Euclidean traveling salesman problem. Various parts of this code do
 6 not work as intended; other parts of the code may not work at all.
 7
 8 That said, all of this is licensed under the Creative Commons Attribution 3.0
 9 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 10 text), so if you think you can take it and make it into something useful, go for
 11 it.
 12
 13 Richard Scruggs
 14 December, 2010
 15
 16 """
 17
 18 """This module implements Djikstra's algorithm and several related functions."""
 19
 20 from utils import *
 21 import heapq
 22
 23 def testDjikstra(auto=False, verbose=True):
 24 """A quick and simple test routine. Generates some cities, runs Djikstra's
 25 on them. Not a substitute for real testing; just here so that this does
 26 something from the command line."""
 27 if auto:
 28 cities = genDefault()
 29 else:
 30 cities = genCities()
 31 start = time.time()
 32 matrix = extendedDjikstra(cities)
 33 populateReachables(cities, matrix)
 34 finish = time.time()
 35 if verbose:
 36 print cities
 37 print matrix
 38 print "%d cities processed. %f seconds taken to run Djikstra's." % (len(cities), finish - start)
 39
 40 def populateReachables(cities, distances):
 41 """Replaces all of the reachables in cities with the roads in distances."""
 42 distances.toConnectors()
 43 for city in cities:
 44 temp = distances.roadsFrom(city.name)
 45 temp.sort()
 46 temp = temp[1:]
 47 city.reachables = temp
 48
 49 def extendedDjikstra(cities):
 50 """Runs an extended version of Djikstra's algorithm to produce, in essence,
 51 a complete graph over the given set of cities. Djikstra's algorithm normally
 52 produces a minimal spanning tree from a given starting node; this version
 53 does the same thing, but uses each city in turn as a starting node. Note
 54 that this function does not replace the reachables in each city. Call
 55 populateReachables to do that."""
 56 distances = DistanceMatrix(cities)
 57 for startCity in cities:
 58 unvisitedCities = cities.cityList[:]
 59 currentCity = startCity
 60 currentDistance = 0 #distance from startCity to currentCity
 61 getDistance = distances.getDistance
 62 getRoad = distances.getRoad
 63 setRoad = distances.setRoad
 64 shortestDistances = startCity.reachables[:]
 65 heapq.heapify(shortestDistances)
 66 while True:
 67 for road in currentCity.reachables:
 68 if (currentDistance + road.distance) < (getDistance(startCity, road.destCity)):
 69 newRoad = joinRoads(getRoad(startCity, currentCity), road)
 70 setRoad(startCity, road.destCity, newRoad)
 71 heapq.heappush(shortestDistances, newRoad)
 72 unvisitedCities.remove(currentCity) #we've checked all the roads, so we're done with this city
 73 currentCity = shortestHeap(shortestDistances, unvisitedCities)
 74 if currentCity == None: #the check to see if we've visited all cities.
 75 break
 76 currentDistance = getDistance(startCity, currentCity)
 77 return distances
 78
 79 def shortestHeap(shortestDistances, unvisitedCities):
 80 """Returns the nearest city from shortestDistances that is in unvisitedCities."""
 81 if not unvisitedCities:
 82 return None
 83 while shortestDistances:
 84 road = heapq.heappop(shortestDistances)

1 of 2

Page 92 of 148

 85 if road.destCity in unvisitedCities:
 86 return road.destCity
 87 #Execution should not get here.
 88 return None
 89
 90 def joinRoads(roadA, roadB):
 91 """Returns a new Road from the start of roadA to the end of roadB."""
 92 newPath = roadA.path[:]
 93 newPath.extend(roadB.path)
 94 newPath.remove(roadA.destCity)
 95 newDistance = roadA.distance + roadB.distance
 96 return Road(roadA.sourceCity, roadB.destCity, newPath, newDistance)
 97
 98 if __name__ == '__main__':
 99 "If the user invokes it on the command line, it does a quick test."
 100 from randomdatagen import *
 101 import time
 102 import cProfile
 103 cProfile.run("testDjikstra(auto=True, verbose=False)")

2 of 2

Page 93 of 148

 1 #!/usr/bin/env python
 2
 3 """
 4 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 5 solving the Euclidean traveling salesman problem. Various parts of this code do
 6 not work as intended; other parts of the code may not work at all.
 7
 8 That said, all of this is licensed under the Creative Commons Attribution 3.0
 9 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 10 text), so if you think you can take it and make it into something useful, go for
 11 it.
 12
 13 Richard Scruggs
 14 December, 2010
 15 """
 16
 17 """
 18 This module generates a random set of cities which are suitable for TSP tests.
 19 """
 20 import random
 21 from utils import *
 22
 23 def genDefault():
 24 """Returns a set of cities created with some default values."""
 25 return genCities(10,10,10,0.5)
 26
 27 def genCities(mapX=None, mapY=None, cityCount=None, connectedness=None, cityMap=False):
 28 """Returns a cityList constructed to fit the supplied parameters.
 29
 30 MapX and MapY are the size of the map in those dimensions, cityCount is the
 31 number of cities that should be generated. Connectedness is a value between
 32 0 and 1 that represents how connected the cities are - if it is 1, the
 33 cities are 100% connected and there is a road from each city to every
 34 other; if it is 0.5, there is a 50% chance that there is a road from one
 35 city to another, so on.
 36 If cityMap is True, a CityMap object is returned instead of a Cities
 37 object."""
 38 if (not ((mapX and mapY) and (cityCount and connectedness))):
 39 mapX, mapY, cityCount, connectedness = getParams()
 40 cityLocations = []
 41 names = (map(str, range(cityCount)))
 42 for x in range(cityCount):
 43 while True:
 44 newLocation = (random.randrange(mapX), random.randrange(mapY))
 45 if newLocation not in cityLocations:
 46 cityLocations.append(newLocation)
 47 break
 48 cityList = map(City, cityLocations, names)
 49 cities = createConnections(cityList, connectedness)
 50 if cityMap:
 51 cities = CityMap(cities, mapX, mapY, connectedness)
 52 return cities
 53
 54 def getParams():
 55 """Asks the user for some map parameters; returns them. Returns defaults if
 56 user hits enter. Said defaults may cause problems if the user takes some but
 57 not others.."""
 58 try:
 59 mapX = int(raw_input("Enter the (integer) width of the map: "))
 60 except ValueError:
 61 print "Error - Using 10."
 62 mapX = 10
 63 try:
 64 mapY = int(raw_input("Enter the (integer) height of the map: "))
 65 except ValueError:
 66 print "Error - Using 10."
 67 mapY = 10
 68 try:
 69 cityCount = int(raw_input("Enter the (integer) number of cities the map should have: "))
 70 except ValueError:
 71 print "Error - Using 10."
 72 cityCount = 10
 73 try:
 74 connectedness = float(raw_input("How connected should the cities initially be? (1 = all connected, 0.5 = 50% co
 nnected, etc.): "))
 75 except ValueError:
 76 print "Error - Using 0.5."
 77 connectedness = 0.5
 78 if (cityCount > mapX * mapY):
 79 raise Exception("Too many cities for map.")
 80 return mapX, mapY, cityCount, connectedness
 81
 82 if __name__ == '__main__':
 83 """If the user invokes it on the command line, generates some cities, puts
 84 them on a map, and prints the map."""
 85 cities = genCities(cityMap=True)
 86 print cities
 87 cities.printMap()

1 of 1

Page 94 of 148

 1 #!/usr/bin/env python
 2
 3 from utils import *
 4 from djikstras import *
 5 from tsp import *
 6 from randomdatagen import *
 7 from itertools import permutations
 8
 9 """
 10 This is a part of a Python implementation of the Lin-Kernighan heuristic for
 11 solving the Euclidean traveling salesman problem. Various parts of this code do
 12 not work as intended; other parts of the code may not work at all.
 13
 14 That said, all of this is licensed under the Creative Commons Attribution 3.0
 15 Unported License (see http://creativecommons.org/licenses/by/3.0/ for license
 16 text), so if you think you can take it and make it into something useful, go for
 17 it.
 18
 19 Richard Scruggs
 20 December, 2010
 21 """
 22
 23 def main():
 24 """This is a terribly disorganized test routine that is meant to either
 25 generate or read some cities, run Djikstra's algorithm on them, create a
 26 tour that visits them all, and then run a traveling salesman solver to find
 27 the shortest tour."""
 28 print("This is a TSP test routine.")
 29 print("If you have a data file, please enter the filename, or enter 'r' to generate random data."
 30 filename = raw_input("Filename: ")
 31 if filename == "r":
 32 cities = genCities()
 33 else:
 34 cities, connectedness = readCities(filename)
 35 if not connectedness:
 36 print("There was no value for connectedness in the given file.")
 37 try:
 38 connectedness = float(raw_input("How connected should the cities be? (1 = all connected, 0.5 = 50% con
 etc.): "))
 39 except ValueError:
 40 print "Error - Using 1.0."
 41 connectedness = 1.0
 42 cities = createConnections(cities, connectedness)
 43 print("Running the extended Djikstra's algorithm on the cities.")
 44 matrix = extendedDjikstra(cities)
 45 populateReachables(cities, matrix)
 46 if YesOrNo("Would you like to run a complete test? ", False):
 47 if len(cities) > 10:
 48 print("Too many cities to run a complete test on.")
 49 return
 50 solve = completeSolve(cities)
 51 if solve[0]:
 52 print("Complete solve successfully completed.")
 53 else:
 54 print("Solve failed.")
 55 print("These two tours did not match (Other tours may also not be solving correctly.):")
 56 print solve[1][0]
 57 print solve[1][1]
 58 else:
 59 print("Creating a tour of the cities.")
 60 T = Tour(cities)
 61 print "The created tour:"
 62 print str(T)
 63 print("Initializing the solver.")
 64 solver = BruteForce()
 65 print("Solving the TSP.")
 66 shortest = solver.solve(T)
 67 print shortest
 68 return shortest
 69
 70 def completeSolve(cityList):
 71 """Takes a list of cities and tries to solve them in every possible
 72 permutation. Returns True if all permutations solve to the same distance,
 73 False and which two tours failed otherwise. Note, obviously, that this is n!
 74 time, so don't do this on lists of more than a few cities. Also, since this
 75 is testing all permutations, a few of them will be the optimum tour without
 76 solving, just to make sure we get it in there."""
 77 if isinstance(cityList, Cities):
 78 cityList = cityList.cityList

1 of 2

Page 95 of 148

 79 T = Tour(cityList)
 80 solver = DumbSolver()
 81 T = solver.solve(T)
 82 distance = T.distance
 83 perms = permutations(cityList)
 84 for perm in perms:
 85 U = solver.solve(Tour(list(perm)))
 86 if U.distance != distance:
 87 return False, [T, U]
 88 return [True]
 89
 90 def testTourValidity(cityList):
 91 """Checks to see if all the valid tours made from a given cityList return
 92 valid. Exists to test Tour.isValid."""
 93 perms = permutations(cityList)
 94 for perm in perms:
 95 T = Tour(list(perm))
 96 if not T.isValid():
 97 return False
 98 return True
 99
 100 if __name__ == '__main__':
 101 solution = main()
 102 else:
 103 T = main()

2 of 2

Page 96 of 148

First computer science plan exam :

 programming language skills and concepts

 for Richard Scruggs

 from Jim Mahoney

 on Nov 2 2010

This is an open, take home exam: books or web sources are OK as long

as you cite them explicitly and as long as they aren't a drop-in

solution to the problem. Don't ask other people for help. Your job

is to convince us you understand this stuff.

This is to be done during the week of Nov 2 - Nov 9;

the due date is 10am on Nov 9, before our tutorial.

As always with my exams, if you think there's a mistake in one of the

questions or it doesn't make sense, you can (a) ask for clarification,

and/or (b) make and state an explicit interpretation and do the

problem that way. (Again: the point is to demonstrate your

understanding, not to get the "right answer" per se.)

For any code submitted, try to follow typical 'best practices'

including language typical docs, tests, and coding style.

The harder I have to work to figure out what's what, the less

I will be impressed, eh?

--

I) Write six short programs, one in each of C, lisp, and python

 (using any version or variant you wish; just be clear about

 your choices) for each of the following two problems.

 At least one of the six should be done with an object oriented

 approach, and at least one with a functional approach.

 In each case, include appropriate tests and documentation

 for the language and problem; it should be clear what it does

 and how to run it.

 * problem A (from projecteuler.net) :

 A palindromic integer reads the same both ways in base ten.

 The largest palindrome made from the product of two 2-digit

 numbers is 9009 = 91 * 99. Find the largest palindrome made

 from the product of two 3-digit numbers.

 * problem B :

 Read and interpret a geneological data file of this form :

 --- data.txt ---

 name: Tom Jones (12338)

 born: 12/10/2004

 died: -

 dad: Fred Smith (78223)

Page 97 of 148

 mom: Irene Smith (23456)

 name: Irene Thompson (23456)

 born: 1/2/1952

 died: 3/18/2006

 dad: -

 mom: -

 The number in parens is a unique id for that person;

 the name may vary across records. (In the example above,

 Irene was born Irene Thompson but in Tom's record is listed

 with her married name.)

 The program should be able to store a representation of the data

 and output some sort of report; the details I leave up to you.

 For example, it could print the age and siblings of each person,

 or print a representation (ascii or otherwise) of the family tree.

 Create some (fake) sample data to feed it, with at least

 ten people over three generations. You may use graphic

 or other libraries if you wish; if so, include them.

II) Explain the concepts behind following programming buzz words,

 across all three programming languages.

 (a) First organizing them into groups showing which are variations

 of the same concept, or variations across languages,

 or opposites.

 (b) Then for each group, give example code snips from various

 languages to illustrate them.

 (c) Discuss the concepts behind each group, and how the words

 and meaning are similar or different across the languages.

 Be clear that I *don't* want you to just define each of these

words;

 instead, I want you to use them as the starting point for a

conversation

 with examples about the ideas the words are trying to convey in C,

 Python, and Lisp.

 * API

 * argument

 * class

 * closure

 * collection

 * comment

 * compiled

 * data structure

 * dynamic

 * exception

 * function

 * global

 * hash

Page 98 of 148

 * inheritance

 * interface

 * interpreted

 * iterate

 * lexical

 * link

 * list

 * macro

 * method

 * namespace

 * object

 * overload

 * scope

 * package

 * pattern

 * pass by reference

 * pass by value

 * recursion

 * side effect

 * stack overflow

 * static

 * symbol

 * syntactic sugar

 * test

 * throw

 * variable

 * vector

III) Discuss the strengths and weaknesses of python, C, and lisp as you

 see them. What sorts of problems are well suited for each

 language, and why? Be specific in your comparisons, giving

 examples that justify your comparisons and conclusions.

Page 99 of 148

General readme and attribution for any sources that were referenced:

1:
All of these can be run as you would expect - for P ython, "python
filename.py",for Lisp, "clisp filename.lisp", for C , compile with GCC and
run. 1-2.c expects datafile.txt as the only argumen t, while 1-2.lisp and
1-2.py ask for the name to be entered once the prog ram starts.

1-1: Python: I just used the online Python docs,
http://docs.python.org/index.html The code should r un on recent Python
2.x; 3.x replaced range() with xrange() and removed xrange(). I prefer to
use the iterator in all cases rather than using the list - and hardly
anyone uses Python 3.

For Lisp, I used the HyperSpec,
http://www.lispworks.com/documentation/common-lisp. html and Seibel's
Practical Common Lisp, http://gigamonkeys.com/book/ I did not excessively
test the code on different Lisp compilers; it runs on clisp 2.49 and
2.37; I assume it would run on most versions of Lis p. I'm not convinced
that it's "functional" enough--more of a hybrid, re ally—but it is
recursive.

For C, I used the C library reference from
http://www.cplusplus.com/reference/clibrary/
The code compiles cleanly with -Wall under GCC 4.5. 1; it should compile
with any ANSI C compiler.

1-2:
Assumption for all of these: people's ID numbers ha ve no (significant)
leading 0s.

Python: Again, just online Python docs.

For Lisp, the same references as for 1-1 above. I a lso used split-
sequence, from http://www.cliki.net/SPLIT-SEQUENCE - it seems rather odd
to me that Lisp, with its comparatively large stand ard library, has no
string split or tokenizing function. I put the code right in the file as
I was having issues importing the package properly across platforms.

For C, I used the same references as above along wi th http://c-faq.com/.
There is one more assumption made to ease the strin g processing: People
are expected to have a first name and a last name.
For whatever reason, the C program does not work as designed or expected.
It'll read in the data and print it out properly, b ut running qsort does
unexpected things. The order of the data is changed ; the resulting order
is repeatable and does vary when the comparison fun ction is modified, but
the resulting order is _not_ sorted with the passed comparison function.

2: I did not use 'stack overflow', 'macro', and 'pa ttern'; I added
'return value' to the list.

Code examples taken from Practical Common Lisp,
http://www.scriptol.com/programming/fibonacci.php , and the Python docs.

Page 100 of 148

3:
The Lisp benchmark in the paper is for the initial, iterative version of
the program. The later, recursive version is slower .

Page 101 of 148

 1 #!/usr/bin/env python

 2

 3 #Programming Language Skills and Concepts exam

 4 #Problem 1

 5 #Part 1

 6 #Richard Scruggs

 7 #11/4/2010

 8 #Licensed under the Creative Commons Attribution 3.0 Unported License.

 9 #see http://creativecommons.org/licenses/by/3.0/ for license text.
 10

 11 def isPalindromic(string):

 12 """Returns True if the given string is a palindrome, False otherwise.

 13

 14 >>> isPalindromic("racecar")

 15 True

 16

 17 >>> isPalindromic("test")

 18 False

 19 """

 20 for a,b in zip(iter(string), reversed(string)):

 21 if a != b:

 22 return False

 23 return True

 24

 25 def largestProductPalindrome(maxFactor=100, minFactor=0):

 26 """Returns a list with the largest palindromic product that can be produced

 27 with factors greater than minFactor and less than maxFactor and the factors

 28 that are multiplied to produce that product. Returns [0,0,0] if no

 29 palindromes are found.

 30 Note that maxFactor and minFactor behave as in range(); maxFactor is

 31 excluded but minFactor is included.

 32

 33 >>> largestProductPalindrome()

 34 [9009, 91, 99]

 35

 36 >>> largestProductPalindrome(1000, 100)

 37 [906609, 913, 993]

 38 """

 39 #I spent way too long profiling this - which probably ended up making the
 40 #code harder to follow, but did make it faster.

 41 #To explain a bit of it: I reverse the factor lists so I can avoid

 42 #unnecessary multiplications and calls to isPalindromic. When checking each

 43 #pair of factors, I only multiply them out as long as their product is

 44 #bigger than the current maxPalindrome; once they get smaller than it, I

 45 #break from that cycle of the inner loop and start again with a new x and y.
 46 #

 47 #Also, note that I only test y-factors that are larger than the current

 48 #x-factor. This tends to find larger palindromes faster and reduces

 49 #duplicate multiplications.

 50

 51 maxPalindrome = [0,0,0]

 52 for x in reversed(xrange(minFactor, maxFactor)):

 53 for y in reversed(xrange(x, maxFactor)):

 54 if x*y > maxPalindrome[0]:

 55 if isPalindromic(str(x*y)):

 56 maxPalindrome = [x*y, x, y]

 57 else:

 58 break

 59 return maxPalindrome

 60

 61 def main():

 62 """This main function just takes the general functions written above and

 63 applies the required constrains."""

 64 print("This program uses Python to calculate the largest palindromic number produced from two three-digit factor

 s.")

 65 print("Calculating...")

 66 maxPalindrome = largestProductPalindrome(1000, 100)

 67 print("The largest palindrome is %d, formed by multiplying %d and %d." % (maxPalindrome[0], maxPalindrome[1], ma

 xPalindrome[2]))

 68

 69 main()

1 of 1

Page 102 of 148

 1 ;Programming Language Skills and Concepts exam

 2 ;Problem 1

 3 ;Part 1

 4 ;Richard Scruggs

 5 ;11/5/2010

 6 ;Licensed under the Creative Commons Attribution 3.0 Unported License.

 7 ;see http://creativecommons.org/licenses/by/3.0/ for license text.

 8

 9 (defun is-palindrome (string)

 10 "Returns T if the given string is a palindrome, NIL otherwise."

 11 (string-equal string (reverse string)))

 12

 13 (defun largest-palindrome-product (max-factor &optional (min-factor 100) (largest-palindrome 0))

 14 "Calculates the largest palindromic number that can be produced with two factors less than max-factor and great

 er than min-factor."

 15 (do ((x max-factor (1- x)))

 16 ((< x min-factor) largest-palindrome)

 17 (do ((y max-factor (1- y)))

 18 ((< y x))

 19 (if (> (* x y) largest-palindrome)

 20 (if (is-palindrome (write-to-string (* x y)))

 21 (return-from largest-palindrome-product (largest-palindrome-product max-factor min-factor (* x y))))

 22 (return)))))

 23

 24 (defun main ()

 25 "Applies the specific constraints required by the problem to the more general functions. Prints the result."

 26 (format t "This program uses Lisp to calculate the largest palindromic number produced from two three-digit fac

 tors.~%")

 27 (format t "Calculating...~%")

 28 (format t "The largest palindrome is ~a.~%" (largest-palindrome-product 1000)))

 29

 30 (main)

1 of 1

Page 103 of 148

 1 /*
 2 Programming Language Skills and Concepts exam
 3 Problem 1
 4 Part 1
 5 Richard Scruggs
 6 11/4/2010
 7 Licensed under the Creative Commons Attribution 3.0 Unported License.
 8 see http://creativecommons.org/licenses/by/3.0/ for license text.
 9 */
 10
 11 #include <stdio.h>
 12 #include <stdlib.h>
 13 #include <string.h>
 14
 15 int is_palindrome (int test_number){
 16 /*Returns 1 if the given number is palindromic, 0 otherwise.*/
 17 char test_string[11]; //2^32 is 10 digits long.
 18 sprintf(test_string, "%d", test_number);
 19 int length = strlen(test_string);
 20 int half = length/2;
 21 int end_pointer = length - 1;
 22 int i;
 23 for (i=0; i<half; i++){
 24 if (test_string[i] != test_string[end_pointer-i])
 25 return 0;
 26 }
 27 return 1;
 28 }
 29
 30 int largest_product_palindrome (int max_factor, int min_factor){
 31 /*Calculates the largest palindromic number that can be produced with two
 32 factors less than max_factor and greater than min_factor."*/
 33 int max_palindrome = 0;
 34 int x,y;
 35 for (x=max_factor; x>min_factor; x--){
 36 for (y=max_factor; y>=x; y--){
 37 if ((x * y) > max_palindrome){
 38 if (is_palindrome(x*y)){
 39 max_palindrome = x * y;
 40 }
 41 }
 42 else{
 43 break;
 44 }
 45 }
 46 }
 47 return max_palindrome;
 48 }
 49
 50 int main(){
 51 /*Applies the specific constraints required by the problem to the more general functions. Prints the result.*/
 52 printf("This program uses C to calculate the largest palindromic number produced from two three-digit factors.\n
 ");
 53 printf("Calculating...\n");
 54 printf("The largest palindrome is %d.\n", largest_product_palindrome(1000, 100));
 55 return 0;
 56 }

1 of 1

Page 104 of 148

 1 #!/usr/bin/env python
 2
 3 #Programming Language Skills and Concepts exam
 4 #Problem 1
 5 #Part 2
 6 #Richard Scruggs
 7 #11/8/2010
 8 #Licensed under the Creative Commons Attribution 3.0 Unported License.
 9 #see http://creativecommons.org/licenses/by/3.0/ for license text.
 10
 11 from datetime import date
 12
 13 class Person():
 14 """A class for people. Stores name, ID number, birth and death dates, and
 15 parents."""
 16 def __init__(self, nameID, born=None, died=None, dad=None, mom=None):
 17 """Initializes a Person object. Expects [name, ID], date, date, [name,
 18 ID], [name, ID]."""
 19 self.id = nameID[1]
 20 self.name = nameID[0]
 21 self.born = born
 22 self.died = died
 23 if mom:
 24 self.mom = mom[1]
 25 else:
 26 self.mom = mom
 27 if dad:
 28 self.dad = dad[1]
 29 else:
 30 self.dad = dad
 31 def age(self):
 32 """Returns the age of the Person. If they are still alive, it is
 33 calculated as of today; else it is their age at death."""
 34 if not self.born:
 35 return None
 36 if self.died:
 37 return ((self.died - self.born).days / 365)
 38 return ((date.today() - self.born).days / 365)
 39
 40 def readPeople(filename):
 41 """Reads People from the given filename. Returns a list of Person
 42 objects, or False if there is an error opening the file."""
 43 try:
 44 infile = open(filename)
 45 except IOError:
 46 return False
 47 people = []
 48 tempQualities = []
 49 while True:
 50 for x in range(5):
 51 tempQualities.append(infile.readline().split(':')[1].strip())
 52 people.append(makePerson(tempQualities))
 53 tempQualities = []
 54 if not infile.readline():
 55 break
 56 return people
 57
 58 def cmpAge(personA, personB):
 59 """Compares the given two people by age. Just a wrapper for cmp."""
 60 return cmp(personA.age(), personB.age())
 61
 62 def makePerson(tempQualities):
 63 """Makes a Person object from the simply separated list tempQualities."""
 64 longerQualities = []
 65 for quality in tempQualities:
 66 if '(' in quality:

1 of 2

Page 105 of 148

 67 splits = quality.split('(')
 68 longerQualities.append([splits[0].strip(), int(splits[1].strip(')'))])
 69 elif '/' in quality:
 70 longerQualities.append(makeDate(quality))
 71 else:
 72 longerQualities.append(None)
 73 return Person(*longerQualities)
 74
 75 def makeDate(dateString):
 76 """Takes the given dateString and returns a proper date.date object for it.
 77
 78 >>> makeDate("12/10/2004")
 79 datetime.date(2004, 12, 10)"""
 80 tempParts = dateString.split("/")
 81 for x in range(len(tempParts)):
 82 tempParts[x] = int(tempParts[x])
 83 dateParts = [tempParts[2]]
 84 dateParts.extend(tempParts[:2])
 85 return date(*dateParts)
 86
 87 def printAges(people):
 88 """Takes a list of Persons. Prints them, sorted by age."""
 89 people.sort(cmpAge)
 90 print "Here are the people in the data file, sorted by age."
 91 for person in people:
 92 print "%s: %d" % (person.name, person.age())
 93
 94 def main():
 95 """Asks the user for a filename and wraps the rest of the functions."""
 96 filename = raw_input("Enter data filename: ")
 97 people = readPeople(filename)
 98 if not people:
 99 print("Error reading from file %s. Check filename." % filename)
 100 return
 101 else:
 102 printAges(people)
 103
 104 main()

2 of 2

Page 106 of 148

 1 ;Programming Language Skills and Concepts exam

 2 ;Problem 1

 3 ;Part 2

 4 ;Richard Scruggs

 5 ;11/9/2010

 6 ;Licensed under the Creative Commons Attribution 3.0 Unported License.

 7 ;see http://creativecommons.org/licenses/by/3.0/ for license text.

 8

 9 (defvar *people* nil)

 10

 11 (defun add-person (person)
 12 "Pushes the given person into *people*."

 13 (push person *people*))

 14

 15 (defun person-form (person-qualities)

 16 "Creates a plist with the passed person-qualities."

 17 (list :name (caar person-qualities) :id (cadar person-qualities)

 18 :born (second person-qualities) :died (third person-qualities)

 19 :mom (if (fourth person-qualities)

 20 (second (fourth person-qualities))

 21 nil)
 22 :dad (if (fifth person-qualities)

 23 (second (fifth person-qualities))

 24 nil)))

 25

 26 (defun read-people (filename)

 27 "Reads people from the passed data file. Puts them into *people*. Returns the number

 at there's at least one person in the file."

 28 (with-open-file (stream filename :if-does-not-exist nil)

 29 (loop

 30 (add-person (make-person

 31 (loop for i from 1 upto 5 collecting
 32 (string-trim " " (second (split-

sequence #\: (read-line stream nil)))))))

 33 (if (not (read-line stream nil))

 34 (return-from read-people (length *people*))))))

 35

 36 (defun make-person (person-qualities)

 37 "Takes the split list of qualities. Performs some additional parsing and uses person

 rmatted plist."

 38 (person-form (loop for item in person-qualities collecting

 39 (if (search "(" item)
 40 (parse-name item)

 41 (if (search "-" item)

 42 nil

 43 item)))))

 44

 45 (defun parse-name (name-id)

 46 "Takes a name-id number string and returns a list with a name and id, parsed."

 47 (loop for item in (split-sequence #\(name-id)

 48 if (search ")" item) collect (parse-integer (string-trim "()" item))

 49 else collect (string-trim " " item)))

 50
 51 (defun prompt-read (prompt)

 52 "Prints the given prompt and returns the user's response. From Practical Common Lisp

 53 (format *query-io* "~a: " prompt)

 54 (force-output *query-io*)

 55 (read-line *query-io*))

 56

 57 (defun print-ancestry ()

 58 "Prints the ancestors of the people in *people*."

 59 (loop for person in *people* do

 60 (format t "Printing ancestors of ~a~%" (getf person :name))

 61 (if (has-parentsp person)
 62 (print-ancestors person)

1 of 5

Page 107 of 148

 63 (format t "No ancestors.~%"))
 64 (format t "~%")))

 65

 66 (defun print-ancestors (person)

 67 "Prints the ancestors of the given person."

 68 (print-person person)

 69 (loop for ancestor in (get-parents person)

 70 if ancestor do (print-ancestors ancestor)))

 71

 72 (defun has-parentsp (person)

 73 "Returns T if the given person has parents who have records, nil otherwise."

 74 (if (get-parents person)
 75 T

 76 nil))

 77

 78 (defun get-parents (person)

 79 "Returns a list with the parents of the passed person."

 80 (loop for id in (list (getf person :mom) (getf person :dad))

 81 if (person-existsp id) collect (get-person id)))

 82

 83 (defun person-existsp (id)

 84 "Returns T if a person with the given id has an entry, nil otherwise. Used to see if
 85 (if id

 86 (if (get-person id) T)

 87 nil))

 88

 89 (defun get-person (id)

 90 "Returns the person with the given id, or nil if the person does not exist."

 91 (loop for person in *people*

 92 do (if (eq (getf person :id) id)

 93 (return-from get-person person)))

 94 nil)

 95
 96 (defun print-person (person &optional (short T))

 97 "Prints a representation of the given person - by default, just their name and id, i

 98 (if short

 99 (format t "~a (~a).~%" (getf person :name) (getf person :id))

 100 (format t "~{~a:~10t~a~%~}~%" person)))

 101

 102 (defun main ()

 103 "Wraps the other functions, reading people from the file and printing the ancestry o

 104 (setf *people* nil)

 105 (let ((people-count (read-people (prompt-read "Enter data filename"))))
 106 (if people-count

 107 (print-ancestry)

 108 (format t "Unable to open file. Check filename.~%"))))

 109 ;

 110 ;

 111 ;My code ends here (other than the (main) at the bottom)

 112 ;

 113 ;

 114

 115 (defun split-sequence (delimiter seq &key (count nil) (remove-empty-

subseqs nil) (from-end nil) (start 0) (end ni
 l) (test nil test-supplied) (test-not nil test-not-

supplied) (key nil key-supplied))

 116 "Return a list of subsequences in seq delimited by delimiter.

 117

 118 If :remove-empty-subseqs is NIL, empty subsequences will be included

 119 in the result; otherwise they will be discarded. All other keywords

 120 work analogously to those for CL:SUBSTITUTE. In particular, the

 121 behaviour of :from-end is possibly different from other versions of

 122 this function; :from-end values of NIL and T are equivalent unless

 123 :count is supplied. The second return value is an index suitable as an
 124 argument to CL:SUBSEQ into the sequence indicating where processing

 125 stopped."

 126 (let ((len (length seq))

2 of 5

Page 108 of 148

 127 (other-keys (nconc (when test-supplied
 128 (list :test test))

 129 (when test-not-supplied

 130 (list :test-not test-not))

 131 (when key-supplied

 132 (list :key key)))))

 133 (unless end (setq end len))

 134 (if from-end

 135 (loop for right = end then left

 136 for left = (max (or (apply #'position delimiter seq

 137 :end right

 138 :from-end t
 139 other-keys)

 140 -1)

 141 (1- start))

 142 unless (and (= right (1+ left))

 143 remove-empty-subseqs) ; empty subseq we don't want

 144 if (and count (>= nr-elts count))

 145 ;; We can't take any more. Return now.

 146 return (values (nreverse subseqs) right)

 147 else

 148 collect (subseq seq (1+ left) right) into subseqs
 149 and sum 1 into nr-elts

 150 until (< left start)

 151 finally (return (values (nreverse subseqs) (1+ left))))

 152 (loop for left = start then (+ right 1)

 153 for right = (min (or (apply #'position delimiter seq

 154 :start left

 155 other-keys)

 156 len)

 157 end)

 158 unless (and (= right left)

 159 remove-empty-subseqs) ; empty subseq we don't want
 160 if (and count (>= nr-elts count))

 161 ;; We can't take any more. Return now.

 162 return (values subseqs left)

 163 else

 164 collect (subseq seq left right) into subseqs

 165 and sum 1 into nr-elts

 166 until (>= right end)

 167 finally (return (values subseqs right))))))

 168

 169 (defun split-sequence-if (predicate seq &key (count nil) (remove-empty-
subseqs nil) (from-end nil) (start 0) (end

 nil) (key nil key-supplied))

 170 "Return a list of subsequences in seq delimited by items satisfying

 171 predicate.

 172

 173 If :remove-empty-subseqs is NIL, empty subsequences will be included

 174 in the result; otherwise they will be discarded. All other keywords

 175 work analogously to those for CL:SUBSTITUTE-IF. In particular, the

 176 behaviour of :from-end is possibly different from other versions of

 177 this function; :from-end values of NIL and T are equivalent unless

 178 :count is supplied. The second return value is an index suitable as an
 179 argument to CL:SUBSEQ into the sequence indicating where processing

 180 stopped."

 181 (let ((len (length seq))

 182 (other-keys (when key-supplied

 183 (list :key key))))

 184 (unless end (setq end len))

 185 (if from-end

 186 (loop for right = end then left

 187 for left = (max (or (apply #'position-if predicate seq

 188 :end right
 189 :from-end t

 190 other-keys)

 191 -1)

3 of 5

Page 109 of 148

 192 (1- start))
 193 unless (and (= right (1+ left))

 194 remove-empty-subseqs) ; empty subseq we don't want

 195 if (and count (>= nr-elts count))

 196 ;; We can't take any more. Return now.

 197 return (values (nreverse subseqs) right)

 198 else

 199 collect (subseq seq (1+ left) right) into subseqs

 200 and sum 1 into nr-elts

 201 until (< left start)

 202 finally (return (values (nreverse subseqs) (1+ left))))

 203 (loop for left = start then (+ right 1)
 204 for right = (min (or (apply #'position-if predicate seq

 205 :start left

 206 other-keys)

 207 len)

 208 end)

 209 unless (and (= right left)

 210 remove-empty-subseqs) ; empty subseq we don't want

 211 if (and count (>= nr-elts count))

 212 ;; We can't take any more. Return now.

 213 return (values subseqs left)
 214 else

 215 collect (subseq seq left right) into subseqs

 216 and sum 1 into nr-elts

 217 until (>= right end)

 218 finally (return (values subseqs right))))))

 219

 220 (defun split-sequence-if-not (predicate seq &key (count nil) (remove-empty-

subseqs nil) (from-end nil) (start 0)

 (end nil) (key nil key-supplied))

 221 "Return a list of subsequences in seq delimited by items satisfying

 222 (CL:COMPLEMENT predicate).
 223

 224 If :remove-empty-subseqs is NIL, empty subsequences will be included

 225 in the result; otherwise they will be discarded. All other keywords

 226 work analogously to those for CL:SUBSTITUTE-IF-NOT. In particular,

 227 the behaviour of :from-end is possibly different from other versions

 228 of this function; :from-end values of NIL and T are equivalent unless

 229 :count is supplied. The second return value is an index suitable as an

 230 argument to CL:SUBSEQ into the sequence indicating where processing

 231 stopped." ; Emacs syntax highlighting is broken, and this helps: "

 232 (let ((len (length seq))
 233 (other-keys (when key-supplied

 234 (list :key key))))

 235 (unless end (setq end len))

 236 (if from-end

 237 (loop for right = end then left

 238 for left = (max (or (apply #'position-if-not predicate seq

 239 :end right

 240 :from-end t

 241 other-keys)

 242 -1)

 243 (1- start))
 244 unless (and (= right (1+ left))

 245 remove-empty-subseqs) ; empty subseq we don't want

 246 if (and count (>= nr-elts count))

 247 ;; We can't take any more. Return now.

 248 return (values (nreverse subseqs) right)

 249 else

 250 collect (subseq seq (1+ left) right) into subseqs

 251 and sum 1 into nr-elts

 252 until (< left start)

 253 finally (return (values (nreverse subseqs) (1+ left))))
 254 (loop for left = start then (+ right 1)

 255 for right = (min (or (apply #'position-if-not predicate seq

 256 :start left

4 of 5

Page 110 of 148

 257 other-keys)
 258 len)

 259 end)

 260 unless (and (= right left)

 261 remove-empty-subseqs) ; empty subseq we don't want

 262 if (and count (>= nr-elts count))

 263 ;; We can't take any more. Return now.

 264 return (values subseqs left)

 265 else

 266 collect (subseq seq left right) into subseqs

 267 and sum 1 into nr-elts

 268 until (>= right end)
 269 finally (return (values subseqs right))))))

 270

 271 ;;; clean deprecation

 272

 273 (defun partition (&rest args)

 274 (apply #'split-sequence args))

 275

 276 (defun partition-if (&rest args)

 277 (apply #'split-sequence-if args))

 278
 279 (defun partition-if-not (&rest args)

 280 (apply #'split-sequence-if-not args))

 281

 282 (define-compiler-macro partition (&whole form &rest args)

 283 (declare (ignore args))

 284 (warn "PARTITION is deprecated; use SPLIT-SEQUENCE instead.")

 285 form)

 286

 287 (define-compiler-macro partition-if (&whole form &rest args)

 288 (declare (ignore args))

 289 (warn "PARTITION-IF is deprecated; use SPLIT-SEQUENCE-IF instead.")
 290 form)

 291

 292 (define-compiler-macro partition-if-not (&whole form &rest args)

 293 (declare (ignore args))

 294 (warn "PARTITION-IF-NOT is deprecated; use SPLIT-SEQUENCE-IF-NOT instead")

 295 form)

 296

 297 (pushnew :split-sequence *features*)

 298

 299 (main)

5 of 5

Page 111 of 148

 1 /*
 2 Programming Language Skills and Concepts exam
 3 Problem 1
 4 Part 2
 5 Richard Scruggs
 6 11/9/2010
 7 Licensed under the Creative Commons Attribution 3.0 Unported License.
 8 see http://creativecommons.org/licenses/by/3.0/ for license text.*/
 9
 10 /*
 11 Known bugs: qsort does not sort the data correctly.
 12 The program does not exit cleanly. The use of exit() from main suppresses the
 13 segfault, but examination in gdb still shows execution going out of main() at
 14 the end. I suspect that I'm not cleaning up a bit of memory and the automatic
 15 attempt at same isn't working properly--exit() bypasses that attempt.*/
 16
 17 #define DATEMAX 11
 18 #define NAMEMAX 30
 19 #define LINEMAX 100
 20 #include <stdio.h>
 21 #include <stdlib.h>
 22 #include <string.h>
 23
 24 struct person{
 25 char first_name[NAMEMAX];
 26 char last_name[NAMEMAX];
 27 int id;
 28 char birth[DATEMAX];
 29 char death[DATEMAX];
 30 int mom;
 31 int dad;
 32 };
 33
 34 typedef struct person person;
 35
 36 int print_people(person** people, int people_count);
 37 int free_people(person** people, int people_count);
 38 int person_compare(const void* person_1, const void* person_2);
 39 int read_people (char* filename, person** people, int* people_count, int* people_cap);
 40 int insert_person(char person_data[6][LINEMAX], person** people, int people_count);
 41
 42 int main (int argc, char* argv[]){
 43 /*Takes the given filename and passes it, with some initialized variables,
 44 to read_people. Sorts and prints the prople, then frees the memory they
 45 use.*/
 46 if (argc != 2){
 47 printf("Usage: %s datafile\n", argv[0]);
 48 return 0;
 49 }
 50 person* people;
 51 int people_count = 0;
 52 int people_cap = 5;
 53 if ((read_people(argv[1], &people, &people_count, &people_cap)) == -1){
 54 printf("Error reading people from file. Check filename.\n");
 55 printf("Exiting.\n");
 56 return 1;
 57 }
 58 qsort(&people, people_count, sizeof(person*), person_compare);
 59 //the above does not behave as it should.
 60 print_people(&people, people_count);
 61 free_people(&people, people_count);
 62 exit (0);
 63 }
 64
 65 int print_people(person** people, int people_count){
 66 /*Prints people_count of the passed people[], starting from people[0] to
 67 standard out, one person per line, with a newline after the set.*/
 68 int i;
 69 for (i=0; i<people_count; i++){
 70 printf("%15s %15s (%d), born: %11s, died: %11s. Mom id: %6d. Dad id: %6d.\n",
 71 people[i]->first_name, people[i]->last_name, people[i]->id, people[i]->birth,
 72 people[i]->death, people[i]->mom, people[i]->dad);
 73 }
 74 printf("\n");
 75 return 0;
 76 }
 77
 78 int free_people(person** people, int people_count){
 79 /*Frees the memory used by people_count people, starting from people[0].*/
 80 int i;
 81 for (i=0; i<people_count; i++){
 82 free(people[i]);
 83 }
 84 return 0;
 85 }
 86
 87 int person_compare(const void* person_1, const void* person_2){
 88 /*Expects pointers to persons, cast as void*. Compares their names, last
 89 first.*/
 90 person* person_a = (person*) person_1;
 91 person* person_b = (person*) person_2;
 92 if (strncmp(person_a->last_name, person_b->last_name, NAMEMAX) != 0)

1 of 2

Page 112 of 148

 93 return strncmp(person_a->last_name, person_b->last_name, NAMEMAX);
 94 return strncmp(person_a->first_name, person_b->first_name, NAMEMAX);
 95 }
 96
 97 int read_people (char* filename, person** people, int* people_count, int* people_cap){
 98 /*Reads persons from the given filename into people. Modifies people_count
 99 to reflect the number read, and people_cap to reflect the capacity of
 100 people. Returns 0 on success, -1 on failure.*/
 101 FILE* in_file;
 102 if ((in_file = fopen(filename, "r")) == NULL)
 103 return -1;
 104 /*I use a temporary array, read five lines into it, pass it to
 105 insert_person, check to see it's reached EOF, and repeat.*/
 106 char temp_person[6][LINEMAX];
 107 *people = (person *) malloc(*people_cap * sizeof(person*));
 108 int place_count = 0;
 109 while (fgets(temp_person[place_count], LINEMAX, in_file) != NULL){
 110 if (*people_count >= *people_cap){
 111 *people_cap = *people_cap * 2;
 112 *people = (person *) realloc(*people, *people_cap * sizeof(person*));
 113 }
 114 place_count++;
 115 if (place_count == 5){
 116 insert_person(temp_person, people, *people_count);
 117 *people_count = *people_count + 1;
 118 if (fgets(temp_person[place_count], LINEMAX, in_file) == NULL){
 119 break;
 120 }
 121 place_count = 0;
 122 }
 123 }
 124 fclose(in_file);
 125 return 0;
 126 }
 127
 128 int insert_person(char person_data[6][LINEMAX], person** people, int people_count){
 129 /*Mallocs space for a new person and inserts them in people[people_count].*/
 130 people[people_count] = (person*) malloc(sizeof(person));
 131 sscanf(person_data[0], "%*s %s %s (%d)\n", people[people_count]->first_name, people[people_count]->last_name, &p
 eople[people_count]->id);
 132 sscanf(person_data[1], "%*s %s\n", people[people_count]->birth);
 133 sscanf(person_data[2], "%*s %s\n", people[people_count]->death);
 134 sscanf(person_data[3], "%*s %*s %*s (%d)\n", &people[people_count]->dad);
 135 sscanf(person_data[4], "%*s %*s %*s (%d)\n", &people[people_count]->mom);
 136 return 0;
 137 }

2 of 2

Page 113 of 148

Category number (0 = omitted)

* = given, # = added, x

= omitted Term

0 x stack overflow

0 x macro

0 x pattern

1 * argument

1 * function

1 * global

1 * pass by reference

1 * pass by value

1 * variable

1 * dynamic

1 * static

1 * namespace

1 * scope

1 * closure

1 * symbol

1 * lexical

2 * collection

2 * list

2 * vector

2 * data structure

2 * hash

3 * compiled

3 * interpreted

3 * link

4 * overload

4 * API

4 * class

4 * inheritance

4 * interface

4 * method

4 * object

4 * package

5 * iterate

5 * recursion

5 * side effect

5 # return value

6 * comment

6 * syntactic sugar

6 * exception

6 * test

6 * throw

Page 114 of 148

Discussion of Categorized Terms

Category 1

This category consists of terms relating to functions, variables, and scope.

Examples:

A function in Python that takes several variables as arguments:
 def sum(a, b, c):

 return a+b+c

The same function in C, illustrating the difference between static typing (C) and dynamic typing

(Python):
 int sum(int a, int b, int c){

 return a + b + c

 }

Defining a global (dynamic) variable and a lexical variable in Lisp:
 (defvar *two* 2) ;global/dynamic scope

 (let ((two 2))) ;lexical scope

A warning when defining a function from a file in Lisp when a function with that name has

already been defined at the top level:
 DEFUN/DEFMACRO: redefining function MAIN in

/mnt/big/code/1-1.fas, was defined in top-level

A function in Lisp that adds two numbers that are declared as fixnums:
 (defun add (x y)

 (declare (fixnum x y))

 (+ x y))

Discussion:

 This category can be easily grouped into several subcategories to make discussion easier.

Variables in all the languages are passed by value, although C’s pointers offer the option of

passing by reference. Also, all languages encourage using lexically scoped variables but offer the

option of global variables—note, though, that Lisp’s lexical scoping, with (let) is perhaps

more explicit than C or Python. Functions and their arguments are relatively similar among the

three languages, although C’s static typing creates a different syntax. While C and Python are

clearly dynamically and statically typed respectively, Lisp offers a choice between the two: a

variable is usually dynamically typed, but a programmer has the option of declaring a variable’s

type, which the compiler will then use to optimize.

Category 2

This category consists of data structures and related terms.

Examples:

The list example here is a little messy; Lisp and Python support more types of collections than C,

so I show a list for them and an array for C.
 testList = [4, 5, 6] #a list in Python.

Page 115 of 148

 (list 4 5 6) ;a list in Lisp.

 int[3] array = {4,5,6}; //an array in C.

A data structure in C:
 struct person {

 char* name;

 int age;

 }

A dictionary in Python:
 testDictionary = {'sape': 413, 'guido': 412, 'jack': 409}

Discussion:

 The data structures available and encouraged in each language differ significantly. Lisp

encourages use of lists; Python offers several data structures but does not strongly support any

over the others; and while C offers arrays, many C programs implement their own data

structures.

Category 3

This category’s terms relate to how code written in a language is actually executed on a

computer.

Examples:

Compiling a file with clisp (with the clisp header removed for readability):
 [shaggy@shaggy-pc code]$ clisp -c 1-1.lisp

;; Compiling file /mnt/big/code/1-1.lisp ...

;; Wrote file /mnt/big/code/1-1.fas

0 errors, 0 warnings

Bye.

Discussion:

 The definitions of these terms do not vary by language; the difference is which of the

terms apply. The typical distinction, whether a language is compiled or interpreted, is becoming

increasingly muddied—if it ever was clear. While C is a typical example of a compiled language,

there exist C interpreters, and while Python is a typical example of an interpreted language, it

may be compiled. Lisp, as it often does, does not fit neatly into either box: it can be compiled,

but some interpreters only can compile it to bytecode. Also, it’s typically run in a read-eval-print

loop, something usually characteristic of an interpreted language.

Category 4

This category consists of terms relating to classes, objects, and libraries.

Examples:

An example of operator overloading in Python:
>>> date.today() - date(2001,5,16)

datetime.timedelta(3464)

>>> 5 - 4

Page 116 of 148

1

#the – operator works on numbers and date objects

A class that inherits from another class in Lisp (with class contents elided):
(defclass bank-account () ...)

(defclass checking-account (bank-account) ...)

Including code from another file in C:
 #include <stdio.h>

Discussion:

 The role of objects and libraries differs greatly between the languages. C, of course, has

no support for objects, and Lisp has no native support for objects, only adding a rudimentary

implementation in later dialects such as CommonLisp. Python, meanwhile, has a well-developed

object system.

 There are many packages available for Python, Lisp, and C, although the method of

accessing those packages—and even the definition of what consists of a package—varies. C

allows one to use functions from other files, CommonLisp offers the ASDF packaging system,

and Python includes many packages in its extended library and has many more online.

Category 5

The terms in this category relate to behavior of functions.

Examples:

The archetypal, recursive Fibonacci function in Python:
 def fib(n):

 if n < 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

An iterative Fibonacci function in C:
int fib(int n)

{

 int first = 0, second = 1;

 int tmp;

 while (n--)

 {

 tmp = first+second;

 first = second;

 second = tmp;

 }

 return first;

}

A function with a side effect and a return value:
 (defun test-print ()

 (format t “Hello.~%”))

Page 117 of 148

Discussion:

 The biggest difference between the three languages among the concepts in this category

is that is Lisp, everything has a return value. Iteration and recursion are supported by all the

languages, as are side effects. From a philosophical standpoint, Lisp functions are encouraged to

use the return values when possible and avoid side effects unless necessary, C’s limitations on

return values forces greater reliance on side effects, and Python holds a middle ground.

Category 6

The terms in this category are things that are helpful, but not integral to running code.

Examples:

A doctest in Python:
 >>> isPalindromic("test")

 False

A simple exception handler in Lisp:
(handler-case

 (progn

 (do-stuff)

 (do-more-stuff))

 (some-exception (se) (recover se)))

Syntactic sugar in C, easing array access:
int array[100]; //an empty array with space for 100 ints

array[0] = 5;

Discussion:

 This category, as stated above, consists of features that make things easier when

programming. Comments and syntactic sugar make it easier to understand what code is doing,

tests ensure that the code actually work as it should, and exception handling makes sure that

when code does not execute as expected, program execution continues in a predictable manner.

These terms, more than the other categories, are reasonably similar across the languages.

Comments and syntactic sugar are universal, and while C does not have proper exception

handling as the other languages do, it is expected that a C programmer should anticipate and

attempt to check for error conditions.

Page 118 of 148

C, Lisp, and Python

―Comparisons of programming languages,‖ says Paul Graham, ―either take the form of

religious wars or undergraduate textbooks so determinedly neutral that they're really works of

anthropology.‖
1
 I believe that Graham is mistaken—not only is anthropology often far from

neutral, but it is also possible to write a comparison of programming languages that mildly

expresses an opinion or preference. In this paper, I will attempt to compare Python, C, and Lisp

in such a fashion.

Python, C, and Lisp can be grouped together in many different ways. C is the most

imperative of the set, Lisp the most extensible, and Python is the most interpreted. All of them

are sufficiently general-purpose that one may use them for any purpose, but each also has certain

strengths and weaknesses that suit it more for one task over another.

I will start with language performance, as I find it more clearly defined than the other

differences between the languages. The most well-known strength of C, its speed, can be

illustrated with a benchmark of the three short programs written for question 1-1 of this exam.

These programs calculated the largest palindromic number with three-digit factors—a task that

can be sped up somewhat with clever tricks, but one that requires a great deal of multiplication

nonetheless. I wrote programs to do this in Python, Lisp, and C; the method used to perform the

calculation is relatively similar among the languages. I timed all three versions of the program

with the time utility in Linux. The execution times are displayed below.

3-digit factors Python Lisp
2
 C

1
 http://www.paulgraham.com/avg.html, footnote 6.

2
 Clisp, the Lisp implementation used, does not compile to native code. I had it compile to bytecode, but Lisp is still

handicapped here.

Page 119 of 148

http://www.paulgraham.com/avg.html

User 0.160s 0.060s 0.003s

Sys 0.013s 0.037s 0.000s

Total 0.173s 0.097s 0.003s

The C code is faster by two orders of magnitude. However, it’s generally acknowledged that C’s

advantage in machine runtime is countered by a disadvantage in programmer-time. In this case,

the C code is about twice as long as the corresponding Lisp and Python code, and suffers from

various limitations that are not present in either of the other versions.

This is perhaps the best illustration of the performance argument. When writing a

program that will be run a few times and where the speed differential is relatively insignificant,

it’s typically faster to write in languages like Lisp or Python that handle more of the small

implementation details—the fact that the C program runs a second faster doesn’t matter when it

takes thirty minutes longer to write it. The extension of this, then, is the belief that when writing

code that must run as fast as possible, C or a similarly low-level language should be used.

 I do not hold to this latter belief, however. Take the example of ITA Software, a startup

that was recently acquired by Google.
3
 ITA writes software to solve a computationally hard

problem – finding the cheapest airline tickets. Their software, written largely in Lisp,
4
 is fast

enough to be able to look across an entire month to find the cheapest ticket. ITA’s method

reflects the current climate of computation—many hard computational problems that are solved

today are solved not with brute force but with carefully designed algorithms. The fact that Lisp

often runs more slowly than equivalent code in C is made irrelevant by the higher-level features

3
 http://www.google.com/press/ita/.

4
 This was stated in a 2001 email, see http://www.paulgraham.com/carl.html.

Page 120 of 148

http://www.google.com/press/ita/
http://www.paulgraham.com/carl.html

of the language which enable programmers to more effectively attack problems. Python, on the

other hand, does not add features that Lisp does not have, but sacrifices speed to make many of

Lisp’s features easier to understand and use.
5
 Ruby takes another step along that curve, being

even slower than Python, but also adding more features from Lisp.

 Deciding what language to use on performance alone, though, steps close to premature

optimization, which is the root of all evil.
6
 Another important factor when choosing a language is

one’s intended audience. Whenever programming for more than personal use, one ought to

consider who else will examine and use the code, and whether those people will be able to easily

understand it. In this regard, I consider library size, code size, and code complexity all to be

important. The larger the library, the less likely that the audience is familiar with every function

used. The larger the code size, the less likely that the reader can hold it in her head at once—

good organization can help with this problem, but not eliminate it entirely. Finally, the more

complex the code, the more likely the reader won’t understand what it does. Of the languages

discussed here, I see, on average, Lisp having the largest standard library, C the smallest; Lisp

having the most compact code, C the least; and Python having the least complex code. Whether

C or Lisp is more complex depends more on the audience and the particular code in question; I

would argue that, in general, Lisp is more complex to the uninitiated, C is more complex

otherwise.

C, Python, and Lisp all encourage certain styles of programming, each of which has its

own strengths and weaknesses. Python, for instance, supports the philosophy that there’s one

way to do it, and its code is often as easy to read as pseudocode. Python code is also easier to

extend and update than its C equivalent—I have not heard of any Python source code preceded

5
 See Norvig’s chart comparing the two languages, http://norvig.com/python-lisp.html.

6
 "We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all

evil" – attributed at times to Knuth and C.A.R. Hoare.

Page 121 of 148

http://norvig.com/python-lisp.html

by an ASCII skull and crossbones, as the display code for Gosmacs (written in C) famously

was.
7
 Lisp is more flexible than the other two, but there along with the many right ways to solve

a problem, there are many wrong ones. I have not seen as much written about a unified style for

C, but it is worth mentioning that it allows and even encourages nonstandard programming

practice to a much greater degree than the other two languages.

As a final data point, I believe that Python’s popularity as a teaching language is rooted

in several factors that are illustrative to this comparison: Python code is easy to read, even for

nonprogrammers; Python is sufficiently flexible so as to allow easy demonstration of many key

programming concepts; and Python’s philosophy that there’s one obvious way to do it makes it

easier for different people to reach the same result by the same process. Most important, Python

is a language that does not require a great deal of translation to get from thought to code. In C,

there is a great deal of repetitious code that must be written each time, and it is often

cumbersome to write and access data structures. In Lisp, the final code is typically short and

elegant, but there is often a great deal of thought required in its design. Coding in Python, on the

other hand, is like following its philosophy: most of the time, there is an obvious way to do it,

and that way works well enough. This tends to hold true even when one is a novice to Python.

The question of whether to use Python, C, or Lisp—or, indeed, any programming

language—for a particular project is not one that can be answered decisively. Sometimes it is

important to be able to develop as fast as possible, sometimes it only matters that the code run as

fast as possible; most often there is some mix of requirements that requires the choice of

language to be a compromise. In this paper, I have attempted to offer some benefits that C,

Python, and Lisp offer as compared to one another, and some situations in which one might be

preferred.

7
 http://en.wikipedia.org/wiki/Gosmacs

Page 122 of 148

http://en.wikipedia.org/wiki/Gosmacs

Second computer science plan exam :

 discrete math

 (probability and counting, information theory,

 game theory, graph theory)

 for Richard Scruggs

 from Jim Mahoney

 on Nov 16 2010

This is an open, take home exam: books or web sources are OK as long

as you cite them explicitly and as long as they aren't a drop-in

solution to the problem. Don't ask other people for help. Your job

is to convince us you understand this stuff.

These are straight pen-and-paper questions; none of 'em need coding.

This is to be done during the week of Nov 16 - Nov 23

the due date is 10am on Nov 23, before our tutorial.

As always with my exams, if you think there's a mistake in one of the

questions or it doesn't make sense, you can (a) ask for clarification,

and/or (b) make and state an explicit interpretation and do the

problem that way. (Again: the point is to demonstrate your

understanding, not to get the "right answer" per se.)

--

1. Take several situations from fiction (books/movies/tv...) that

 could plausibly be analysed with game theory (either simultaneous

 selection matrix games or sequential turn tree games) and

 see what the theory says should happen.

 Discuss successes and failures of the theory.

2. Given a language made up of N symbols x_i = (x_1, x_2, ..., x_N)

 each of which appear with probability P(x_i), show that

 the information entropy is highest when the probabilities are equal.

 Explain what this says about randomness, predicitability,

 and information.

3. Show that C(n,k) - C(n-3,k) = C(n-1,k-1) + C(n-2,k-1) + C(n-3,k-1),

 in two different ways, using a combinatoric and algebraic approach.

4. Show that if 10 positive integers sum to 151 then the sum of three

 of these numbers must be at least 46.

5. Show that any finite simple graph, except the trivial graph with a

 single vertex, has two vertices of the same degree.

6. Show that in every finite simple graph the edges can be oriented in

 such a way that the in-degree of each vertex is at most one different

 from its out-degree.

7. Bayes' Theorem says that P(x|y) = P(y|x) * P(x) / P(y).

 Define the terms, derive the result, and explain how

 it is used by computerists.

Page 123 of 148

8. Is it possible to load two dice such that each of the possible

 totals 2,3,...12 occurs with equal probability when both are rolled?

Page 124 of 148

Discrete Math Exam
Richard Scruggs

November 23, 2010

1: Game Theory Analysis of a Plausible Situation

Take several situations from fiction (books/movies/tv...) that could plausibly be analysed with
game theory (either simultaneous selection matrix games or sequential turn tree games) and see
what the theory says should happen.
Discuss successes and failures of the theory.

Oddly enough, it seems that the Twilight series can be analyzed with game theory to a reasonable
extent. I’m making a few slight modifications to the story to make it a little easier to discuss in
this fashion, but the results should still be similar enough.

The central story arc of Twilight is the love triangle between Bella, Edward, and Jacob. Of the
latter two, Bella prefers Edward if he is pursuing her, but will settle for Jacob otherwise. However, if
both repeatedly pursue her at the same time, she gets mad at one of them for being too competitive.
It can be modeled as an iterated prisoner’s dilemma: Edward and Jacob each want to pursue when
the other does not. If both persue her simultaneously for n turns, Bella gets mad, chooses one at
random and will not accept pursuit from that person for m turns.

I’ve decided to model a winning condition like so: the first one to successfully pursue Bella for
w turns wins. For this condition, a ’successful’ pursuit is different for each person: Jacob can
only successfully pursue if Edward is not, or if they both repeatedly pursue and Bella gets mad
at Edward. Edward can successfully pursue her as long as Bella is not mad at him, regardless of
whether or not Jacob is pursuing.

In this model - as in the series - the odds are stacked in Edward’s favor. He can easily prevent Jacob
from ever succeeding by simply pursuing Bella often enough that he always stays in the picture.
Indeed, as long as n > 1, m > 0, and (m + 1) < w, he can’t lose if he always pursues. While the
model is true to the series, from a game theory perspective there is no reason for Jacob to ever
pursue - he cannot win unless Edward lets him.

In the series, Jacob’s behavior initially follows the model - he only begins to pursue Bella after
Edward has stopped his pursuit for a while. Once Edward returns, though, Jacob continues pursuit
despite not having a chance at winning. Actually, this would not be difficult to add to the model
- make it difficult for a player to stop pursuit once started, depending on how long they have been
pursuing - but it does not fit the actions of the series itself.

I am surprised by how well the game theory model holds up in analyzing the situation - the
simplicity of the model does not preclude its utility, although that may be more of a commentary
on the simplicity of the series than on the utility of the theory. In the series, Jacob does continue
pursuit, but he also realizes that he cannot win in a head-to-head competition with Edward and
instead focuses on trying to convince Edward not to pursue Bella.

2: Information Entropy of a Language

Given a language made up of N symbols xi = (x1, x2, ..., xN) each of which appear with probability

1

Page 125 of 148

Richard Scruggs

P (xi), show that the information entropy is highest when the probabilities are equal. Explain what
this says about randomness, predicitability, and information.

Note: The first part of this problem appears to be pretty close to an example given in the Wikipedia
entry for Entropy (information theory). I avoided looking at it after that realization - and my
discussion is totally different - but should probably mention it anyway.

I think of information entropy as a measure of how much meaning there is in some given infor-
mation - although that definition is more useful for compression than for an abstract discussion of
entropy. The more one can infer about as-yet-unreceived information, the less entropy it has. If
the information is totally random, then it is impossible to infer anything about future information
and entropy is at maximum.

Given the language here, if each symbol appears with equal probability, it is essentially random
data: one cannot predict the next symbol with any certainty. However, if the probabilities are
not equal, one or more symbols will appear more often than others. Since it is known that these
symbols appear more often, their information content is less.

The most direct relation between randomness, predictability, and information would be that the
more random a language is, the harder it is to predict; the harder it is to predict, the more
information is carried in it.

3: Proof

Show that
(
n
k

)
−
(
n−3
k

)
=
(
n−1
k−1
)

+
(
n−2
k−1
)

+
(
n−3
k−1
)
, in two different ways, using a combinatoric and

algebraic approach.

Algebraic (uncommented, but hopefully clear. LaTeX cuts off the end of a line once, but that
portion of the line is unchanged from the previous.)(

n

k

)
−
(
n− 3

k

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+

(
n− 3

k − 1

)

n!

k!(n− k)!
− (n− 3)!

k!(n− 3− k)!
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 2)!

(k − 1)!(n− 1− k)!
+

(n− 3)!

(k − 1)!(n− k − 2)!

n!

k(n− k)!
− (n− 3)!

k(n− 3− k)!
=

(n− 1)!

(n− k)!
+

(n− 2)!

(n− 1− k)!
+

(n− 3)!

(n− k − 2)!

n!

k(n− k)(n− k − 1)(n− k − 2)
−(n− 3)!

k
=

(n− 1)!

(n− k)(n− k − 1)(n− k − 2)
+

(n− 2)!

(n− k − 1)(n− k − 2)
+

(n− 3)!

(n− k − 2)

n(n− 1)(n− 2)

k(n− k)(n− k − 1)(n− k − 2)
−1

k
=

(n− 1)(n− 2)

(n− k)(n− k − 1)(n− k − 2)
+

(n− 2)

(n− k − 1)(n− k − 2)
+

1

(n− k − 2)

n(n− 1)(n− 2)

k(n− k)(n− k − 1)
− n− k − 2

k
=

(n− 1)(n− 2)

(n− k)(n− k − 1)
+

(n− 2)

(n− k − 1)
+ 1

2

Page 126 of 148

Richard Scruggs

n(n− 1)(n− 2)

(n− k)(n− k − 1)
− (n− k − 2) =

k(n− 1)(n− 2)

(n− k)(n− k − 1)
+

k(n− 2)

(n− k − 1)
+ k

n(n− 1)(n− 2)

(n− k)(n− k − 1)
− n + 2 =

k(n− 1)(n− 2)

(n− k)(n− k − 1)
+

k(n− 2)

(n− k − 1)

n(n− 1)(n− 2)

(n− k)
− n(n− k − 1) + 2(n− k − 1) =

k(n− 1)(n− 2)

(n− k)
+ k(n− 2)

n(n− 1)(n− 2)

(n− k)
− n2 + 3n− 2 =

k(n− 1)(n− 2)

(n− k)

n(n− 1)(n− 2)

(n− k)
− k(n− 1)(n− 2)

(n− k)
= n2 − 3n + 2

(n− k)
(n− 1)(n− 2)

(n− k)
= n2 − 3n + 2

(n− 1)(n− 2) = n2 − 3n + 2

n2 − 3n + 2 = n2 − 3n + 2

Combinatoric:

This is a partly expanded recursive definition of a binomial coefficient. To cite Wikipedia,
(
n
k

)
=(

n−1
k−1
)

+
(
n−1
k

)
, with the rightmost term of that being expanded several more times in this problem.

It’s easier to talk about if the terms are reordered thus:
(
n
k

)
=
(
n−1
k−1
)

+
(
n−2
k−1
)

+
(
n−3
k−1
)

+
(
n−3
k

)
Talking about each term, the leftmost is a simple

(
n
k

)
. The next chooses k − 1 from n − 1, thus

element n, in essence, is pre-selected as k. My understanding of precisely what is happening for
the rest of it is somewhat fuzzier. I can follow it from a recursive point of view, but a precise
explanation is more difficult. The next three terms count the instances where n is pre-selected as
not k -

(
n−2
k−1
)

represents those instances where n− 1 is pre-selected as k,
(
n−3
k−1
)
, those where n− 2

is. Finally,
(
n−3
k

)
represents the instances where n through n− 2 are all pre-selected as not k.

4: Sum of Integers

Show that if 10 positive integers sum to 151 then the sum of three of these numbers must be at
least 46.

First, in order for 10 integers to sum to 151, at least one integer i in the set must be greater than
or equal to 16: a set of ten integers each of value 15 only sums to 150.

In order for the premise to be false - that is, for the sum of any three numbers in the set to be
45 or less - several things must be true. First, if any number is greater than 15 by x, all but one
of the other numbers must be less than or equal to 15 − x, otherwise, one can select the greater
number and two other numbers greater than or equal to 15 − x and find a sum greater than or

3Page 127 of 148

Richard Scruggs

equal to 46. It was established above that i must be 16 or greater to achieve a sum of 151, thus
eight numbers must be 14 or less. 14× 8 = 112; thus the sum of the last two numbers must be at
least 151− 112 = 39. However, 39 + 14 > 46.

5: Degree of Vertices of a Graph

Show that any finite simple graph, except the trivial graph with a single vertex, has two vertices
of the same degree.

Assume the inverse - that there is a finite simple graph with n vertices, with each vertex having
different degree. In order for this to be the case, there must be a vertex v with degree 0 - otherwise
there would only be n− 1 possible degrees for n vertices, ensuring by the pigeonhole principle that
there would be two vertices with the same degree. By the same reasoning, there must also be a
vertex with degree n − 1. In order for a vertex to have degree n − 1, it must be connected to
all the other vertices - including the vertex of degree 0. Since the vertex of degree 0 cannot be
simultaneously connected to no vertices and the vertex of degree n − 1, there is a contradiction.
Thus, the proposition is true.

6: Edge Orientation of a Simple Graph

Show that in every finite simple graph the edges can be oriented in such a way that the in-degree
of each vertex is at most one different from its out-degree.

As a computer scientist, I’m inclined to talk about this in algorithmic terms.

While the graph has cycles, choose a cycle in the graph and orient the edges in it so as to traverse
it. This should, in effect, remove the cycle from the graph - each vertex in the cycle will have
gained one in-degree and one out-degree.

At the end of this, the graph will not have any cycles, only simple paths, and the vertices in the
graph will still have equal in-degree and out-degree. These simple paths do not affect the in-degree
and out-degree of any vertices that they pass through - the orientation can simply follow the path,
giving the middle vertices one in-degree and one out-degree. The degree of the ends of the paths
are affected. If there is only one path entering or leaving a vertex, this does not matter; if there are
multiple paths entering or leaving, the fact that the graph has no more cycles becomes important.

Since there are no cycles, one can take a vertex that is a terminus for multiple paths and orient
those paths as needed for the terminating vertex’s degrees to match up properly - there is no way
for the paths to return to parts of the graph being traversed by other connected paths as that would
require a cycle. Thus, algorithmically, one can take each vertex that is the terminus of multiple
paths, orient those paths so that the terminating vertex’s degrees are correct, and repeat for the
next one. The order that the multi-terminus vertices are addressed does not matter - it would take
a cycle to make it impossible to orient properly. After all the paths from multi-terminus vertices
are addressed, the only paths remaining connect single-terminus vertices with equal in-degree and
out-degree to each other. These paths can thus be connected in any orientation; they will only
differentiate in-degree and out-degree by one.

4Page 128 of 148

Richard Scruggs

7: Bayes’ Theorem

Bayes’ Theorem says that P (x|y) = P (y|x)∗P (x)
P (y) . Define the terms, derive the result, and explain

how it is used by computerists.

See note for question 2 re Wikipedia. Also, for the discussion of Bayesian filtering, I looked at Paul
Graham’s ”A Plan for Spam”.

The definition of conditional probability is: P (x|y) = (P (y∩x)
P (y) . This can be substituted into Bayes’

Theorem: P (x|y) =
(P (x∩y)
P (x)

P (x)

P (y) The simplification is trivial: P (x∩y)
P (y) .

The archetypal example of Bayes’ Theorem in computer science would be that of the Bayesian spam
filter. Most people receive far more spam than they do legitimate email (ham). A simple filter
can look for spammy words and filter out those messages, or look for hammy words and let those
messages through. The former approach suffers as spammers can avoid spammy words; the latter
suffers as there are far more spams than hams. One can use Bayes’ Theorem to more accurately
assess whether a message that contains a certain word is spam or ham. In words: the probability
that a message is spam given that it contains a certain word is equivalent to the probability that a
message contains that word, given that it is spam, multiplied by the probability that any message
is spam and divided by the probability that the word occurs.

Once the Bayesian filter can perform this analysis on every word in a given message, it can tell
with remarkably high prabability whether that message is spam or ham; given that classification,
it can then update the spamminess or hamminess of each word in the message.

8: Loading Dice

Is it possible to load two [ordinary, six-sided] dice such that each of the possible totals 2, 3, ...12
occurs with equal probability when both are rolled?

No. 2-12 is a total of eleven different outcomes. That means that each total must, with some
loading of the dice, occur 1

11 of the time. Given that, I’ll take the edge cases - both 2 and 12 need
to come up 1

11 of the time. In order to get a 2, one must roll two 1s; in order to get a 12, one
must roll two 6s. Thus, P (6a ∩ 6b) = 1

11 and P (1a ∩ 1b) = 1
11 . In order to achieve this, at least one

die must come up 6 with probability greater than or equal to
√

1
11 = 0.3015; at least one die must

come up 1 with at least the same probability.

1 and 6 sum to 7; an edge case of another sort. As stated before, we must have at least one heavily
weighted 6 and one heavily weighted 1. If the two are on different dice, loading them to achieve

the stated result cannot be possible: the probability of rolling a 7 is at least
√

1
11 ×

√
1
11 = 1

11 with

only one permutation of a 1 and 6. The probability of rolling the other permutation of 1 and 6
must be nonzero to roll the 2 and 12; this pushes the probability of rolling a 7 past 1

11 .

If it is possible to weight the dice to achieve this result, then, the heavily weighted 1 and 6 can-
not be on different dice. If they are on the same die, P (1a) ≥ 0.3105 and P (6a) ≥ 0.3105;
P (1a ∩ 1b) = 1

11 and P (6a ∩ 6b) = 1
11 . Here, there are a few possibilities to address: Ei-

5Page 129 of 148

http://www.paulgraham.com/spam.html

Richard Scruggs

ther P (1a) = P (6a) or P (1a)! = P (6a). If P (1a) = P (6a), then P (1b) = P (6b) as well; thus
P (1a ∩ 1b) = P (6a ∩ 6b)P (1a ∩ 6b) = P (6a ∩ 1b) = 1

11 . As a 7 can be formed from two pairs that
both appear with 1

11 possibility, P (1a) cannot equal P (6a).

Finally, if P (1a)! = P (6a), one of the probabilities must be greater; assume P (1a) > P (6a). Given
that, P (6b) > P (1b). However, this means that P (1a ∩ 6b) > P (1a ∩ 1b), and as P (1a ∩ 1b) = 1

11 ,
P (1a ∩ 6b) > 1

11 by itself. Thus, it’s not possible to load two dice so that each total occurs with
equal probability.

6Page 130 of 148

Third computer science plan exam :

 algorithms

 for Richard Scruggs

 from Jim Mahoney

 on Nov 30 2010

This is an open, take home exam: books or web sources are OK as long

as you cite them explicitly and as long as they aren't a drop-in

solution to the problem. Don't ask other people for help. Your job

is to convince us you understand this stuff.

This is to be done during the week of Nov 30 - Dec 7

the due date is 10am on Nov 10. (Though you should put up

a marker for it and a "it'll be here soon" if that's too close

to the plan mail date ... which we haven't set yet.)

As always with my exams, if you think there's a mistake in one of the

questions or it doesn't make sense, you can (a) ask for clarification,

and/or (b) make and state an explicit interpretation and do the

problem that way. (Again: the point is to demonstrate your

understanding, not to get the "right answer" per se.)

--

 1. Choose any one of the standard sorting algorithms.

 (a) Describe what you expect the O() run time of this to be,

 and explain why and and on what sort of problems.

 (b) Implement and test it in a language of your choice.

 (Don't use a built-in or library sorting

 routine.)

 (c) Run it on various size lists of randomly generated numbers,

 recording the number of steps (for any reasonable notion of "steps")

 the algorithm takes to run. Show explicitly with a plot of

 the data from this "experiment" that the O() behavior is as expected.

 2. In a language of your choice, illustrate both a depth-first and

 breadth-first tree search using a stack and a queue for

 a small "sliding block" puzzle.

 A sample search might be to get from

 start finish

 2 1 3 1 2 3

 5 4 6 4 5 6

 7 8 . 7 8 .

 where the "." is the empty square; the two possible first moves

 slide either the 6 or the 8 to bottom right corner.

Page 131 of 148

 Is either of these types of tree searches better than the other

 for this problem?

 3. You're given a list of N names and told that you'll need to search

 the list for a given name M times. The following techniques are

 suggested:

 * a hash table

 * a heap

 * sequential search

 * sorting followed by binary search

 Discuss the time efficiency of these approaches as the size of N

 and M vary. Which one would you suggest and why? Would your answer

 change if you need to change the list of names by adding and

 deleting names (say, P times) between searches? (You don't have

 to write any code for this one, though you can if you'd like.)

 4. Compare and contrast the LZW and Huffman coding methods

 for lossless data compression, including their strengths

 and weaknesses.

 Give an example of each algorithm applied to the same text string.

 (You can do the example by hand or code it; the point is to

 demonstrate clearly your understanding of what's going on.)

Page 132 of 148

Algorithms Exam

Richard Scruggs

12/5/2010

1. Choose any one of the standard sorting algorithms.

 (a) Describe what you expect the O() run time of this to be, and explain why and on what sort

of problems.

 (b) Implement and test it in a language of your choice. (Don't use a built-in or library sorting

routine.)

 (c) Run it on various size lists of randomly generated numbers, recording the number of steps

(for any reasonable notion of "steps") the algorithm takes to run. Show explicitly with a plot of

the data from this "experiment" that the O() behavior is as expected.

I’m using Quicksort as my chosen sorting algorithm. Quicksort works by choosing a

pivot value in the data to be sorted, then comparing each value to the pivot. It then has two lists;

values greater than the pivot and values less than the pivot. It then runs recursively on each of the

smaller lists to sort them, and combines the sorted lists.

Quicksort, best-case, is O(n log n). In the optimal case, each pivot is the precise middle of

the list, thus each partitioning process divides the list exactly in half. This means that there are

log n levels of recursion, each performing about n comparisons. Worst case, each pivot is the

greatest or least element in the set, which makes the partition process essentially useless. There

are then n levels of recursion, each still performing about n comparisons, pushing the sort to

O(n
2
). There are several implementation tricks that are used to prevent the pivot from being an

end element, but I did not use any of them when programming my simple implementation.

See the attached ‘quicksort.py’ file for the algorithm itself; see the ‘quicksort.pdf’ file for the test

data and plot.

I tested my implementation of quicksort on random data of sizes 0<n<200000, in

increments of 10000. I then plotted it against n log n (multiplied by 10
-6

 for scale). I also

compared Python's built in sorting function, Timsort. As can be seen on the plot, my

implementation follows the trend for n log n pretty well, but is far worse than Timsort. What I'm

really taking away from this is that sorting is a problem that many people have put a lot of effort

into. As a result, there is almost always an implementation in the programming language spec

itself, and I can trust that implementation to work well in almost all cases. I can easily program

an implementation of Quicksort or Heapsort myself, but most of the time, that implementation

will be missing various small tricks that speed up performance significantly.

2. In a language of your choice, illustrate both a depth-first and breadth-first tree search using a

stack and a queue for a small "sliding block" puzzle.

 [example removed]

Is either of these types of tree searches better than the other for this problem?

Page 133 of 148

I wrote code to do this, but discovered that the problem was actually a bit more

complicated than I had first thought. I initially generated random orderings of the puzzle, then

tried to solve them, but many random orderings are not solvable. The code now disorders the

puzzle by making a random sequence of moves before it tries to solve it.

See the attached ‘blockpuzzle.py’ file for the code for this problem.

Breadth-first search is much easier to use than depth-first for this particular problem. It is

easy for a depth-first search to get stuck in a loop and continue making a cycle of moves

indefinitely, but a breadth-first search will find the shallowest solution.

This disadvantage is clearly illustrated when running the code several times - it solves

each puzzle with breadth-first and depth-first, then prints the number of moves in each search's

solution. Depth-first typically has a longer solution, or takes too many moves to find a solution

and is cut off. This is particularly evident when breadth-first came up with a solution that

required more than a few moves - the chances were much greater that depth-first went down the

wrong path and had to be cut off.

If examined positions were stored somehow, the depth-first search would work much

better - the algorithm would actually dead-end in some circumstances, and would be forced to

find a solution eventually. Similarly, using an iterative deepening depth-first search would also

have better results.

3. You're given a list of N names and told that you'll need to search the list for a given name M

times. The following techniques are suggested:

 * a hash table

 * a heap

 * sequential search

 * sorting followed by binary search

 Discuss the time efficiency of these approaches as the size of N and M vary. Which one

would you suggest and why? Would your answer change if you need to change the list of names

by adding and deleting names (say, P times) between searches? (You don't have to write any

code for this one, though you can if you'd like.)

Assumptions: I'm assuming that I’m using an imperfect hash function that will create collisions,

and using a chained hash table to deal with that. I'm also assuming the use of a binary heap as it

is the simplest.

Hash table: Hash tables are interesting in that their worst case is O(n) to retrieve a single element

- if all the inserted elements have collided and chaining is being used. Insertion and removal

times echo the insertion and deletion times of the particular list used for chaining, with insertion

adding to the end and deletion removing from a certain point. As such, the worst case

construction time for a hash table is O(n
2
).

However, if the worst-case times of a hash table are an issue, either a terrible hash function is

being used or the data is specially constructed to produce a worst case. The insertion time, with a

hash table of size S and a list with insertion time O(n), is actually O(1 + n/s); thus, while

insertion is O(n), in practice the size of the hash table and the distribution of the hash function

Page 134 of 148

should create near constant insertion time, giving a typical creation time of close to O(n).

Similarly, deletion time follows the deletion time of the list, but the hash used should make each

list very short, giving near constant deletion time.

Heap: The initial creation of the heap is O(n log n). Retrieval time is O(log n), deletion time is

O(log n), and insertion time is O(log n).

Sequential search: There is no initial setup time. Retrieval of a name is O(n), deleting a name is

O(n), and adding a name is O(1).

Sorting, binary search: In practice, this one looks similar to the heap: it's O(n log n) with a decent

sort algorithm to sort the list, O(log n) to retrieve a name, and O(log n) to delete a name. Time

efficiency of insertion depends on exactly how it's done - if it's done as a sorted insert, with a

binary search, it's O(log n), but if it's just tacked on at the end and the entire list is resorted, the

efficiency depends on the sort algorithm and how effective it is at sorting nearly-sorted data.

I'll talk about the heap and the binary search together as, when talking about a binary heap, the

two are almost the same for the purposes used here. The creation time of the heap is longer than

the creation time of any of the other data structures, but heaps are less affected by worst-case

data than hash tables. Other than that, though, these approaches do not offer many advantages

over the hash table in this problem.

Sequential search, in a few narrow cases, actually does offer a few advantages over hash tables

and heaps. If there are no retrievals or deletions, sequential search is by far the fastest data

structure for this problem. Unfortunately, there are very few realistic cases where retrievals or

deletions will not be needed, and the O(n) cost of every retrieval and deletion makes it

prohibitively slow after only a few such operations.

The problem describes a situation that is really almost tailor-made for a hash table. The data

never needs to be sorted, it only needs to be arranged for easy retrieval/addition/deletion by keys.

It's certainly possible to do this with another data structure, but there really isn't much of a reason

to ever do so unless there are memory constraints.

That said, there are several possible caveats to the use of a hash table. If I knew the size of the

list of names initially and could choose a proper size for the hash table, I would almost certainly

want to use the hash table. Taking the reasonable-case numbers of O(n) for initial setup and O(1)

for retrieval, insertion, and removal, it is by far the fastest method. On the other hand, if I did not

know the initial size, or if there were a significant number of later insertions, the hash table

might have to be resized to continue to be efficient, which would slow things down somewhat.

Even then, though, assuming resizing doubles the size of the table and assuming a constant-time

insertion, the total insertion time would not be more than 2 * (n + p), and the retrieval, insertion,

and removal should stay effectively constant.

The most serious drawbacks to the hash table do not come into play in this problem. First, hash

tables take up a fair bit more space than the other data structures. Almost any realistic use of

names would use little enough space to begin with that the space overhead of the table would not

Page 135 of 148

be a serious issue. Next, hashing takes longer than sorting if the data that must be hashed is large

- in order to hash a large file, for example, the entire file must be examined; in order to sort that

file, only enough must be examined to compare the file with others.

 4. Compare and contrast the LZW and Huffman coding methods for lossless data compression,

including their strengths and weaknesses.

 Give an example of each algorithm applied to the same text string. (You can do the example

by hand or code it; the point is to demonstrate clearly your understanding of what's going on.)

LZW and Huffman coding have several similarities. Both are based on creating shorter

representations of frequently occurring subsequences of data, but the way they create those

representations is different. In a nutshell, LZW scans the data stream and builds a dictionary

based on the first sequences it finds, while Huffman coding chooses which characters or

subsequences to encode based on frequency analysis. LZW generally produces better results, but

Huffman can adapt to source data as it is being encoded, letting it perform well on data that has a

changing probability distribution. LZW, meanwhile, is unable to discard the dictionary it forms,

meaning that it can perform well on data that is consistent throughout, but less well on data that

initially has one probability distribution, then switches to another.

One of the disadvantages of Huffman coding is that it typically uses only single characters - or

perhaps character pairs - when creating its code table; this can be somewhat ameliorated by

encoding the Huffman-encoded data with another compression scheme such as run-length

encoding.

In the example of these algorithms, I'm going to encode them very simply. The LZW code does

not adjust dictionary size, and I have not written a decoder, just an encoder. The Huffman

example was mostly done by hand.

 The text string I used is the beginning of A Tale of Two Cities:

"it was the best of times, it was the worst of times; it was the age of wisdom, it was the age of

foolishness"

I generated the letter frequencies with Python:
>>> for letter in plainString:

freqDict[letter] = freqDict.get(letter, 0) + 1

>>> freqDict

{'a': 6, ' ': 23, 'b': 1, 'e': 10, 'd': 1, 'g': 2, 'f': 5, 'i':

8, 'h': 5, 'm': 3, ',': 2, 'o': 8, 'l': 1, 's': 12, 'r': 1, 't':

12, 'w': 6, ';': 1, 'n': 1}

See the attached images for the tree I created with those frequencies.

The corresponding encoding table, as a Python dictionary:
{'a': '0111', ' ': '00', 'b': '011010', 'e': 1011, 'd':

'011011', 'g': 100110, 'f': 10100, 'i': 1101, 'h': 10101, 'm':

'01100', ',': 100111, 'o': 1000, 'n': 1001011, 's': 111, 'r':

1001010, 't': '010', 'w': 1100, ';': 1001001, 'l': 1001000}

Page 136 of 148

>>> codedStr = ""

>>> for char in shorter:

codedStr += (str(encDict[char]) + " ")

>>> codedStr[:-1] #cutting off the trailing space

'1101 010 00 1100 0111 111 00 010 10101 1011 00 011010 1011 111

010 00 1000 10100 00 010 1101 01100 1011 111 100111 00 1101 010

00 1100 0111 111 00 010 10101 1011 00 1100 1000 1001010 111 010

00 1000 10100 00 010 1101 01100 1011 111 1001001 00 1101 010 00

1100 0111 111 00 010 10101 1011 00 0111 100110 1011 00 1000

10100 00 1100 1101 111 011011 1000 01100 100111 00 1101 010 00

1100 0111 111 00 010 10101 1011 00 0111 100110 1011 00 1000

10100 00 10100 1000 1000 1001000 1101 111 10101 1001011 1011 111

111'

Assuming a 7-bit ASCII encoding, the original message would take up
>>> len(plainString) * 7

756 #bits

After compression, the length of the encoded message is:
>>> len(codedStr)

399 #bits

(although this does not include the length of the encoding table)

For the LZW encoding, I wrote two small Python functions which are included with the exam.

Encoded with this LZW implementation, and using a maximum codeword length of 7 bits

(enough to encode the test string without having to expand the code table), I got an encoded

message of length 497 bits.

This is the final state of the code table:
>>> table

{' b': '1100010', 't w': '1000101', ' ti': '1011011', ' i':

'1010110', ' o': '1001100', 'ge': '0111111', 'ge ': '0110001', '

w': '1101010', ' t': '1100110', 't o': '1011110', ' ':

'1111110', ' it': '1000110', ',': '1110101', 'li': '0101011',

'th': '1100101', 'e o': '0111110', 'it ': '1010101', 'e a':

'1000001', 'it w': '0110101', 'd': '1111011', ' wa': '1010100',

' wo': '1010000', 'l': '1110011', 't': '1110000', 'h':

'1110111', 't ': '1101011', 'as ': '1010011', ' the': '0110011',

'es': '1100000', 'ess': '0100111', 'rs': '1001110', ';':

'1101110', 'be': '1100001', 'wa': '1101001', 'e ': '1100011',

'wi': '0111100', '; ': '1000111', 'mes': '1001001', 'oo':

'0101101', 'om': '0111000', 'ol': '0101100', 'g': '1111010',

'of': '1011101', 'o': '1110100', 's': '0100110', 'ish':

'0101010', 'w': '1101111', 'es,': '1011000', 'or': '1001111', 's

t': '1000011', 'st ': '1001101', ', i': '0110110', 'm,':

Page 137 of 148

'0110111', 'e ag': '0110010', 'was': '1000100', 'of w':

'0111101', 'f f': '0101111', 'hn': '0101001', ' tim': '1001010',

' th': '1010010', 'was ': '0110100', 'he': '1100100', 'me':

'1011001', 'b': '1111101', 'f': '1111001', 'n': '1101101', 'r':

'1110001', 'he ': '1010001', 'ag': '1000000', 'do': '0111001', '

of': '0110000', 'is': '0111011', 'it': '1101100', 'f ':

'1011100', 'as': '1101000', 'im': '1011010', 's;': '1001000',

'of ': '1001011', ', ': '1010111', 'ne': '0101000', 's ':

'1100111', 'fo': '0101110', 'a': '1111111', 'e': '1111100', 'i':

'1111000', 'm': '1110110', 'st': '1011111', 'the': '1000010',

'sd': '0111010'}

And this is the encoded message:
'1111000 1110000 1111110 1101111 1111111 1110010 1111110 1110000

1110111 1111100 1111110 1111101 1111100 1110010 1101011 1110100

1111001 1100110 1111000 1110110 1100000 1110101 1111110 1101100

1101010 1101000 1100110 1100100 1101010 1110100 1110001 1011111

1111110 1011101 1011011 1011001 1110010 1101110 1010110 1101011

1101001 1100111 1100101 1100011 1111111 1111010 1100011 1001011

1101111 1111000 1110010 1111011 1110100 1110110 1010111 1010101

1000100 1010010 1000001 0111111 1001100 1011100 1111001 1110100

1110100 1110011 0111011 1110111 1101101 1100000 0100110'

In this example, the Huffman coding produced a shorter message, but as the length of the

message increases, LZW should have a greater advantage. Also, it would not be difficult to

modify my LZW implementation so that its starting code table was in the same state for every

message, thus allowing it to just pass the coded message and save the space the code table would

take up.

Page 138 of 148

Elements quicksort Timsort n log n * 10^-6

0 0.000001 0.000001 -

10000 0.109463 0.013282 0.092114

20000 0.239633 0.030082 0.198081

30000 0.385177 0.049454 0.30928

40000 0.599323 0.069008 0.423877

50000 0.719258 0.088091 0.541001

60000 0.890108 0.108155 0.660138

70000 0.994673 0.129521 0.78095

80000 1.170019 0.150009 0.903195

90000 1.362924 0.171974 1.026693

100000 1.517209 0.194278 1.151305

110000 1.618466 0.236059 1.276919

120000 1.813367 0.251469 1.403442

130000 1.956763 0.259734 1.5308

140000 2.121195 0.282097 1.658929

150000 2.31349 0.304499 1.787772

160000 2.497842 0.32577 1.917282

170000 2.7176 0.349142 2.047417

180000 2.95106 0.372258 2.178141

190000 2.906974 0.394589 2.309421

200000 3.138662 0.417282 2.441228

0

0.5

1

1.5

2

2.5

3

3.5

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

1
1

0
0

0
0

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

1
8

0
0

0
0

1
9

0
0

0
0

2
0

0
0

0
0

Seconds

Elements

quicksort

n log n * 10^-6

Timsort

Page 139 of 148

 1 #!/usr/bin/env python
 2
 3 #quicksort.py
 4
 5 #Algorithms exam
 6 #Problem 1
 7 #Richard Scruggs
 8 #12/3/2010
 9 #Licensed under the Creative Commons Attribution 3.0 Unported License.
 10 #see http://creativecommons.org/licenses/by/3.0/ for license text.
 11
 12 import random
 13 import time
 14
 15 def printTestData(timeList):
 16 """Prints a formatted table of the data created by testRoutine."""
 17 print "Results:"
 18 print "Elements\tTime"
 19 for timePair in timeList:
 20 print "%d\t\t%5f" % (timePair[0], timePair[1])
 21
 22 def testRoutine(sorter, minSize, maxSize, interval):
 23 """Tests the sorting algorithm with random data of a range of sizes. Sorter
 24 is the function to be tested; the other three arguments are passed to
 25 range() to generate test data and control the number of tests. Note that one
 26 is added to maxSize, making the range of test values minSize-maxSize,
 27 inclusive."""
 28 timeList = []
 29 for x in range(minSize,maxSize+1,interval):
 30 testData = []
 31 for y in range(10):
 32 testData.append(randList(x))
 33 timeList.append([x, timing(sorter, testData)])
 34 printTestData(timeList)
 35
 36 def timing(f, a):
 37 """A timing routine, modified from http://www.python.org/doc/essays
/list2str.html
 38 Expects a function and a list of values for the function. Runs the function
 39 on each of the list of values and returns the average time taken."""
 40 t1 = time.clock()
 41 for data in a:
 42 f(data)
 43 t2 = time.clock()
 44 return round(t2-t1, 5) / len(a)
 45
 46 def quicksort(array):
 47 """Runs quicksort on the given array, returning the sorted array.
 48
 49 >>> quicksort([])
 50 []
 51
 52 >>> quicksort(range(10))
 53 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 54
 55 >>> testList = range(10)
 56 >>> testList.reverse()
 57 >>> quicksort(testList)
 58 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 59
 60 >>> testList = randList(10)
 61 >>> quicksort(testList)
 62 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 63

1 of 2

Page 140 of 148

 64 >>> quicksort([4,4,4,5,5,2,2,2])
 65 [2, 2, 2, 4, 4, 4, 5, 5]
 66 """
 67 if len(array) <= 1:
 68 return array
 69 pivot = array[0]
 70 less,greater = [],[]
 71 for value in array[1:]:
 72 if value < pivot:
 73 less.append(value)
 74 else:
 75 greater.append(value)
 76 return quicksort(less) + [pivot] + quicksort(greater)
 77
 78 def randList(n):
 79 """Returns a randomly ordered list of integers from 0 to n-1."""
 80 randList = range(n)
 81 random.shuffle(randList)
 82 return randList
 83
 84 def main():
 85 """Runs testRoutine with some default values."""
 86 print "Testing Quicksort implementation:"
 87 testRoutine(quicksort, 0, 50000, 10000)
 88
 89 if __name__ == "__main__":
 90 import doctest
 91 doctest.testmod()
 92 main()

2 of 2

Page 141 of 148

P
age 142 of 148

P
age 143 of 148

 1 #!/usr/bin/env python
 2
 3 #blockpuzzle.py
 4
 5 #Algorithms exam
 6 #Problem 2
 7 #Richard Scruggs
 8 #12/3/2010
 9 #Licensed under the Creative Commons Attribution 3.0 Unported License.
 10 #see http://creativecommons.org/licenses/by/3.0/ for license text.
 11
 12 from collections import deque
 13 from random import randint
 14 import copy
 15
 16 class Puzzle():
 17 """
 18 A class for Puzzles. This stores the data for a puzzle, its solution, and
 19 provides various methods to make moves.
 20
 21 >>> puzzle = Puzzle(3,3,False)
 22 >>> print puzzle
 23 1 2 3
 24 4 5 6
 25 7 8 0
 26
 27 """
 28 def __init__(self, rows, columns, disorder=True, disorderly=30):
 29 """Initializes a puzzle. Rows and columns determine the size; disorder
 30 determines whether to randomize the values; disorderly determines how
 31 many randomizing moves are made."""
 32 values = range(1, rows*columns)
 33 values.append(0)
 34 data,solution = [],[]
 35 for x in range(rows):
 36 data.append(values[(x*columns):((x+1)*columns)])
 37 solution.append(values[(x*columns):((x+1)*columns)])
 38 self.data = data
 39 self.rows = rows
 40 self.columns = columns
 41 self.solution = solution
 42 if disorder:
 43 self.disorder(disorderly)
 44 def __str__(self):
 45 """Prints the given puzzle.
 46
 47 >>> puzzle = Puzzle(3,3,False)
 48 >>> print puzzle
 49 1 2 3
 50 4 5 6
 51 7 8 0
 52 """
 53 outStr = ""
 54 for row in self.data:
 55 for column in row:
 56 outStr += "%2d " % column
 57 outStr = outStr[:-1]
 58 outStr += "\n"
 59 return outStr[:-1]
 60 def disorder(self, maxDepth, depth=0):
 61 """Makes maxDepth random moves to disorder the given puzzle."""
 62 if depth >= maxDepth:
 63 return True
 64 moves = deque()

1 of 4

Page 144 of 148

 65 addMoves(self, [], moves)
 66 move = moves.pop()[1]
 67 selection = randint(0, len(move)-1)
 68 self.makeMove(move[selection])
 69 return self.disorder(maxDepth, depth+1)
 70 def findZero(self):
 71 """Returns the position of 0 in the given puzzle.
 72
 73 >>> puzzle = Puzzle(3,3,False)
 74 >>> puzzle.findZero()
 75 (2, 2)
 76 """
 77 for x in range(self.rows):
 78 for y in range(self.columns):
 79 if self.data[x][y] == 0:
 80 return x,y
 81 def isSolved(self):
 82 """
 83 Returns True if the puzzle is solved, False otherwise.
 84 >>> puzzle = Puzzle(3,3, True, 1)
 85 >>> puzzle.isSolved()
 86 False
 87 >>> puzzle.data = puzzle.solution
 88 >>> puzzle.isSolved()
 89 True
 90 """
 91 return self.solution == self.data
 92 def makeMove(self, move):
 93 """Makes the given move.
 94 A move is formatted [[sourceRow, sourceColumn], [destRow, destColumn]]
 95 (although the ordering of source and dest are irrelevant)
 96 >>> puzzle = Puzzle(3,3,False)
 97 >>> puzzle.makeMove([[2,2],[2,1]])
 98 >>> print puzzle
 99 1 2 3
 100 4 5 6
 101 7 0 8
 102 """
 103 source = move[0]
 104 dest = move[1]
 105 self.data[dest[0]][dest[1]], self.data[source[0]][source[1]] = \
 106 self.data[source[0]][source[1]], self.data[dest[0]][dest[1]]
 107 def makeMoves(self, moves):
 108 """Makes each of the given list of moves."""
 109 for move in moves:
 110 self.makeMove(move)
 111 def unmakeMove(self, move):
 112 """Unmakes the given move. That is actually the same as making it, so
 113 this is just syntactic sugar."""
 114 self.makeMove(move)
 115 def unmakeMoves(self, moves):
 116 """Unmakes each of the given list of moves. Note that makeMoves and
 117 unmakeMoves are expected to operate on the same set of moves, which is
 118 why this function performs the moves in reverse."""
 119 tempMoves = moves[:]
 120 tempMoves.reverse()
 121 for move in tempMoves:
 122 self.unmakeMove(move)
 123
 124 def addMoves(puzzle, path, moves):
 125 """Expects a puzzle, a path - which is the list of moves that it took to get
 126 from the start of the puzzle to the current position - and a queue of moves.
 127 Adds the moves that are possible from the current position to the move
 128 queue. Does not return anything.
 129
 130 The exact format of moves is a bit confusing. The queue is a list of

2 of 4

Page 145 of 148

 131 movelists; each movelist is a list of two things: the path, and the possible
 132 moves. The path is explained above; the possible moves are all moves that
 133 are valid from the position specified by the path.
 134 To try to explain it better:
 135 moves=[path, possibles].
 136 path = [firstmove, secondmove, thirdmove]
 137 possibles = [possibleA, possibleB, possibleC]
 138 firstmove = [[0,0],[1,0]], for example
 139 possibleA = [[]]
 140
 141 >>> puzzle = Puzzle(3,3,False)
 142 >>> moves = deque()
 143 >>> addMoves(puzzle, [], moves)
 144 >>> moves
 145 deque([[[], [[[1, 2], [2, 2]], [[2, 1], [2, 2]]]]])
 146 """
 147 zeroRow, zeroColumn = puzzle.findZero()
 148 dest = [zeroRow, zeroColumn]
 149 tempMoves = []
 150 if zeroRow+1 < puzzle.rows:
 151 tempMoves.append([[zeroRow+1, zeroColumn], dest])
 152 if zeroRow-1 > 0:
 153 tempMoves.append([[zeroRow-1, zeroColumn], dest])
 154 if zeroColumn+1 < puzzle.rows:
 155 tempMoves.append([[zeroRow, zeroColumn+1], dest])
 156 if zeroColumn-1 >= 0:
 157 tempMoves.append([[zeroRow, zeroColumn-1], dest])
 158 moves.append([path, tempMoves])
 159
 160 def solve(puzzle, depthFirst, maxMoves=1000):
 161 """Solves the puzzle. Returns True if the puzzle has been solved, False
 162 if it has made maxMoves moves without solving it. If depthFirst is 1, it
 163 solves with depth-first; if 0, it solves with breadth-first.
 164
 165 This solve function actually handles both depth-first and breadth-first
 166 searches - the only difference is how it accesses the queue of moves. The
 167 depth-first accesses the queue as a stack, the breadth-first accesses it as
 168 a queue.
 169 """
 170 if puzzle.isSolved():
 171 return True
 172 moves = deque()
 173 addMoves(puzzle, [], moves)
 174 moveCounter = 0
 175 if depthFirst:
 176 getMove = moves.pop
 177 else:
 178 getMove = moves.popleft
 179 while moveCounter < maxMoves:
 180 nextMove = getMove()
 181 moveCounter += 1
 182 puzzle.makeMoves(nextMove[0])
 183 for move in nextMove[1]:
 184 puzzle.makeMove(move)
 185 if puzzle.isSolved():
 186 return nextMove[0] + [move]
 187 addMoves(puzzle, nextMove[0]+[move], moves)
 188 puzzle.unmakeMove(move)
 189 puzzle.unmakeMoves(nextMove[0])
 190 return False
 191
 192 def main():
 193 """Generates a random 8-puzzle and tries to solve it."""
 194 puzzle = Puzzle(3, 3)
 195 print puzzle
 196 puzzle2 = copy.deepcopy(puzzle)

3 of 4

Page 146 of 148

 197 print "Solving with breadth-first."
 198 solution = solve(puzzle, False, 500)
 199 if solution:
 200 if isinstance(solution, list):
 201 moves = len(solution)
 202 print "Puzzle solved in %d moves." % moves
 203 else:
 204 print "Puzzle started solved."
 205 else:
 206 print "Puzzle not solved - too many moves tried."
 207 print "Solving with depth-first."
 208 solution = solve(puzzle2, True, 500)
 209 if solution:
 210 if isinstance(solution, list):
 211 moves = len(solution)
 212 print "Puzzle solved in %d moves." % moves
 213 else:
 214 print "Puzzle started solved."
 215 else:
 216 print "Puzzle not solved - too many moves tried."
 217
 218 if __name__ == "__main__":
 219 import doctest
 220 doctest.testmod()
 221 main()

4 of 4

Page 147 of 148

 1 #!/usr/bin/env python

 2

 3 #lzw.py

 4

 5 #Algorithms exam
 6 #Problem 4

 7 #Richard Scruggs

 8 #12/3/2010
 9 #Licensed under the Creative Commons Attribution 3.0 Unported License.

 10 #see http://creativecommons.org/licenses/by/3.0/ for license text.

 11

 12 #The code for this problem is less standalone and complete than the code for the

 13 #other problems; I just wrote it to ease the parts of the problem that would be

 14 #repetitive or difficult to do by hand.

 15

 16 def buildCodes(length):

 17 """Returns string binary representations of the numbers from 0 to

 18 (2**length)-1. Zero-pads those representations.

 19 >>> buildCodes(3)

 20 ['000', '001', '010', '011', '100', '101', '110', '111']"""

 21 codes = []

 22 for x in range(2**length,2**(length+1)):

 23 codes.append(str(bin(x))[3:])

 24 return codes

 25

 26 def lzw(message, codes):

 27 """LZW encodes a message. Expects a message and a list of codes as generated

 28 by buildCodes. If the list of codes is too short for the encoder to create

 29 a code table for the entire message, this crashes."""

 30 messageCopy = message[:] #because I destroy messageCopy in encoding
 31 encTable = {}

 32 for character in set(message):

 33 encTable[character] = codes.pop()

 34 #Now we have a starting encTable - the single characters in the message all

 35 #have encodings.

 36 encMessage = ""

 37 #I perform the actual encoding thus: I pull off the first character in the
 38 #message as currentEnc then, while the currentEnc + the next character is in

 39 #the encoding table, add the next character to the encoding string.

 40 #After the while loop, currentEnc is as long as it can be while still being
 41 #in the table, so I add a table definition for currentEnc + next character

 42 #and add the code for currentEnc into the encoded message.

 43 while messageCopy:

 44 currentEnc = messageCopy[0]

 45 while messageCopy[:len(currentEnc)+1] in encTable.keys() and len(currentEnc) < len(messageCopy):

 46 currentEnc = messageCopy[:len(currentEnc)+1]

 47 encTable[messageCopy[:len(currentEnc)+1]] = codes.pop()

 48 encMessage += (encTable[currentEnc])

 49 messageCopy = messageCopy[len(currentEnc):]

 50 return encTable,encMessage

1 of 1

Page 148 of 148

