Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright © 2006, All rights reserved. Draft of January 4, 2007. Do not cite without
permission.

HIDDEN MARKOV AND
MAXIMUM ENTROPY
MODELS

Numgquam ponenda est pluralitas sine necessitat
‘Plurality should never be proposed unless needed’
William of Occam

Tatyana was her name... I own it,
self-willed it may be just the same;
but it’s the first time you’ll have known it,
a novel graced with such a name

Pushkin, Eugene Onegin

In this chapter we introduce two important classes of statistical models for pro-
cessing text and speech, the Hidden Markov Model (HMM) and the Maximum En-
tropy model (MaxEnt), particularly a variant of MaxEnt called the Maximum En-
tropy Markov Model (MEMM). All of these are machine learning models. We have
already touched on some aspects of machine learning; indeed we briefly introduced the
Hidden Markov Model in the previous chapter, and we have introduced the N-gram
model in the chapter before. In this chapter we give a more complete and formal intro-
duction to these two important models.

oCERNENCE HMMs and MEMMs are both sequence classifiers. A sequence classifier or
sequence labeler is a model whose job is to assign some label or class to each unit in a
sequence. The finite-state transducer we studied in Ch. 3 is a kind of non-probabilistic
sequence classifier, for example transducing from sequences of words to sequences of
morphemes. The HMM and MEMM extend this notion by being probabilistic sequence
classifiers; given a sequence of units (words, letters, morphemes, sentences, whatever)
their job is to compute a probability distribution over possible labels and choose the
best label sequence.

We have already seen one important sequence classification task: part-of-speech
tagging, where each word in a sequence has to be assigned a part-of-speech tag. Sequence-
labeling tasks come up throughout speech and language processing, a fact that isn’t too
surprising if we consider that language consists of sequences at many representational

Chapter 6. Hidden Markov and Maximum Entropy Models

levels. Besides part-of-speech tagging, in this book we will see the application of
these sequence models to tasks like speech recognition (Ch. 9), sentence segmentation
and grapheme-to-phoneme conversion (Ch. 8), partial parsing/chunking (Ch. 12), and
named entity recognition and information extraction (Ch. 17).

This chapter is roughly divided into two sections: Hidden Markov Models fol-
lowed by Maximum Entropy Markov Models. Our discussion of the Hidden Markov
Model extends what we said about HMM part-of-speech tagging. We begin in the next
section by introducing the Markov Chain, then give a detailed overview of HMMs and
the forward and Viterbi algorithms with more formalization, and finally introduce the
important EM algorithm for unsupervised (or semi-supervised) learning of a Hidden
Markov model.

In the second half of the chapter, we introduce Maximum Entropy Markov Mod-
els gradually, beginning with techniques that may already be familiar to you from statis-
tics: linear regression and logistic regression. We next introduce MaxEnt. MaxEnt by
itself is not a sequence classifier; it is used to assign a class to a single element. The
name Maximum Entropy comes from the idea that the classifier finds the probabilis-
tic model which follows Occam’s Razor in being the simplest (least constrained; has
the maximum entropy) yet still consistent with some specific constraints. The Maxi-
mum Entropy Markov Model is the extension of MaxEnt to the sequence labeling task,
adding components such as the Viterbi algorithm.

Although this chapter introduces MaxEnt, which is a classifier, we will not focus
in general on non-sequential classification. Non-sequential classification will be ad-
dressed in later chapters with the introduction of classifiers like the Gaussian Mixture
Model in (Ch. 9) and the Naive Bayes and decision list classifiers in (Ch. 19).

6.1 MARKOV CHAINS

WEIGHTED

MARKOV CHAIN

The Hidden Markov Model is one of the most important machine learning models in
speech and language processing. In order to define it properly, we need to first in-
troduce the Markov chain, sometimes called the observed Markov model. Markov
chains and Hidden Markov Models are both extensions of the finite automata of Ch. 3.
Recall that a finite automaton is defined by a set of states, and a set of transitions be-
tween states that are taken based on the input observations. A weighted finite-state
automaton is a simple augmentation of the finite automaton in which each arc is asso-
ciated with a probability, indicating how likely that path is to be taken. The probability
on all the arcs leaving a node must sum to 1.

A Markov chain is a special case of a weighted automaton in which the input
sequence uniquely determines which states the automaton will go through. Because
they can’t represent inherently ambiguous problems, a Markov chain is only useful for
assigning probabilities to unambiguous sequences.

Fig. 6.1a shows a Markov chain for assigning a probability to a sequence of
weather events, where the vocabulary consists of HOT, COLD, and RAINY,. Fig. 6.1b
shows another simple example of a Markov chain for assigning a probability to a se-
quence of words wj...w,. This Markov chain should be familiar; in fact it represents a

Section 6.1.

Markov Chains 3

Figure 6.1

A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the structure,
the transition between states, and the start and end states.

FIRST-ORDER

6.1)

(6.2)

bigram language model. Given the two models in Figure 6.1 we can assign a probabil-
ity to any sequence from our vocabulary. We’ll go over how to do this shortly.

First, let’s be more formal. We’ll view a Markov chain as a kind of probabilis-
tic graphical model; a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

O0=q1q2...9n a set of states

A =apiaps...an1...ay, atransition probability matrix A, each a;; rep-
resenting the probability of moving from state i
to state j,s.t. Y7y ajj =1 Vi

q90+9end a special start and end state which are not asso-
ciated with observations.

Fig. 6.1 shows that we represent the states (including start and end states) as
nodes in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about these probabilities In
a first-order Markov chain, the probability of a particular state is dependent only on
the previous state:

Markov ASSlll’IlptiOl’l: P(qi|q1 ...q,;l) = P(q,'|qi,1)

Note that because each a;; expresses the probability p(q;|g;), the laws of proba-
bility require that the values of the outgoing arcs from a given state must sum to 1:

n
D aj=1 Vi
j=1

An alternate representation that is sometimes used for Markov chains doesn’t
rely on a start or end state, instead representing the distribution over initial states and
accepting states explicitly:

4 Chapter 6. Hidden Markov and Maximum Entropy Models

T =m,7,...,my an initial probability distribution over states. m; is the
probability that the Markov chain will start in state i. Some
states j may have i; = 0, meaning that they cannot be initial
states. Also, Y " =1

QA ={qx,qy...} aset QA C Q of legal accepting states

Thus the probability of state 1 being the first state can be represented either as
ap or as ;. Note that because each mt; expresses the probability p(q;|START), all the
7t probabilities must sum to 1:

(6.3) Zn,» =1

(b)

Figure 6.2 Another representation of the same Markov chain for weather shown in Fig. 6.1. Instead of using
a special start state with ag; transition probabilities, we use the m vector, which represents the distribution over
starting state probabilities. The figure in (b) shows sample probabilities.

Before you go on, use the sample probabilities in Fig. 6.2b to compute the prob-
ability of each of the following sequences:

(6.4) hot hot hot hot
(6.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 6.2b?

6.2 THE HIDDEN MARKOV MODEL

A Markov chain is useful when we need to compute a probability for a sequence of
events that we can observe in the world. In many cases, however, the events we are

Section 6.2.

The Hidden Markov Model 5

HIDDEN MARKOV
MODEL

HMM

HMM

interested in may not be directly observable in the world. For example for part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tags in the world; we saw
words, and had to infer the correct tags from the word sequence. We call the part-
of-speech tags hidden because they are not observed. We will see the same thing
in speech recognition; we’ll see acoustic events in the world, and have to infer the
presence of ‘hidden’ words that are the underlying causal source of the acoustics. A
Hidden Markov Model (HMM) allows us to talk about both observed events (like
words that we see in the input) and hidden events (like part-of-speech tags) that we
think of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for the
summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice creams
Jason ate every day that summer. Our goal is to use these observations to estimate the
temperature every day. We’ll simplify this weather task by assuming there are only two
kinds of days: cold (C) and hot (H). So the Eisner task is as follows:

Given a sequence of observations O, each observation an integer corre-
sponding to the number of ice creams eaten on a given day, figure out the
correct ‘hidden’ sequence Q of weather states (H or C) which caused Jason
to eat the ice cream.

Let’s begin by seeing how a Hidden Markov Model differs from a Markov chain.
An HMM is specified by a set of states O, a set of transition probabilities A, a
set of observation likelihoods B, a defined start state and end state(s), and a set of
observation symbols O, which is not drawn from the same alphabet as the state set Q:

Let’s begin with a formal definition of a Hidden Markov Model, focusing on how
it differs from a Markov chain. An HMM is specified by the following components:

0=q192---gN a set of states

A =ap1aop2...a1...ay, atransition probability matrix A, each a;; rep-
resenting the probability of moving from state i
to state j, s.t. Z?:l aij=1 Vi

0 =010y...05 a set of observations, each one drawn from a vo-
cabulary V =vy,va,...,vy.
B =bj(o;) A set of observation likelihoods:, also called

emission probabilities, each expressing the
probability of an observation o; being generated
from a state i.

q90+9end a special start and end state which are not asso-
ciated with observation.

As we noted for Markov chains, an alternate representation that is sometimes
used for HMMs doesn’t rely on a start or end state, instead representing the distribution
over initial and accepting states explicitly:

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.6)

6.7)

FULLY-CONNECTED
ERGODIC HMM
LEFT-TO-RIGHT

BAKIS

T =m,7,...,my an initial probability distribution over states. m; is the
probability that the Markov chain will start in state i. Some
states j may have i; = 0, meaning that they cannot be initial
states. Also, Y " =1

QA ={qx,qy...} aset QA C Q of legal accepting states

A first-order Hidden Markov Model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state is depen-
dent only on the previous state:

Markov Assumption: P(gi|q1...qi—1) = P(qilgi-1)

Second, the probability of an output observation o; is dependent only on the state
that produced the observation ¢;, and not on any other states or any other observations:

Output Independence Assumption: P(0i|q...4qi,-..,qn,01,-..,0i,...,0n) = P(0i|qi)

Fig. 6.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, while the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

Figure 6.3 A Hidden Markov Model for relating numbers of ice creams eaten by Jason
(the observations) to the weather (H or C, the hidden variables). Note that we have used
a special zeroth start state; we could instead have represented the initial distribution over
states by using the & vector, it = [.8,.2]. In general we will use the start state rather than
the m vector in the remainder of this chapter.

Notice that in the HMM in Fig. 6.3, there is a (non-zero) probability of transi-
tioning between any two states. Such an HMM is called a fully-connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions between
states have zero probability. For example, in left-to-right (also called Bakis) HMMs,
the state transitions proceed from left to right, as shown in Fig. 6.4. In a Bakis HMM,

Section 6.3. Computing Likelihood: The Forward Algorithm 7

there are no transitions going from a higher-numbered state to a lower-numbered state
(or, more accurately, any transitions from a higher-numbered state to a lower-numbered
state have zero probability). Bakis HMMs are generally used to model temporal pro-
cesses like speech; we will see more of this in Ch. 9.

Figure 6.4 Two 4-state Hidden Markov models; a left-to-right (Bakis) HMM on the
left, and a fully-connected (ergodic) HMM on the right. In the Bakis model, all transitions
not shown have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for com-
puting things with them. An influential tutorial by Rabiner (1989), based on tutorials
by Jack Ferguson in the 1960s, introduced the idea that Hidden Markov Models should
be characterized by three fundamental problems:

Problem 1 (Computing Likelihood): Given an HMM A = (A, B) and
an observation sequence O, determine the likelihood P(O|MN).

Problem 2 (Decoding): Given an observation sequence O and an HMM
A = (A, B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set
of states in the HMM, learn the HMM parameters A and B.

We already saw an example of problem (2) in Ch. 5; now in the next three sec-
tions we introduce all three tasks more formally.

6.3 COMPUTING LIKELIHOOD: THE FORWARD ALGORITHM

Our first problem is to compute the likelihood of a particular observation sequence. For
example, given the HMM in Fig. 6.2b, what is the probability of the sequence 3 1 3?
More formally:

Computing Likelihood: Given an HMM A = (A, B) and an observation
sequence O, determine the likelihood P(O|\).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 7 3 just by following the states labeled 3 /

Chapter 6. Hidden Markov and Maximum Entropy Models

3 and multiplying the probabilities along the arcs. For a Hidden Markov Model, things
are not so simple. We want to determine the probability of an ice-cream observation
sequence like 3 1 3, but we don’t know what the hidden state sequence is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather,
and wanted to predict how much ice cream Jason would eat. This is a useful part of
many HMM tasks. For a given hidden state sequence (e.g. hot hot cold) we can easily
compute the output likelihood of 3 7 3.

Let’s see how. First, recall that for Hidden Markov Models, each hidden state
produces only a single observation. Thus the sequence of hidden states and the se-
quence of observations have the same length. !

Given this one-to-one mapping, and the Markov assumptions expressed in Eq. 6.6,
for a particular hidden state sequence Q = qo,41,9>, .-.,g, and an observation sequence
O = 01,03, ...,0y, the likelihood of the observation sequence (using a special start state
qo rather than &t probabilities) is:

6:8) P(0|Q) = [P(oilg:) x [[P(ailgi-1)
i=1 i=1

The computation of the forward probability for our ice-cream observation 3 /
3 from one possible hidden state sequence hot hot hot is as follows (Fig. 6.5 shows a
graphic representation of this):

P(3 1 3]hot hot cold) = P(hot|start) x P(hot/hot) x P(cold|hot)
(6.9) x P(3|hot) x P(1|hot) x P(3|cold)

Figure 6.5 The computation of the observation likelihood for the ice-cream events 3 /
3 given the hidden state sequence hot hot cold.

In order to compute the true total likelihood of 3 / 3, however, we need to sum
over all possible hidden state sequences (in this case, the 8 sequences cold cold cold,
cold cold hot, and so on). For an HMM with N hidden states and an observation
sequence of T observations, there are N7 possible hidden sequences. For real tasks,
where N and T are both large, N7 is a very large number, and so we cannot compute

I There are variants of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in natural
language processing) in which this one-to-one mapping between the length of the hidden state sequence and
the length of the observation sequence does not hold.

Section 6.3.

Computing Likelihood: The Forward Algorithm 9

FORWARD
ALGORITHM

the total observation likelihood by computing a separate observation likelihood for each
hidden state sequence and then summing them up.

Instead of using such an extremely exponential algorithm, we use an efficient
algorithm called the forward algorithm.The forward algorithm is a kind of dynamic
programming algorithm, i.e., an algorithm that uses a table to store intermediate val-
ues as it builds up the probability of the observation sequence. The forward algorithm
computes the observation probability by summing over the probabilities of all pos-
sible hidden-state paths that could generate the observation sequence, but it does so
efficiently by implicitly folding each of these paths into a single forward trellis.

Fig. 6.6 shows an example of the forward trellis for computing the likelihood of
3 1 3 given the hidden state sequence hot hot cold.

q4 ¢)

,(2)=.32

p(C/A/) "p
-3 s (7/0)

~_ -7 /

Loa a,(1)=.32"15 + ;oz*iéb=<954

0yM=.02 N

Pt ,
’@4 *_P(CIC) * P(HIC) _,@:: ,,,,,,,,,,,,,,,,,, .@’ (o
6*5

\
’ \
i start
\ ’

3 1 3

03

\

Figure 6.6

The forward trellis for computing the total observation likelihood for the ice-cream events 3 / 3.
Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The
figure shows the computation of o, (j) for two states at two time steps. The computation in each cell follows
Eq 6.10: oy (j) = Zf;l oy—1(i)a;jbj(or). The resulting probability expressed in each cell is Eq” 6.11: o, (j) =
P(01,02...01,qr = jIM).

(6.10)

Each cell of the forward algorithm trellis o () represents the probability of being
in state j after seeing the first r observations, given the automaton A. The value of each
cell oy () is computed by summing over the probabilities of every path that could lead
us to this cell. Formally, each cell expresses the following probability:

0;(j) = P(01,02...01,q; = j|\)

10

Chapter 6. Hidden Markov and Maximum Entropy Models

6.11)

Here g; = j means “the probability that the rth state in the sequence of states is
state ;. We compute this probability by summing over the extensions of all the paths
that lead to the current cell. For a given state ¢; at time ¢, the value o, () is computed
as:

N—1
o (j) = Z o1 (i)aijbj(or)
i=1

The three factors that are multiplied in Eq” 6.11 in extending the previous paths
to compute the forward probability at time ¢ are:

oy—1(i) the previous forward path probability from the previous time step
ajj the transition probability from previous state g; to current state g

bj(or) the state observation likelihood of the observation symbol o; given
the current state j

Consider the computation in Fig. 6.6 of a; (1), the forward probability of being at
time step 2 in state 1 having generated the partial observation 3 /. This is computed by
extending the o probabilities from time step 1, via two paths, each extension consisting
of the three factors above: o (1) x P(H|H) x P(1|H) and 01 (2) x P(H|C) x P(1|H).

Fig. 6.7 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

a2(N) a4(N)

{\q N)
L]
L]
L]

a)= Z;0q() aybo) -

aN]-

° °

(<) (<)

° °
92(3) a4(3) ay .
I

8, a 3
%2 042 2 b)
o N -~ b0) -
N @ 1i N W2/
a(1) a4(1)
q 1 @ q 1 q 1
Ot-2 Ot-1 Ot Ot41

Figure 6.7 Visualizing the computation of a single element o (i) in the trellis by sum-
ming all the previous values a,_; weighted by their transition probabilities a and multiply-
ing by the observation probability b;(0;+1). For many applications of HMMs, many of the
transition probabilities are 0, so not all previous states will contribute to the forward prob-
ability of the current state. Hidden states are in circles, observations in squares. Elements
which take place in the computation are in blue.

We give two formal definitions of the forward algorithm; the pseudocode in
Fig. 6.8 and a statement of the definitional recursion here:

Section 6.4.

Decoding: The Viterbi Algorithm 11

function FORWARD(observations of len T, state-graph) returns forward-probability

num-states < NUM-OF-STATES(state-graph)

Create a probability matrix forward[num-states+2,T+2]

forward[0,0] — 1.0

for each time step 7 from 1 to 7' do

for each state s from 1 to num-states do
forward[s t] — Z forward[s',t — 1] * ay s * bs(0;)

1 < s'< num-states

return the sum of the probabilities in the final column of forward

Figure 6.8 The forward algorithm; we’ve used the notation forward[s,t] to represent
o (s).

1. Initialization:

(6.12) oi1(j) = agjbj(o1) 1<j<N

2. Recursion (since states 0 and N are non-emitting):

N—1
(6.13) o ()= o 1(i)aijbjlo); 1<j<N1<t<T
i=1

3. Termination:
N—1

(6.14) P(OIN) = ar(N) =) _ar(i)aw

i=2

6.4 DECODING: THE VITERBI ALGORITHM

DECODING
DECODER

For any model, such as an HMM, that contains hidden variables, the task of determining
which sequence of variables is the underlying source of some sequence of observations
is called the decoding task. In the ice cream domain, given a sequence of ice cream
observations 3 / 3 and an HMM, the task of the decoder is to find the best hidden
weather sequence (H H H). More formally,

Decoding: Given as input an HMM A = (A,B) and a sequence of ob-
servations O = 01,03, ...,07, find the most probable sequence of states

0=q19293-..97.

We might propose to find the best sequence as follows: for each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm and
compute the likelihood of the observation sequence given that hidden state sequence.
Then we could choose the hidden state sequence with the max observation likelihood.
It should be clear from the previous section that we cannot do this because there are an
exponentially large number of state sequences!

12 Chapter 6. Hidden Markov and Maximum Entropy Models

VITERBI Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programming, and
makes uses of a dynamic programming trellis. Viterbi also strongly resembles another
dynamic programming variant, the minimum edit distance algorithm of Ch. 3.

TN RN) N
\ \ \ \
q tend tend tend tend
end N e N N %4
L
L

92
/
/
/
,
/
/
/
,
,
/
/ -
, B
, ;
" © (<)
\
, TN , TN
\ \
dp I start | I start)
\ \

3 1 3

o, 0, 0,

\

Figure 6.9 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 I 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of v;(j) for two states at two time steps. The computation in each
cell follows Eq 6.10: v;(j) = maxj<j<y—1 v;—1(i) a;j bj(o;) The resulting probability expressed in each cell is
Eq 6.16: v;(j) = P(q0,q1;---+G1—1,01,02,---,0¢,qr = J|N).

Fig. 6.9 shows an example of the Viterbi trellis for computing the best hidden
state sequence for the observation sequence 3 I 3. The idea is to process the observa-
tion sequence left to right, filling out the trellis. Each cell of the Viterbi trellis, v, ()
represents the probability that the HMM is in state j after seeing the first # observations
and passing through the most likely state sequence ¢;...g;—1, given the automaton A.
The value of each cell v;(j) is computed by recursively taking the most probable path
that could lead us to this cell. Formally, each cell expresses the following probability:

(6.15) vi(7) = P(q0,91.--91—1,01,02...0;,G: = j|N)

Like other dynamic programming algorithms, Viterbi fills each cell recursively.
Given that we had already computed the probability of being in every state attimez — 1,
We compute the Viterbi probability by taking the most probable of the extensions of

Section 6.4. Decoding: The Viterbi Algorithm 13

the paths that lead to the current cell. For a given state g; at time ¢, the value v;(j) is
computed as:

(6.16) v (j) = 15%%1”"@ aijbj(or)

The three factors that are multiplied in Eq. 6.16 for extending the previous paths
to compute the Viterbi probability at time ¢ are:

vi—1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state g; to current state g

bj(o;) the state observation likelihood of the observation symbol o; given
the current state j

function VITERBI(observations of len T state-graph) returns best-path

num-states < NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] — 1.0
for each time step 7 from 1 to 7 do
for each state s from 1 to num-states do

viterbi[s,t] — max viterbil[s',t — 1] * ay 5 * bg(o;)
1 < s'< num-states !
backpointer[st]«— argmax viterbils',t — 1] ag g
1 < s'< num-states
Backtrace from highest probability state in final column of viterbif | and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an observa-
tion sequence and an HMM A = (A, B), the algorithm returns the state-path through the
HMM which assigns maximum likelihood to the observation sequence. Note that states 0
and N+1 are non-emitting start and end states.

Fig. 6.10 shows pseudocode for the Viterbi algorithm. Note that the Viterbi algo-
rithm is identical to the forward algorithm except that it takes the max over the previous
path probabilities where forward takes the sum. Note also that the Viterbi algorithm
has one component that the forward algorithm doesn’t have: backpointers. This is
because while the forward algorithm needs to produce an observation likelihood, the
Viterbi algorithm must produce a probability and also the most likely state sequence.
We compute this best state sequence by keeping track of the path of hidden states that
led to each state, as suggested in Fig. 6.11.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

6.17) vi(j) = aojbj(ol) 1<j<N
(6.18) bty(j) = 0

14 Chapter 6. Hidden Markov and Maximum Entropy Models

SN P(HIH) * P(1IH)
92 M Pie 7 7*2 >
e Cry,
-7 \ -'3)»'/"’(7/ ™ e /
_- - \ -5 O) ~ . - /
- 2 \ b
/7 Q§ S o v,(1) =.32".15 + ,02"30'= 048 i
I Ly V() =02\ @) - 2 . B
4 Vo) S ___P(CIC)* P(1IC) e - / Co
VN Qg N AN 6*5 __ N
\ > P Se—ee---"
\ \é@&. A //
QY

N N N N

do | start | start | start | | start |
/ \ ’ \ ’ \ ’ \ ’

. N N N Ny

3 1 3

o, 0, 04

\

Figure 6.11 The Viterbi backtrace. As we extend each path to a new state account for the next observation, we
keep a backpointer (shown with broken blue lines) to the best path that led us to this state.

2. Recursion (recall states 0 and N are non-emitting):

(6.19) v(j) = 1gr1rg}\)7(—1vt_l(l)aijbj(0t); I1<j<N,1<t<T
(6.20) by (j) = argmaxv,_i1(i)aijbj(o;); 1<j<N,1<t<T
1<i<N-1

3. Termination:

(6.21) The best score: P+ = max vr(i)
1<i<N

(6.22) The start of backtrace: gr+ = argmax brr (i)
1<i<N

6.5 TRAINING HMMS: THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the parameters of an HMM, i.e., the
A and B matrices. Formally,

Learning: Given an observation sequence O and the set of possible states
in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of obser-
vations O and a vocabulary of potential hidden states Q. Thus for the ice cream task,

Section 6.5.

Training HMMs: The Forward-Backward Algorithm 15

FORWARD-
BACKWARD

BAUM-WELCH
EM

(6.23)

BACKWARD
PROBABILITY

(6.24)

we would start with a sequence of observations O = {1,3,2,..., }, and the set of hidden
states H and C. For the part-of-speech tagging task we would start with a sequence of
observations O = {w;,wa,ws...} and a set of hidden states NN, NNS, VBD, IN,... and
so on.

The standard algorithm for HMM training is the forward-backward or Baum-
Welch algorithm (Baum, 1972), a special case of the Expectation-Maximization or
EM algorithm (Dempster et al., 1977). The algorithm will let us train both the transi-
tion probabilities A and the emission probabilities B of the HMM.

Let us begin by considering the much simpler case of training a Markov chain
rather than a Hidden Markov Model. Since the states in a Markov chain are observed,
we can run the model on the observation sequence and directly see which path we took
through the model, and which state generated each observation symbol. A Markov
chain of course has no emission probabilities B (alternatively we could view a Markov
chain as a degenerate Hidden Markov Model where all the b probabilities are 1.0 for
the observed symbol and O for all other symbols.). Thus the only probabilities we need
to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability a;; of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i — j), and then normalizing by the total count of all
times we took any transition from state i:

C(i—))
ZqEQC(i - q)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM we cannot compute these counts directly from
an observation sequence since we don’t know which path of states was taken through
the machine for a given input. The Baum-Welch algorithm uses two neat intuitions to
solve this problem. The first idea is to iteratively estimate the counts. We will start
with an estimate for the transition and observation probabilities, and then use these
estimated probabilities to derive better and better probabilities. The second idea is
that we get our estimated probabilities by computing the forward probability for an
observation and then dividing that probability mass among all the different paths that
contributed to this forward probability.

In order to understand the algorithm, we need to define a useful probability re-
lated to the forward probability, called the backward probability.

The backward probability {3 is the probability of seeing the observations from
time ¢ + 1 to the end, given that we are in state j at time ¢ (and of course given the
automaton A):

ajj =

Bt(i) = P(0t+170t+2 . ~~0T|61t = ia;\')

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

(6.25) [ST(Z') = ajn, 1<i<N

Elias Zeidan

Elias Zeidan

16

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.28)

(6.29)

2. Recursion (again since states 0 and N are non-emitting):

(6.26) Za,j (0r:1) Brp1(j), 1<i<N,0<t<T

3. Termination:

(6.27) P(O[N) = ar (N) Zau i(o1) B1(J)

Fig. 6.12 illustrates the backward induction step.

By (N)

{an} Bi)=Z; me a., b,(0r,.)

.

L]

L]
ag Bt
ai2 R

BM(Z) b,(0,,1)

{as)

{ap)

R _ Bia(1) by
o o 0,.1)
(G (&) \./ i

Figure 6.12 The computation of f3;(i) by summing all the successive values ;41 (/)
weighted by their transition probabilities ; j and their observation probabilities b;(0;,41).

We are now ready to understand how the forward and backward probabilities
can help us compute the transition probability a;; and observation probability b;(o;)
from an observation sequence, even though the actual path taken through the machine
is hidden.

Let’s begin by showing how to reestimate a;;. We will proceed to estimate d;; by
a variant of (6.23):

expected number of transitions from state i to state j

ajj = I ;
Y expected number of transitions from state i

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i — j was taken at a particular point
in time ¢ in the observation sequence. If we knew this probability for each particular
time ¢, we could sum over all times ¢ to estimate the total count for the transition i — j.

More formally, let’s define the probability & as the probability of being in state
i at time ¢ and state j at time ¢ 4 1, given the observation sequence and of course the
model:

%l(l.vj) :P(Qt =i,q+1 = j|077\-)

Section 6.5. Training HMMs: The Forward-Backward Algorithm 17

In order to compute &;, we first compute a probability which is similar to &, but
differs in including the probability of the observation:

(6.30) not-quite-& (i, j) = P(q: = i,qi+1 = j,O|\)

Fig. 6.13 shows the various probabilities that go into computing not-quite-&;:
the transition probability for the arc in question, the o probability before the arc, the
[probability after the arc, and the observation probability for the symbol just after the
arc.

aijbj((?t+1)

O-1 2

Ot42

Figure 6.13 Computation of the joint probability of being in state i at time ¢ and state
j at time ¢ + 1. The figure shows the various probabilities that need to be combined to
produce P(q; = i,g;4+1 = j,O|\): the o and P probabilities, the transition probability a;;
and the observation probability b (0,1). After Rabiner (1989).

These are multiplied together to produce not-quite-E, as follows:

(6.31) not-quite-& (i, j) = oy (i) aijb j(01+1)Br+1(j)
In order to compute &; from not-quite-§;, the laws of probability instruct us to
divide by P(O|\), since:
P(X,Y|Z
(6.32) P(X|Y,Z) = PX.Y|Z)
P(Y|Z)

The probability of the observation given the model is simply the forward prob-
ability of the whole utterance, (or alternatively the backward probability of the whole
utterance!), which can thus be computed in a number of ways:

N
(6.33) P(O[N) = o (N) =Br(1) =D au(j)B: (J)
J=1

18

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

So, the final equation for & is:

o (1) aijbj(041)Br+1 ()

El(ivj): OLT(N)

The expected number of transitions from state i to state j is then the sum over all
t of €. For our estimate of ¢;; in (6.28), we just need one more thing: the total expected
number of transitions from state i. We can get this by summing over all transitions out
of state i. Here’s the final formula for &;;:

o 1 &)
= T—1x~N o
=1 Z/:1 & (i,))
We also need a formula for recomputing the observation probability. This is the

probability of a given symbol v, from the observation vocabulary V, given a state j:
bj(vk). We will do this by trying to compute:

b (ve) expected number of times in state j and observing symbol v
i) =

expected number of times in state j

For this we will need to know the probability of being in state j at time ¢, which
we will call y;():

v (J) = Pa: = jlO,\)

Once again, we will compute this by including the observation sequence in the
probability:

. Plg:=j,0|\)
Ve () = W

As Fig. 6.14 shows, the numerator of (6.38) is just the product of the forward
probability and the backward probability:

Yt(./) _ O([(j)Bz (J)
P(O[2)

We are ready to compute b. For the numerator, we sum ¥, (j) for all time steps ¢ in
which the observation o, is the symbol v, that we are interested in. For the denominator,
we sum v;(j) over all time steps . The result will be the percentage of the times that
we were in state j that we saw symbol v (the notation ZIT:I 5.4.0,—v, TEANS ’sum over
all ¢ for which the observation at time ¢ was vi):

T .
i’j(wc) = Z’:“‘;-Ot:v/c.vf(f)
21V ()
We now have ways in (6.35) and (6.40) to re-estimate the transition A and obser-

vation B probabilities from an observation sequence O assuming that we already have
a previous estimate of A and B.

Section 6.6.

Maximum Entropy Models: Background 19

EXPECTATION
E-STEP
MAXIMIZATION
M-STEP

i))

Ot-1 Ot Ot+1

Figure 6.14 The computation of y;(j), the probability of being in state j at time #. Note
that § is really a degenerate case of § and hence this figure is like a version of Fig. 6.13
with state i collapsed with state j. After Rabiner (1989).

These re-estimations form the core of the iterative forward-backward algorithm.

The forward-backward algorithm starts with some initial estimate of the HMM
parameters A = (A, B). We then iteratively run two steps. Like other cases of the EM
(expectation-maximization) algorithm the forward-backward algorithm has two steps:
the expectation step, or E-step, and the maximization step, or M-step.

In the E-step we compute the expected state occupancy count y and the expected
state transition count &, from the earlier A and B probabilities. In the M-step, we use vy
and & to recompute new A and B probabilities.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A, B, and & parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For ex-
ample, for speech recognition, in practice the HMM structure is very often set by hand,
and only the emission (B) and (non-zero) A transition probabilities are trained from a
set of observation sequences O. Sec. ?? will also discuss how initial estimates for a
and b are derived in speech recognition. We will also see in Ch. 9 that the forward-
backward algorithm can be extended to inputs which are non-discrete (“‘continuous
observation densities”).

6.6 MAXIMUM ENTROPY MODELS: BACKGROUND

We turn now to a second probabilistic machine learning framework called Maximum
Entropy modeling, MaxEnt for short. MaxEnt is more widely known as multinomial
logistic regression.

Our goal in this chapter is to introduce the use of MaxEnt for sequence clas-
sification. Recall that the task of sequence classification or sequence labelling is to
assign a label to each element in some sequence, such as assigning a part-of-speech tag

20

Chapter 6. Hidden Markov and Maximum Entropy Models

EXPONENTIAL

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence
E-step

() = S4B s and j
Et(ly,]) — o ()ajbcig,o(%;)ﬁﬂ—l() Vt

, and j

M-step
T-1

Zgzlj

1

N
ZEz)
=1 j=1
T
Z v (J)
Ej(Vk) _ t—lszTOﬁvk
Z Yt(j)

1

N 1=
dij = T

~

-
I

return A, B

Figure 6.15 The forward-backward algorithm.

to a word. The most common MaxEnt sequence classifier is the Maximum Entropy
Markov Model or MEMM, to be introduced in Sec. 6.8. But before we see this use
of MaxEnt as a sequence classifier, we need to introduce non-sequential classification.

The task of classification is to take a single observation, extract some useful
features describing the observation, and then based on these features, to classify the
observation into one of a set of discrete classes. A probabilistic classifier does slightly
more than this; in addition to assigning a label or class, it gives the probability of the
observation being in that class; indeed, for a given observation a probabilistic classifier
gives a probability distribution over all classes.

Such non-sequential classification tasks occur throughout speech and language
processing. For example, in text classification we might need to decide whether a
particular email should be classified as spam or not. In sentiment analysis we have to
determine whether a particular sentence or document expresses a positive or negative
opinion. In many tasks, we’ll need to know where the sentence boundaries are, and
so we’ll need to classify a period character (‘") as either a sentence boundary or not.
We’ll see more examples of the need for classification throughout this book.

MaxEnt belongs to the family of classifiers known as the exponential or log-

Section 6.6.

Maximum Entropy Models: Background 21

LOG-LINEAR

(6.41)

REGRESSION LINE

linear classifiers. MaxEnt works by extracting some set of features from the input,
combining them linearly (meaning that we multiply each by a weight and then add
them up), and then, for reasons we will see below, using this sum as an exponent.

Let’s flesh out this intuition just a bit more. Assume that we have some input x
(perhaps it is a word that needs to be tagged, or a document that needs to be classified)
from which we extract some features. A feature for tagging might be this word ends in
-ing or the previous word was ‘the’. For each such feature f;, we have some weight w;.

Given the features and weights, our goal is to chose a class (for example a part-
of-speech tag) for the word. MaxEnt does this by choosing the most probable tag; the
probability of a particular class ¢ given the observation x is:

plek) = Zexp(Ywif)

Here Z is a normalizing factor, used to make the probabilities correctly sum to 1;
and as usual exp(x) = e*.

In order to explain the details of the MaxEnt classifier, including the definition
of the normalizing term Z and the intuition of the exponential function, we’ll need
to understand first linear regression, which lays the groundwork for prediction using
features, and logistic regression, which is our introduction to exponential models. We
cover these areas in the next two sections. Readers who have had a grounding in
these kinds of regression may want to skip the next two sections. Then in Sec. 6.7
we introduce the details of the MaxEnt classifier. Finally in Sec. 6.8 we show how
the MaxEnt classifier is used for sequence classification in the Maximum Entropy
Markov Model or MEMM.

6.6.1 Linear Regression

In statistics we use two different names for tasks that map some input features into
some output value; we use the word regression when the output is real-valued, and
classification when the output is one of a discrete set of classes.

You may already be familiar with linear regression from a statistics class. The
idea is that we are given a set of observations, each observation associated with some
features, and we want to predict some real-valued outcome for each observation. Let’s
see an example from the domain of predicting housing prices. Levitt and Dubner (2005)
showed that the words used in a real estate ad can be used as a good predictor of whether
a house will sell for more or less than its asking price. They showed, for example, that
houses whose real estate ads had words like fantastic, cute, or charming, tended to sell
for lower prices, while houses whose ads had words like maple and granite tended to
sell for higher prices. Their hypothesis was that real estate agents used vague positive
words like fantastic to mask the lack of any specific positive qualities in the house. Just
for pedagogical purposes, we created the fake data in Fig. 6.16.

Fig. 6.17 shows a graph of these points, with the feature (# of adjectives) on the
x-axis, and the price on the y-axis. We have also plotted a regression line, which is
the line that best fits the observed data. The equation of any line is y = mx + b; as we
show on the graph, the slope of this line is m = —4900, while the intercept is 16550.

22

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.42)

Number of vague adjectives Amount house sold over asking price
4 0
3 $1000
2 $1500
2 $6000
1 $14000
0 $18000

Figure 6.16 Some made-up data on the the number of vague adjectives (fantastic, cute,
charming) in a real-estate ad, and the amount the house sold for over the asking price.

20000 I
a
£ 15000 AN
o
a
Tn y = -4300x + 16550
¥ 10000
n
=
=]
! \
£ sooo
1]
n
m
g \
E u] T T T

1 2 3 \4
-5000
Number of Adjectives

Figure 6.17 caption

We can think of these two parameters of this line (slope m and intercept b) as a set of
weights that we use to map from our features (in this case x, numbers of adjectives) to
our output value y (in this case price). We can represent this linear function using w to
refer to weights as follows:

price = wg + wy * Num_Adjectives

Thus Eq. 6.42 gives us a linear function that lets us estimate the sales price for
any number of these adjectives. For example, how much would we expect a house
whose ad has 5 adjectives to sell for?

The true power of linear models comes when we use more than one feature
(technically we call this multiple linear regression). For example, the final house
price probably depends on many factors such as the average mortgage rate that month,
the number of unsold houses on the market, and many other such factors. We could
encode each of these as a variable, and the importance of each factor would be the
weight on that variable, as follows:

Section 6.6.

Maximum Entropy Models: Background 23

(6.43)

FEATURE

(6.44)

(6.45)

DOT PRODUCT

(6.46)

(6.47)

price = wp + w1 * Num_Adjectives 4 ws * Mortgage Rate 4+ w3 * Num_Unsold_Houses

In speech and language processing, we often call each of these predictive factors
like the number of adjectives or the mortgage rate a feature. We represent each obser-
vation (each house for sale) by a vector of these features. Suppose a house has 1 adjec-
tive in its ad, and the mortgage rate was 6.5 and there were 10,000 unsold houses in the
city. The feature vector for the house would be f = (20000,6.5,10000). Suppose the
weight vector that we had previously learned for this task was w = (wo, w1, w2, w3) =
(18000, —5000, —3000, —1.8). Then the predicted value for this house would be com-
puted by multiplying each feature by its weight:

N
price = wy +Zw,~ X fi
i=1
In general we will pretend that there is an extra feature fy which has the value 1,
an intercept feature, which makes the equations simpler with regard to that pesky wy,
and so in general we can represent a linear regression for estimating the value of y as:

N
linear regression: y= E w;i X fi
i=0

Taking two vectors and creating a scalar by multiplying each element in a pair-
wise fashion and summing the results is called the dot product. Recall that the dot
product a - b between two vectors a and b is defined as:

N
dot product: a-b:Zaibi:a1b1+a2b2+---+anbn

i=1

Thus Eq. 6.45 is equivalent to the dot product between the weights vector and
the feature vector:

y=w-f

Vector dot products occurs very frequently in speech and language processing;
we will often rely on the dot product notation to avoid the messy summation signs.

Learning in linear regression

How do we learn the weights for linear regression? Intuitively we’d like to choose
weights that make the estimated values y as close as possible to the actual values that
we saw in the training set.

Consider a particular instance x\/) from the training set (we’ll use superscripts in

parentheses to represent training instances), with has an observed label in the training
()

obs- Our linear regression model predicts a value for y(j) as follows:

sety

24

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.48)

SUM-SQUARED
ERROR

(6.49)

(6.50)

N
Spred = 2% £
i=0

We’d like to choose the whole set of weights W so as to minimize the difference

() ()

between the predicted value y 're d and the observed value Vobs® and we want this dif-

p
ference minimized over all the M examples in our training set. Actually we want to

minimize the absolute value of the difference (since we don’t want a negative distance
in one example to cancel out a positive difference in another example), so for simplicity
(and differentiability) we minimize the square of the difference. Thus the total value
we want to minimize, which we call the sum-squared error, is this cost function of
the current set of weights W':

Mo 12
cost(W) = 3~ (Yprea—Yons)
j=0

We won'’t give here the details of choosing the optimal set of weights to minimize
the sum-squared error. But, briefly, it turns out that if we put the entire training set
into a single matrix X with each row in the matrix consisting of the vector of features
associated with each observation x(?) ,and put all the observed y values in a vector y, that
there is a closed-form formula for the optimal weight values W which will minimize

cost(W):

w=x"x)"'xTy

Implementations of this equation are widely available in statistical packages.

6.6.2 Logistic regression

Linear regression is what we want when we are predicting a real-valued outcome. But
somewhat more commonly in speech and language processing we are doing classifi-
cation, in which the output y we are trying to predict takes on one from a small set of
discrete values.

Consider the simplest case of binary classification, where we want to classify
whether some observation x is in the class (true) or not in the class (false). In other
words y can only take on the values 1 (true) or O (false), and we’d like a classifier that
can take features of x and return true or false. Furthermore, instead of just returning
the O or 1 value, we’d like a model that can give us the probability that a particular
observation is in class O or 1. This is important because in most real-world tasks we’re
passing the results of this classifier onto some further classifier to accomplish some
task. Since we are rarely completely certain about which class an observation falls
in, we’d prefer not to make a hard decision at this stage, ruling out all other classes.
Instead, we’d like to pass on to the later classifier as much information as possible: the
entire set of classes, with the probability value that we assign to each class.

Could we modify our linear regression model to use it for this kind of probabilis-
tic classification? Suppose we just tried to train a linear model to predict a probability
as follows:

Section 6.6.

Maximum Entropy Models: Background 25

6.51)

(6.52)

OoDDS

(6.53)

(6.54)

LOGIT FUNCTION

(6.55)

LOGISTIC
REGRESSION

N
P(y = truelx) = Zwixfi
i=0

We could train such a model by assigning each training observation the target
value y = 1 if it was in the class (true) and the target value y = O if it was not (false).
Each observation x would have a feature vector f, and we would train the weight vec-
tor w to minimize the predictive error from 1 (for observations in the class) or O (for
observations not in the class). After training, we would compute the probability of a
class given an observation by just taking the dot product of the weight vector with the
features for that observation.

The problem with this model is that there is nothing to force the output to be a
legal probability, i.e. to lie between zero and 1. The expression Zf\]: oWi X fi produces
values from — to «. How can we fix this problem? Suppose that we keep our linear
predictor w- f, but instead of having it predict a probability, we have it predict a ratio of
two probabilities. Specifically, suppose we predict the ratio of the probability of being
in the class to the probability of not being in the class. This ratio is called the odds; if
an event has probability .75 of occurring and probability .25 of not occurring, we say
the odds of occurring is .75/.25 = 3. We could use the linear model to predict the odds
of y being true:

p(y =true)|x et

1 — p(y =truelx)
This last model is close; a ratio of probabilities can lie between 0 and oo. But we
need the left-hand side of the equation to lie between —oo and «. We can achieve this

by taking the natural log of this probability:
ln(p(y = truelx)) e f

1 — p(y=true|x)
Now both the left and right hand lie between —o0 and . This function on the
left (the log of the odds) is known as the logit function:

logit(p(x)) =In (1 f(;?X))

The model of regression in which we use a linear function to estimate, not the
probability, but the logit of the probability, is known as logistic regression. If the linear
function is estimating the logit, what is the actual formula in logistic regression for the
probability P(y = true)? You should stop here and take Equation (6.54) and apply
some simple algebra to solve for the probability P(y = true).

Hopefully when you solved for P(y = true) you came up with a derivation some-
thing like the following:

NEITUTR

1 — p(y = truejx)

26 Chapter 6. Hidden Markov and Maximum Entropy Models
=t
6.56) _py=tuely) g
1 — p(y = truelx)
p(y = truelx) = (1 — p(y = true|x))e"/
p(y = truelx) = "/ — p(y = true|x)e"/
p(y = true|x) + p(y = true|x)e”/ = "/
p(y = truex) (1 + ") = "/
e
Once we have this probability, we can easily state the probability of the observa-
tion not belonging to the class, p(y = false|x), as the two must sum to 1:
(6.58) p(y = false|lx) = Trerr
Here are the equations again using explicit summation notation:
N
(6.59) p(y = truelx) = XP(2io Wifi)
L+ exp(Lo wif:)
1
(6.60) p(y=falselx) =
1+ eXP(Z —owifi)
We can express the probability P(y = true|x) in a slightly different way, by di-
viding the numerator and denominator in (6.57) by e ™"/
e s
6.61 —t - ¢
(6.61) ply=trely) = =
6.62) = !
(: - 1-|-e*w'f
LOGISTIC FUNCTION These last equation is now in the form of what is called the logistic function,
(the function that gives logistic regression its name). The general form of the logistic
function is:
6.63 !
(6.63) I+e™*
Fig. 6.18 shows a picture of the logistic function; note how values from —o and
o are neatly mapped to lie between 0 and 1.
Again, we can express P(y = false|x) so as to make the probabilities sum to one:
e
(6.64) ply = falselx) =

1+emf

Section 6.6. Maximum Entropy Models: Background 27

Figure 6.18 FIX: ADD PICTURE OF LOGISTIC FUNCTION HERE

6.6.3 Logistic regression: Classification

Given a particular observation, how do we decide which of the two classes (‘true’ or

CLASSIFICATION ‘false’) it belongs to? This is the task of classification, also called inference. Clearly

INFERENCE the correct class is the one with the higher probability. Thus we can safely say that our
observation should be labeled ‘true’ if:

p(y =true|x) > p(y = false|x)
p(y = truelx)
p(y = falsel|x)
p(y = true|x) -1
1 — p(y=true|x)

and substituting from Eq. 6.56 for the odds ratio:

el >1
(6.65) w-f>0
or with the explicit sum notation:
N
(6.66) > wifi>0
i=0

Thus in order to decide if an observation is a member of the class we just need
to compute the linear function, and see if its value is positive; if so, the observation is
in the class.

A more advanced point: the equation ny:o w;fi = 0 is the equation of a hyper-
plane (a generalization of a line to N dimensions). The equation ny:o wifi > 0 is thus
the part of N-dimensional space above this hyperplane. Thus we can see the logistic
regression function as learning a hyperplane which separates points in space which are
in the class (’true’) from points which are not in the class. Fig. 6.19 shows a graphic
intuition of this hyperplane.

Figure 6.19 FIX: ADD PICTURE OF A HYPERPLANE SEPARATING CLOUD OF
POINTS HERE

6.64 Advanced: Learning in logistic regression

In linear regression, learning consisted of choosing the weights w which minimized the
CONDITIONAL sum-squared error on the training set. In logistic regression, by contrast, we generally

LMBXIMINuse conditional maximium likelihood estimation. What this means is that we choose
ESTIMATION

28

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.67)

(6.68)

(6.69)

(6.70)

6.71)

6.72)

CONVEX
OPTIMIZATION

the parameters w which makes the probability of the observed y values in the training
data to be the highest, given the observations x. In other words, for an individual
training observation x, we want to choose the weights as follows:

W = argmax P(y |x()

w

And we’d like to choose the optimal weights for the entire training set:
W = argmax | [P(y |x()
gn H Oy
We generally work with the log likelihood:

W= argmaleogP(y(i) x@)

1

So, more explicitly:

. PO =1]x®)) for y@ =
Y= argﬂlax;k’g{ PO =0x)) for i

This equation is unwieldy, and so we usually apply a convenient representational
trick; note that if y = O the first term goes away, while if y = 1 the second term goes
away:

W= argmany(i) logP(y"™ = 1|xD)) + (1 =y log Py = 0[x1))

l
Now if we substitute in (6.62) and (6.64), we get:

e

N () NS TR S
oyt (=Y log

b= (@)
W= argwmany log 7
Finding the weights which result in the maximum log-likelihood according to
(6.72) is a problem in the field known as convex optimization. Among the most
commonly used algorithms quasi-Newton methods like L-BFGS, as well as gradi-
ent ascent, conjugate gradient, and various iterative scaling algorithms (?; Pietra et al.,
1997; Malouf, 2002). These learning algorithms are available in the various MaxEnt
modeling toolkits but are too complex to define here; interested readers should see the
machine learning textbooks suggested at the end of the chapter.

6.7 MAXIMUM ENTROPY MODELING

We showed above how logistic regression can be used to classify an observation into
one of two classes. But most of the time the kinds of classification problems that come
up in language processing involve larger numbers of classes (such as the set of part-
of-speech classes). Logistic regression can also be defined for such functions with

Section 6.7.

Maximum Entropy Modeling 29

MULTINOMIAL
LOGISTIC
REGRESSION
MAXENT

(6.73)

(6.74)

(6.75)

INDICATOR
FUNCTION

(6.76)

many discrete values. In such cases it is called multinomial logistic regression. As
we mentioned above, multinomial logistic regression is called MaxEnt in speech and
language processing (see Sec. 6.7.1 for the intuition for the name ‘maximum entropy’).

The equations for computing the class probabilities for a maxent classifier are a
generalization of Egs. 6.59-6.60 above. Let’s assume that the target value y is a random
variable which can take on C different values corresponding to the classes ¢y, ¢3,...,cc.

We said earlier in this chapter that in a MaxEnt model we estimate the probability
that y is a particular class c as:

1
pleb) = Zexpd wif

Let’s now add some details to this schematic equation. First we’ll flesh out the
normalization factor Z, specify the number of features as N, and make the value of the
weight dependent on the class c; the final equation is thus:

N
oS5t
plelx) = AT
Sexp (z wc/,.fi)

deC i=0

Note that the normalization factor Z is just used to make the exponential into a
true probability;

N
Z=7) plelx)=7) exp <Z Wc’ifi)
C i=0

deC

We need to make one more change to see the final MaxEnt equation. So far
we’ve been assuming that the features f; are real-valued. It is more common in speech
and language processing, however, to use binary-valued features. A feature that only
takes on the values 0 and 1 is also called an indicator function. In general, the features
we use are indicator functions of some property of the observation and the class we are
considering assigning. Thus in MaxEnt, instead of the notation f;, we will often use the
notation f;j(c,x), meaning that a feature i for a particular class ¢ for a given observation
X.

The final equation for computing the probability of y being class ¢ given x in
MaxEnt is:

N
exp <Z Weif; (c,x))

i=0

plek) = 0
Z exp <Z wc/l-f,-(c’,x)>

deC i=0

30 Chapter 6. Hidden Markov and Maximum Entropy Models

To get a clearer intuition of this use of binary features, let’s look at some sample
features for the task of part-of-speech tagging. Suppose we are assigning a part-of-
speech tag to the word race in (6.77), repeated from (??):

(6.77) Secretariat/NNP is/BEZ expected/ VBN to/TO race/?? tomorrow/

Again, for now we’re just doing classification, not sequence classification, so
let’s consider just this single word; we’ll discuss in Sec. 6.8 how to perform tagging
for a whole sequence of words.

We would like to know whether to assign the class VB to race (or instead assign
some other class like NN). One useful feature, we’ll call it f7, would be the fact that the
current word is race. We can thus add a binary feature which is true if this is the case:

1 if word; = “race” & c¢=NN
0 otherwise

fien) = {

Another feature would be whether the previous word has the tag TO:

N 1if 4.1=TO & ¢c=VB
falex) = { 0 otherwise
Two more part-of-speech tagging features might focus on aspects of a word’s
spelling and case:

1 if suffix(word;) = “ing” & ¢= VBG
0 otherwise

flex) = {

filex) = 1 if is_lower_case(word;) & ¢=VB
HEY =1 0 otherwise

Since each feature is dependent on both a property of the observation and the
class being labeled, we would need to have separate feature for, e.g, the link between
race and VB, or the link between a previous TO and NN:

Alex) = 1 if word; = "race” & ¢=VB
S =1 0 otherwise
fofe) = {111 =TO & c=NN
6L&X) = 1 0 otherwise

Each of these features has a corresponding weight. Thus the weight w(c,x)
would indicate how strong a cue the word race is for the tag VB, the weight wa(c,x)
would indicate how strong a cue the previous tag 70 is for the current word being a
VB, and so on.

Section 6.7. Maximum Entropy Modeling 31
fl 2 3 f4 5 6
VB f 0 1 0 1 1 0
VB w .8 01 1
NN f 1 0 0 0 0 1
NN w 8 -13
Figure 6.20 Some sample feature values and weights for tagging the word race in
(6.77).

(6.78)

(6.79)

(6.80)

Let’s assume that the feature weights for the two class VB and VN are as shown
in Fig. 6.20. Let’s call the current input observation (where the current word is race) x.
We can now compute P(NN|x) and P(VB|x), using Eq. 6.76:

e8e13

P(NN|x) = e8¢ 13 1 o 8p 0041 =.20
8,01 ,.1

P(VBJx) = ee ¢ =.80

e8e—13 + e8001p.1

Notice that when we use MaxEnt to perform classification, MaxEnt naturally
gives us a probability distribution over the classes. If we want to do a hard-classification
and choose the single-best class, we can choose the class that has the highest probabil-
ity,i.e.

¢ = argmax P(c|x)
ceC

Classification in MaxEnt is thus a generalization of classification in (boolean)
logistic regression. In boolean logistic regression, classification involves building one
linear expression which separates the observations in the class from the observations
not in the class. Classification in MaxEnt, by contrast, involves building a separate
linear expression for each of C classes.

But as we’ll see later in Sec. 6.8, we generally don’t use MaxEnt for hard classi-
fication. Usually we want to use MaxEnt as part of sequence classification, where we
want, not the best single class for one unit, but the best total sequence. For this task,
it’s useful to exploit the entire probability distribution for each individual unit, to help
find the best sequence. Indeed even in many non-sequence applications a probability
distribution over the classes is more useful than a hard choice.

The features we have described so far express a single binary property of an
observation. But it is often useful to create more complex features that express com-
binations of properties of a word. Some kinds of machine learning models, like Sup-
port Vector Machines (SVMs), automatically model the interactions between primitive
properties, but in MaxEnt any kind of complex feature has to be defined by hand. For
example a word starting with a capital letter (like the word Day is more likely to be a
proper noun (NNP) than a common noun (for example in the expression United Na-
tions Day. But a word which is capitalized but which occurs at the beginning of the
sentence (the previous word is </s>), as in Day after day...., is not more likely to be a

32

Chapter 6. Hidden Markov and Maximum Entropy Models

681)

REGULARIZATION

(6.82)

(6.83)

(6.84)

proper noun. Even if each of these properties were already a primitive feature, MaxEnt
would not model their combination, so this boolean combination of properties would
need to be encoded as a feature by hand:

1 if word;_1 = <s> & isuppetfirst(word;) & ¢ = NNP
0 otherwise

fias(e,x) = {

A key to successful use of MaxEnt is thus the design of appropriate features and
feature combinations.

Learning Maximum Entropy Models

Learning a MaxEnt model can be done via a generalization of the logistic regression
learning algorithms described in Sec. 6.6.4; as we saw in (6.69), we want to find the
parameters w which maximize the likelihood of the M training samples:

M
= (OIMO)
W arg;naxlj[P(y |xt)

As with binary logistic regression, we use some convex optimization algorithm
to find the weights which maximize this function.

A brief note: one important aspect of MaxEnt training is a kind of smoothing
of the weights called regularization. The goal of regularization is to penalize large
weights; it turns out that otherwise, a MaxEnt model will learn very high weights
which overfit the training data. Regularization is implemented in training by changing
the likelihood function that is optimized. Instead of the optimization in (6.81), we
optimize the following:

W= argmaleogP(y(i> Ix®) — aR(w)

where R(w) is a regularization term used to penalize large weights. It is common to
make the regularization term R(w) be a quadratic function of the weight values:

N
RW)=> "w?
j=1

Subtracting squares of the weights will thus result in preferring smaller weights:
N
W= argmaxz log P(y® [x1) — aZw?
w . .
i j=1

It turns that this kind of regularization corresponds to assuming that weights are
distributed according to a Gaussian distribution with mean ¢ = 0. In a Gaussian or
normal distribution, the further away a value is from the mean, the lower its probability
(scaled by the variance o). By using a Gaussian prior on the weights, we are saying
that weights prefer to have the value zero. A Gaussian for a weight w; is:

Section 6.7.

Maximum Entropy Modeling 33

(6.85)

(6.86)

(6.87)

(6.88)

1)2
exp <_ (w; é"}))
27:0% 20

If we multiply each weight by a Gaussian prior on the weight, we are thus max-
imizing the following constraint:

. . (wj—)
W= argmaxHP(y I H exp | ——2 5 /
w i ,/2750 20/’

which in log space, with u = 0, corresponds to

N
= argmaleogP Z 72

i j=1

S
\I\)\N

which is in the same form as Eq. 6.84.
There is a vast literature on the details of learning in MaxEnt; see the end of the
chapter for pointers to further details.

6.7.1 Why do we call it Maximum Entropy?

Why do we refer to multinomial logistic regression models as MaxEnt or Maximum
Entropy models? Let’s give the intuition of this interpretation in the context of part-
of-speech tagging. Suppose we want to assign a tag to the word zzfish (a word we
made up for this example). What is the probabilistic tagging model (the distribution
of part-of-speech tags across words) that makes the fewest assumptions, imposing no
constraints at all? Intuitively it would be the equiprobable distribution:

NN [JJ INNS | VB |NNP|IN|MD |[UH|SYM | VBG |POS |PRP|CC|CD| ...

L L)L 1L e
45 |45 |45 45 |45 45 |45 |45 |45 45 45 |45 |35 |45

Now suppose we had some training data labeled with part-of-speech tags, and
from this data we learned only one fact: the set of possible tags for zzfish are NN,
JJ, NNS, and VB (so zzfish is a word something like fish, but which can also be an
adjective). What is the tagging model which relies on this constraint, but makes no
further assumptions at all? Since one of these must be the correct tag, we know that

P(NN)+ P(JJ)+ P(NNS) +P(VB) = 1

Since we have no further information, a model which makes no further assump-
tions beyond what we know would simply assign equal probability to each of these
words:

NN [JJINNS | VB |[NNP |IN|MD |[UH|SYM | VBG |POS |PRP|CC |CD| ...
0 0|0 |0 |O 0 0 0 0 |0

Bl
Al
Al
Al

34

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.89)

In the first example, where we wanted an uninformed distribution over 45 parts-
of-speech, and in this case, where we wanted an uninformed distribution over 4 parts-
of-speech, it turns out that of all possible distributions, the equiprobable distribution
has the maximum entropy. Recall from Sec. ?? that the entropy of the distribution of
a random variable x is computed as:

H(x) =~ P(x)log, P(x)

An equiprobable distribution in which all values of the random variable have the
same probability has a higher entropy than one in which there is more information.
Thus of all distributions over four variables the distribution {%, %, ‘—lw %} has the maxi-
mum entropy. (To have an intuition for this, use Eq. 6.89 to compute the entropy for a
few other distributions such as the distribution {zlp %, %, %}, and make sure they are all
lower than the equiprobable distribution.)

The intuition of MaxEnt modeling is that the probabilistic model we are building
should follow whatever constraints we impose on it, but beyond these constraints it
should follow Occam’s Razor, i.e. make the fewest possible assumptions.

Let’s add some more constraints into our tagging example. Suppose we looked
at our tagged training data and noticed that 8 times out of 10, zzfish was tagged as some
sort of common noun, either NN or NNS. We can think of this as specifying the feature
word is zzfish and #; = NN or #; = NNS’. We might now want to modify our distribution
so that we give % of our probability mass to nouns, i.e. now we have 2 constraints

P(NN)+ P(JJ)+ P(NNS) +P(VB) = 1
8

P(word is zzfish and ; = NN or ; = NNS) = M

but make no further assumptions (keep JJ and VB equiprobable, and NN and
NNS equiprobable).

NN [JJ |[NNS|VB|NNP| ...
0

L
10

al+

L
10

al+

Now suppose we don’t have have any more information about zzfish. But we
notice in the training data that for all English words (not just zzfish) that verbs (VB)
occur as 1 word in 20. We can now add this constraint (corresponding to the feature
t; =VB):

P(NN)+ P(JJ)+P(NNS) +P(VB) = 1

6
P(word is zzfish and t; = NN or 1; = NNS) = M
1

P(VB)= 55

The resulting maximum entropy distribution is now as follows:

Section 6.8.

Maximum Entropy Markov Models 35

(6.90)

NN [JJ INNS | VB

4 13 L
10 |20 20

3l

In summary, the intuition of maximum entropy is to build a distribution by con-
tinuously adding features. Each feature is an indicator function, which picks out a
subset of the training observations. For each feature we add a constraint on our total
distribution, specifying that our distribution for this subset should match the empirical
distribution we saw in our training data. We then choose the maximum entropy distri-
bution which otherwise accords with these constraints. Berger et al. (1996) pose the
optimization problem of finding this distribution as follows:

“To select a model from a set ¢ of allowed probability distributions, choose
the model p. € C with maximum entropy H(p)”:
p« = argmax H (p)
peC

Now we come to the important conclusion. Berger et al. (1996) show that the
solution to this optimization problem turns out to be exactly the probability distribution
of a multinomial logistic regression model whose weights W maximize the likelihood
of the training data! Thus the exponential model for multinomial logistic regression,
when trained according to the maximum likelihood criterion, also finds the maximum
entropy distribution subject to the constraints from the feature functions.

6.8 MAXIMUM ENTROPY MARKOV MODELS

We began our discussion of MaxEnt by pointing out that the basic MaxEnt model is
not in itself a classifier for sequences. Instead, it is used to classify a single observation
into one of a set of discrete classes, as in text classification (choosing between possible
authors of an anonymous text, or classifying an email as spam), or tasks like deciding
whether a period marks the end of a sentence.

We turn in this section to the Maximum Entropy Markov Model or MEMM,
which is an augmentation of the basic MaxEnt classifier so that it can be applied to
assign a class to each element in a sequence, just as we do with HMMs. Why would
we want a sequence classifier built on MaxEnt? How might such a classifier be better
than an HMM?

Consider the HMM approach to part-of-speech tagging. The HMM tagging
model is based on probabilities of the form P(tag|tag) and P(word|tag). That means
that if we want to include some source of knowledge into the tagging process, we must
find a way to encode the knowledge into one of these two probabilities. But many
knowledge sources are hard to fit into these models. For example, we saw in Sec. ??
that for tagging unknown words, useful features include capitalization, the presence
of hyphens, word endings, and so on. There is no easy way to fit these features into
an HMM-style model; as we discussed in Ch. 5, P(capitalization|tag), P(hyphen|tag),
P(suffix|tag), and so on

We gave the initial part of this intuition in the previous section, when we dis-
cussed applying MaxEnt to part-of-speech tagging. Part-of-speech tagging is definitely

36

Chapter 6. Hidden Markov and Maximum Entropy Models

691)

DISCRIMINATIVE

(6.92)

a sequence-labeling task, but we only discussed assigning a part-of-speech tag to a sin-
gle word.

How can we take this single local classifier and turn it into a general sequence
classifier? When classifying each word we can rely on features from the current word,
features from surrounding words, as well as the output of the classifier from previous
words. For example the simplest method is to run our local classifier left-to-right, first
making a hard classification of the first word in the sentence, then the second word,
and so on. When classifying each word, we can rely on the output of the classifier from
the previous word as a feature. For example, we saw in tagging the word race that a
useful feature was the tag of the previous word; a previous TO is a good indication that
race is a VB, whereas a previous DT is a good indication that race is a NN. Such a
strict left-to-right sliding window approach has been shown to yield surprisingly good
results across a wide range of applications.

While it is possible to perform part-of-speech tagging in this way, this simple
left-to-right classifier has an important flaw: it makes a hard decision on each word
before moving on to the next word. This means that the classifier is unable to use
information from later words to inform its decision early on. Recall that in Hidden
Markov Models, by contrast, we didn’t have to make a hard decision at each word; we
used Viterbi decoding to find the sequence of part-of-speech tags which was optimal
for the whole sentence.

The Maximum Entropy Markov Model (or MEMM) allows us to achieve this
same advantage, by mating the Viterbi algorithm with MaxEnt. Let’s see how it works,
again looking at part-of-speech tagging. It is easiest to understand an MEMM when
comparing it to an HMM. Remember that in using an HMM to model the most probable
part-of-speech tag sequence we rely on Bayes rule, computing P(W|T)P(W) instead
of directly computing P(T|W):

~»
Il

argmax P(T|W)
T

= argmaxP(W|T)P(T)
T

= arg;naxH P(word;|tag;) H P(tag;|tag;_;)
i i

That is, an HMM as we’ve described it is a generative model, which optimizes
the likelihood P(W|T'), and we estimate the posterior by combining the likelihood and
the prior P(T).

In an MEMM, by contrast, we compute the posterior P(T|W) directly. Because
we train the model directly to discriminate among the possible tag sequences, we call
an MEMM a discriminative rather than generative model. In an MEMM, we break
down the probabilities as follows:

T = argmaxP(T|W)
T

= argmax H P(tag;\word;,tag;_,)
T ;
l

Section 6.8.

Maximum Entropy Markov Models 37

(6.93)

Thus in an MEMM instead of having a separate model for likelihoods and pri-
ors, we train a single probabilistic model to estimate P(tag;|word;,tag; ;). We will
use MaxEnt for this last piece, estimating the probability of each local tag given the
previous tag, the observed word, and, as we will see, any other features we want to
include.

We can see the HMM versus MEMM intuitions of the POS tagging task in
Fig. 6.21, which repeats the HMM model of Fig. ??a, and adds a new model for the
MEMM. Note that the HMM model includes distinct probability estimates for each
transition and observation, while the MEMM gives one probability estimate per hidden
state, which is the probability of the next tag given the previous tag and the observation.

seseys

Secretariat is expected to race tomorrow

SHONECNONORNONS

Secretariat is expected to race tomorrow

Figure 6.21 The HMM (top) and MEMM (bottom) representation of the probability
computation for the correct sequence of tags for the Secretariat sentence. Each arc would
be associated with a probability; the HMM computes two separate probabilities for the ob-
servation likelihood and the prior, while the MEMM computes a single probability function
at each state, conditioned on the previous state and observation.

Fig. 6.22 emphasizes another advantage of MEMMs over HMMs not shown in
Fig. 6.21: unlike the HMM, the MEMM can condition on any useful feature of the
input observation. In the HMM this wasn’t possible because the HMM is likelihood-
based, and hence would have needed compute the likelihood of each feature of the
observation.

More formally, in the HMM we compute the probability of the state sequence
given the observations as:

n

P(0|0) = [[P(oila:) x [[P(ailai-1)

i=1 i=1
In the MEMM, we compute the probability of the state sequence given the ob-
servations as:

38

Chapter 6. Hidden Markov and Maximum Entropy Models

(6.94)

(6.95)

(6.96)

(6.97)

AN e T ey
4 5 - \ v
@ecretariat expectéd to race tomorrow

Figure 6.22 An MEMM for part-of-speech tagging, augmenting the description in
Fig. 6.21 by showing that an MEMM can condition on many features of the input, such as
capitalization, morphology (ending in -s or -ed), as well as earlier words or tags. We have
shown some potential additional features for the first three decisions, using different line
styles for each class for clarity.

n
P(Q|0) = [[P(ailgi-1,0:)
i=1
In practice, however, an MEMM can condition on many more features than the
HMM as well, so in general we condition the right-hand side on many more factors.
To estimate the individual probability of a transition from a state ¢’ to a state g
producing an observation o, we build a MaxEnt model as follows:

1
Z(O, q/) exXp (zl: Wjﬁ(o, CI))

6.8.1 Decoding and Learning in MEMMs

Like HMMs, the MEMM uses the Viterbi algorithm to perform the task of decoding
(inference). Concretely, this involves filling an N x T array with the appropriate val-
ues for P(t;|ti_1,word;), maintaining backpointers as we proceed. As with the HMM
Viterbi, when the table is filled we simply follow pointers back from the maximum
value in the final column to retrieve the desired set of labels. The requisite changes
from the HMM-style application of Viterbi are isolated to how we fill each cell. Recall
from Eq" ?? that the recursive step of the Viterbi equation computes the Viterbi value
of time ¢ for state j as:

P(qlq',0) =

v(j) = 1§I}1§a}\)7(—1 vic1(i) aijbj(or); 1<j<N,1<t<T

which is the HMM implementation of
vi(j) = x| vi—1 () P(sj|si) P(os]sj); 1<j<N,1<t<T

The MEMM requires only a slight change to this latter formula, replacing the a
and b prior and likelihood probabilities with the direct posterior:

Section 6.8. Maximum Entropy Markov Models 39

(6.98) w(j) = (x| vi—1 (i) P(sj|si,or); 1<j<N,1<t<T

Fig. 6.23 shows an example of the Viterbi trellis for an MEMM applied to the
ice-cream task from Sec. 6.4. Recall that the task is figuring out the hidden weather
(Hot or Cold) from observed numbers of ice-cream eatings in Jason Eisner’s diary.
Fig. 6.23 shows the abstract Viterbi probability calculation assuming that we have a
MaxEnt model which computes P(s;|s;—1,0;) for us.

v,@)= max(P(HIH,1)*P(Hlstart,3),
Vi®=P(Histart,3) P(HIC,1)*P(Clstart,3)) S

a, O P(HIH,1)
A
(o)
"1

v,(1) = (P(CIH,1)"P(HISaré3
P(CIC,1)*P(Clstart,3))

~ . 4
/
)

S v, (1) = P(Clstart,3) A) Y
. \é@b 1 ?®\O‘
<

@ o) 4q ,@; P(CIC.1) —»@cl ,,,,,,,,,,,,,,,,,, NNY o

Lo RN N 7N
’ \ ’ \ ! \ ! \
dg | start | | start | I start I start
\ / \ / \ ’ \ ’

\

Figure 6.23 Inference from ice-cream eating computed by an MEMM instead of an HMM. The Viterbi trellis
for computing the best path through the hidden state space for the ice-cream eating events 3 / 3, modified from
the HMM figure in Fig. 6.9.

Learning in MEMMs relies on the same supervised learning algorithms we pre-
sented for logistic regression and MaxEnt. Given a sequence of observations, fea-
ture functions, and corresponding hidden states, we train the weights so as maximize
the log-likelihood of the training corpus. As with HMMs, it is also possible to train
MEMMs in semi-supervised modes, for example when the sequence of labels for the
training data is missing or incomplete in some way; a version of the EM algorithm can
be used for this purpose.

40 Chapter 6. Hidden Markov and Maximum Entropy Models

6.9 SUMMARY

This chapter described two important models for probabilistic sequence classification,
the Hidden Markov Model and the Maximum Entropy Markov Model. Both mod-
els are widely used throughout speech and language processing.

e Hidden Markov Models (HMMs) are a way of relating a sequence of obser-
vations to a sequence of hidden classes or hidden states which explain the
observations.

e The process of discovering the sequence of hidden states given the sequence
of observations is known as decoding or inference. The Viterbi algorithm is
commonly used for decoding.

e The parameters of an HMM are the A transition probability matrix and the B
observation likelihood matrix. Both can be trained using the Baum-Welch or
forward-backward algorithm.

e A MaxEnt model is a classifier which assigns a class to an observation by com-
puting a probability from an exponential function of a weighted set of features
of the observation.

o MaxEnt models can be trained using methods from the field of convex optimiza-
tion although we don’t give the details in this textbook.

e A Maximum Entropy Markov Model or MEMM is a sequence model aug-
mentation of MaxEnt which makes use of the Viterbi decoding algorithm.

o MEMMs can be trained by augmenting MaxEnt training with a version of EM.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we discussed at the end of Ch. 4, Markov chains were first used by Markov (1913),
to predict whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel
or a consonant.

The Hidden Markov Model was developed by Baum and colleagues at the In-
stitute for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon,
1967).

The Viterbi algorithm was first applied to speech and language processing in the
context of speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls a
‘remarkable history of multiple independent discovery and publication’?> Kruskal and
others give at least the following independently-discovered variants of the algorithm
published in four separate fields:

2 Seven is pretty remarkable, but see page ?? for a discussion of the prevalence of multiple discovery.

Section 6.9. Summary 41

Citation Field

Viterbi (1967) information theory

Vintsyuk (1968) speech processing

Needleman and Wunsch (1970) molecular biology

Sakoe and Chiba (1971) speech processing

Sankoff (1972) molecular biology

Reichert et al. (1973) molecular biology

Wagner and Fischer (1974) computer science

The use of the term Viterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problem in speech and language
processing. For non-probabilistic problems (such as for minimum edit distance) the
plain term dynamic programming is often used. Forney, Jr. (1973) is an early survey
paper which explores the origin of the Viterbi algorithm in the context of information
and communications theory.

Our presentation of the idea that Hidden Markov Models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s.
Jelinek (1997) or Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm, as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM. See also the
description of HMMs in other textbooks such as Manning and Schiitze (1999). ? (?) is
a tutorial on EM.

While logistic regression and other log-linear models had been used in many
fields since the middle of the 20th century, the use of Maximum Entropy/multinomial
logistic regression in natural language processing dates from work in the early 1990s at
IBM (Berger et al., 1996; Pietra et al., 1997). This early work introduced the maximum
entropy formalism, proposed a learning algorithm (improved iterative scaling), and
proposed the use of regularization. A number of applications of MaxEnt followed. For
example for further discussion of regularization and smoothing for maximum entropy
models see (inter alia) Chen and Rosenfeld (2000), Goodman (2004), and Dud/ik and
Schapire (20006).

Although the second part of this chapter focused on MaxEnt-style classification,
numerous other approaches to classification are used throughout speech and language
processing. Naive Bayes (Duda et al., 2000) is often employed as a good baseline
method (often yielding results that are sufficiently good for practical use; we’ll cover
naive Bayes in Ch. 19. Support Vector Machines (?) have been successfully used in text
classification and in a wide variety of sequence processing applications. Decision lists
7(7)) have been widely used in word sense discrimination, and decision trees Breiman
etal. (1984), Quinlan (1986) have been used in many applications in speech processing.
Good references to supervised machine learning approaches to classification include
Duda et al. (2000), ? (?), and Witten and Frank (2005).

Maximum Entropy Markov Models (MEMMs) were introduced by Ratnaparkhi
(1996) and McCallum et al. (2000).

There are many sequence models that augment the MEMM. Conditional Ran-
dom Field (CRF), various max-margin sequence classifiers...

42 Chapter 6.

Hidden Markov and Maximum Entropy Models

Baum, L. E. (1972). An inequality and associated maximiza-
tion technique in statistical estimation for probabilistic func-
tions of Markov processes. In Shisha, O. (Ed.), Inequalities
1I1: Proceedings of the Third Symposium on Inequalities, Uni-
versity of California, Los Angeles, pp. 1-8. Academic Press.

Baum, L. E. and Eagon, J. A. (1967). An inequality with appli-
cations to statistical estimation for probabilistic functions of
Markov processes and to a model for ecology. Bulletin of the
American Mathematical Society, 73(3), 360-363.

Baum, L. E. and Petrie, T. (1966). Statistical inference for prob-
abilistic functions of finite-state Markov chains. Annals of
Mathematical Statistics, 37(6), 1554—1563.

Berger, A. L., Pietra, S. A. D., and Pietra, V. J. D. (1996). A
maximum entropy approach to natural language processing.
Computational Linguistics, 22(1), 39-71.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
(1984). Classification and Regression Trees. Wadsworth &
Brooks, Pacific Grove, California.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing
techniques for ME models. IEEE Transactions on Speech and
Audio Processing, 8(1), 37-50.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 39(1), 1-21.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Clas-
sification. Wiley-Interscience Publication.

Dud/ik, M. and Schapire, R. E. (2006). Maximum entropy dis-
tribution estimation with generalized regularization. In Lu-
gosi, G. and Simon, H. (Eds.), COLT 2006, Berlin, pp. 123—
138. Springer-Verlag.

Eisner, J. (2002). An interactive spreadsheet for teaching the
forward-backward algorithm. In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching
NLP and CL, pp. 10-18.

Forney, Jr., G. D. (1973). The Viterbi algorithm. Proceedings
of the IEEE, 61(3),268-278.

Goodman, J. (2004). Exponential priors for maximum entropy
models. In Proceedings of ACL-04.

Jelinek, F. (1997). Statistical Methods for Speech Recognition.
MIT Press, Cambridge, MA.

Kruskal, J. B. (1983). An overview of sequence compari-
son. In Sankoff, D. and Kruskal, J. B. (Eds.), Time Warps,
String Edits, and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 1-44. Addison-Wesley, Read-
ing, MA.

Levitt, S. D. and Dubner, S. J. (2005). Freakonomics. Morrow.

Malouf, R. (2002). A comparison of algorithms for maximum
entropy parameter estimation. In CoNNL-2002, pp. 49-55.

Manning, C. D. and Schiitze, H. (1999). Foundations of Statis-
tical Natural Language Processing. MIT Press, Cambridge,
MA.

Markov, A. A. (1913). Essai d’une recherche statistique sur
le texte du roman “Eugene Onegin” illustrant la liaison des
epreuve en chain (‘Example of a statistical investigation of
the text of “Eugene Onegin” illustrating the dependence be-
tween samples in chain’). Izvistia Imperatorskoi Akademii
Nauk (Bulletin de I’Académie Impériale des Sciences de St.-
Pétersbourg), 7, 153-162. English translation by Morris
Halle, 1956.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000). Maxi-
mum Entropy Markov Models for Information Extraction and
Segmentation. In ICML 2000, pp. 591-598.

Needleman, S. B. and Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino-acid se-
quence of two proteins. Journal of Molecular Biology, 48,
443-453.

Pietra, S. D., Pietra, V. J. D., and Lafferty, J. D. (1997). Induc-
ing features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(4), 380-393.

Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1, 81-106.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models
and selected applications in speech recognition. Proceedings
of the IEEE, 77(2), 257-286.

Rabiner, L. R. and Juang, B. (1993). Fundamentals of Speech
Recognition. Prentice Hall, Englewood Cliffs, NJ.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech
tagger. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, University of Pennsyl-
vania, pp. 133-142. ACL.

Reichert, T. A., Cohen, D. N., and Wong, A. K. C. (1973). An
application of information theory to genetic mutations and the
matching of polypeptide sequences. Journal of Theoretical
Biology, 42, 245-261.

Sakoe, H. and Chiba, S. (1971). A dynamic programming ap-
proach to continuous speech recognition. In Proceedings of
the Seventh International Congress on Acoustics, Budapest,
Budapest, Vol. 3, pp. 65-69. Akadémiai Kiad6.

Sankoff, D. (1972). Matching sequences under deletion-
insertion constraints. Proceedings of the Natural Academy
of Sciences of the U.S.A., 69, 4-6.

Vintsyuk, T. K. (1968). Speech discrimination by dynamic pro-
gramming. Cybernetics, 4(1), 52-57. Russian Kibernetika
4(1):81-88 (1968).

Viterbi, A.J. (1967). Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. /EEE Trans-
actions on Information Theory, IT-13(2), 260-269.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string
correction problem. Journal of the Association for Computing
Machinery, 21, 168-173.

Witten, I. H. and Frank, E. (2005). Data Mining:: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann.
2nd ed.

