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ABSTRACT

How a physical system may be understood is
discussed informally by analyzing a puzzle called "Rubik's
Cube."™ This understanding, when formalized, may take the
form of a2 scientific theory in which invariants and
mathematical models describe the properties of the system.

Questions of viewpoint and elegance are seen to
have primary importance in the creation of these theories.
Any mode of thought implicitly makes assumptions and focuses
on only some parts of the problenm; therefore, a full
understanding requires the ability to sift perspectives. The
most wuseful and beautiful way of thinking about the Cube
turns out to be the most elegant.

The specific aspects of the NxNxN Cube studied are
the number of possible pcsitions, the relation between

positions and move sequences, and matrix representations of
the Cube.

Thesis Supervisor: Dr. Daniel J. Kleitman
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Preface

One fateful day during the winter of 1979, I
stopped in to a games store and bought a cute-looking little
puzzle. This may have been a mistake, since I then spent
days- no, months- poring over the thing. About a year
later, when I thought I had essentially figured out how it
worked, I was asked to pick a topiec for my wundergraduate
physics thesis. Since I had already spent more time playing
with the Cube than on any two courses, essentially creating
my own self-contained scientific theory (complete with
hunches, wrong guesses, fundamental laws and all the rest),
this "puzzleﬁ seemed to be the perfect choice.

The tricky part was finding a +thesis advisor.
After some legwork and about fifteen explanations of my
idea, I finally found someone who answered " Sure. Sounds
like fun."

Hence this paper.
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I, Definitions
- Physics

What is "physies?" One dictionary said it 'was "a
Science that deals with matter and energy and their
interactions in the fields of mechanics, acoustics, ...",
where "science" was defined as "a knowledge covering general
truths of general laws, especially as obtained and tested
through scientific method." Others might say that physies

is a collection of models describing the universe. Most

undergraduates probably see physics as a problem solving

~ technique.

None of these explanations are wrong, but there is
a simpler one. Physics may be thought of as the study of
systems, the attempt to find the”vantage points from which
the world can be seen. Two points are important. One: the
object of the game of physies 1is Munderstanding."
Problem/solution modes of thought may be ways of attaining
this goal, but are not the end in themselves. Physicists are
not engineers. Two: the key to this understanding lies in
the viewpoint which is chosen. For example, 1looking at a
collection of 100,000,000 interacting particles as a
complicated n-body problem is not very helpful, while
treating the ensemble probabilistically leads to interesting
results,

Now the question becomes one of procedure. How is

;-
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this done? Given a system, which contortion of it will make
it appear simple and intuitive? Well, it depends on the
system. H&wever, there exist some very general and powerful
techniques which are often wused. The ones which will be
discussed here are modeling and invariants.

The most basic way of understanding any system 1is
to find some kind of énalogue. A similar system, one which
Is already familiar and which _shares some essential
characteristics with the original system, should behave in a
similar fashion. This technique of comparing an unknown with
a known 1is very common. For example, in quantum theories,
electrons and photons are sometimes thought of as waves, and
sometimes as pafticles.»Neither is entirely correct, but
some description wusing familiar concepts is necessary to
make any progress at all. Mathematical systems are very
precisely defined, and understood (usually) quite wéll;
therefore, they are a powerful tool for use. in this type of
modeling. Not without reason is mathematics said to be the
flanguage of physics,."

Another way of learning about the properties of a
physical system is to find and study 1its invariants.
Actually, the invariants have to be invented, i.e. variables
must be defined which do not change under transformations
characteristic to the system in question. Strangely enough,
these variables tend to become incredibly important in
understanding what is happening to the system. Moreover,

they start to take on a life of their own. After a while,

/
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the invariants seem to be almost "real," as if they had
‘always been the natural parameters of the system- in spite
of the fact that _they are simply defined quantities with
cértain properties,

Classical mechanics provides a good exampie. The
"total kinetic energy" and the "total momentum"™ of a group
of isolated particles are invariants of that system: Even
though they are Only.two of the thousands of variables which
can be defined on the group of particles, these somehow
descfibe the particles‘in a significant way. Why? Because
the energy and momentum of a system of isolated particles
are invariants of that system; they do not change with time.
Finding analogous invariants in other systems can be crucial
to an understanding of the systems.

After some analogues and invariants are found, the
viewpoint created seems obvious, almost inevitable.
Unfortunately, this is not the case. The chain of reasoning
and guesswork leading to a given theory is never easy to
invent, only easy to follow. Nor is any particular theory
the only description of a given system. Max Plank started a
train of thought with +the then wunexplained black body
spectrum, and ended with quantized energy levels. Today,
looking back, his logic is clear; however, at the time, the
things he did seemed almost magie. He was able to look at
the hroblem in a new way. ‘

This paper will shpw how a particular structure, a

physical/mathematical puzzle called "Rubik's Cube,"™ may be

/
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"understood" by an application of the appropriate

"invariants and models. While simple enough to be at least

FoE o e = e e - L e

partially tréated in a paper of this scope, it 1is
nonetheless complicated enough to allow for a variety of
approaches. The objeet is ﬁo find the particular point'of
view.from which the Cube becomes intuitive, or at least
easily comprehended. Perhaps then a method of conducting

such searches in general will become a little clearer.

= the Cube

Ideally, at this point the reader would be handed
a Cube and told "Here. This is a Cube," Anything more
already starts advocating a particular point of view.
However, since a Cube is unlikely to pop out of this paper,
a description must be given. Right now the perspeétive will
be as impartial as possible.

A "Rubik's Cube,™ henceforth called "the Cube," is
a physical object in the shape of a cube which can be
manipulated so as to assume different positions. In the
initial position, called "start" or "solved,™ each face of
the cube 1s a different solid color. Although the Cube
cannot be easily dismantled, it appears to be made of a
3x3x3 array of smaller cubes, called "cubies" (see fig.1a).
Any plane of nine cubies may be rotated aboﬁt the center
cubie, generating the possible positions of tﬁe Cube. Fig.

1b shows a typical move.
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fig. 1a)
the 3x3x3
Cube

fig. 1Db)

Halfway
through
an "er
move,

Now, what is to be "understood?" That is most of
the problem: defining the problem. At a minimum,. an
understanding of the Cube should include the answers to
questions 1like '"what sequence of moves will take the Cube
from position A to position B," or "how many possible
positions are <there?" Notice that already a point of view
1s being decided upon.

' In order to talk about the transformations and

pieces of the Cube, some descriptive notation must be found.
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.David Singmaster's (see the acknowledgements) seems very

natural and is used almost universally; therefore, it will
be wused first. This notation uses the letters v,D,F,B,R,and

L (whieh are initials for Up, Down, Front, Back, Right, and

Left) to mark the sides of the Cube, instead of colors (see

fig. 1} . The cubies are 1labeled by the colors showing,
using small letters; thus, a typical corner cubie is ufr.
One quarter clockwise rotation, of a Cube side is denoted by
the capitalized letter of the center square on that side.
For example, the move shown in fig 1b _is URM, A
counter-clockwise rotation of the same side is called "R'™,

This notation has assumed quite a bit. No mention
has been made of a central, hidden cubie. If one exists, it
is deemed unimportant. The orientation of the entire Cube
in three space and of the center-face cubies has also been
ignored. Most people who play with the Cube are primarily
interested in T"solving" it, i.e. restoring the original
pattern of solid faces after the Cube has been.randomized by
some unknown series of moves., To solve this problem, nothing
about how the Cube is sitting in -space or how the
face-centers have Dbeen turned matters, ‘80 Singmaster's
notation is a natural choice,

Cubists who think in this way picture the Cube
something like +this: each center-=face sy although it can
rotate, is fixed in space. The only things which move around
on the Cube are edges and corners. Each edge has twelve

places where it can be and two orientations at each place,
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- while each corner has eight places it can be with t€hree

orientations per place (see fig., 2). The plane slices

through the center of the Cube don‘t rotate, instead, two
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fig.‘Z) The ufr corner is turned clockwise and
the fr edge is flipped. Both are still in.
their original locations.

opposite faces can both be rotated in the same direction.

The natural extension of this thinking is ¢to

consider the Cube as a finite group (large, but finite)

generated by the operators U,D,F,B,R, and L. As was stated

before, mathematical analogues are powerful ways to

understand systems, especially systéms which are as simple
and elegant‘ as the Cube. If all the properties of finite
Eroups were completely understood then understanding the
Cube would just bé understanding a specific finite group.
However, this paper does not have to become Just an exercise

in group theory, for there are other profitable ways of

B
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looking at.the Cube. -

| The Cube might be thought of as being more random
if the sides were mixed colors. If this could be quantized,
perhapg the ideas of "entropy" and "temperature”™ might be
applied to describe what the Cube would look like (on the
average ) after a number of arbitrary moves., Or perhaps the
space of all positions could be treated as a network, so
that the minimum moves from position A to position B would
Just be the shortest path connecting the two. Maybe even
some kind of quantum energy levels could be visualized...

The point is that different viewpoints lead to
different ways of understanding. Each point of view will
make the answers to some questions intuitive, but other
questions will appear to be difficult- even though in some
other model, the first questions might be the harder ones .
A group theory approach to the Cube makes "solving™ the Cube
a reasonable problem, but finding the possible positions is
hardly easy in this language.

So, what point of view should be adopted? The one
which makes whatever aspect of the Cube you are studying
obvious., To proceed further, some part of the Cube universe
must be singled out for understanding. Therefore, in the
hext section,_ a specific question will be asked, and an

appropriate perspective will be proposed.
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IT, Positions

How many different positions can the Cube attain?
Why?  What about a 4x4x4 Cube? An NxNxN ? This section will
answer these kinds of questions by finding some of the
invariants of the Cube. The notation introduced in the last
section and the implied viewpoint which focuses on the
colors that can be séen on the exposed sides of the Cube
(from now on referred to as the "S-view," for "side view")
will be the starting language for the discussion, since this

way of looking at the cube seems the most natural.
- the 3x3x3 (S-view)

ﬁs stated previously, the S~view keeps each
center-face cubie in its own cubicle (a spot in space where
a cuble can be), and moves the eight corners and twelve
edges with twelve transformations : R,R',L,L', etc, Notice
that the cubies have been divided into three types: edges,
corners, and center-faces, Looking at the Cube and the
moves, one sees easily that corners remain corners, and
edges are always edges. This fact, that a cubie‘s type never
changes, can be thought of as the first law'of the Cube.

If this law were the only constraint on the
' positions of the edges and corners (the S-view ignores the
face-centers since the stay in the same cubicle and always

show the same «color), then the total number of possible
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“positions would be

(1) (8 3®%)(12! 2'2) = first guess,
' possible positions of
the 3x3x3 S-view Cube

or eight factorial (8x7x6...) permutations of the corners,
times three orientations per corner raised to the eighth
power since there are eight corners, times twelve factorial
permutations of the edges, times two orientations per edge
to the twelfth power (see any combinatoriecs text for details
on counting if that sounded unreasonable). |

However, many of these positions cannot be reached
by any sequence of the twelve basic moves, For.example, the
two corners 1lrt and 1lrb cannot be exchanged (leaving ther
rest of the Cube untouched) without dismantling the Cube.
Why not? Because flippiness, turniness, and parity are
conserved.

"Parity" is a variable which describes whether the
net permutation of the edges and corners is even or odd. A
permutation of a group of objects is said to be "even” if it
takes an even number of 2-element exchanges to get to it,
and M"odd" if it takes an odd number of exchanges. For
example, [2 1 3] is an odd permutation of [1 2 3] because
one switech is required; 1 and 2 swap places. The parity of
the Cube is defined to be 0 if the edge-corner permutations

are even-even or odd-odd, and 1 otherwise.
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At first glance,:this variable may seem worthless
-and artificial; however, it has one important property
which it shares with the other invariants: legal
transformations of the Cube.do not change its value. To see
this, just examine how a typical move permutes the edges and
corners. Using;the numbers 1-8 to represent the corners, the
starting position of the Cube can be thought of as [1 2 3 &
56 7 8l. After one move, four digits have cycled; therefore
the position is something like [2 3 4 1 5 6 7 8]. Getting
this same string by just swapping pairs of . numbers takes
three (or some odd number of) exchanges : [1 2 3 4] to [2 1
4 3] to [2 41 31 to [23 4 1), This means that [2 3 4 15 6
7T 8] is an odd permutation of [1 2 3 45 6 7- 8]. The same
reasoning works on the edges; one move again cycles four
cubies.-

The parity of the Cube's starting position is 0,
siﬁce both the corners and edges are in an even permutation
(initial position). After any one move, the corner and edge
permutations are odd, so the parity is again 0., After n
moves, the permutations are still either both odd (if n is
odd}; or both even (if n is even); therefore, all Cube
positions with parity 1 - half of the positions counted in
equation (1) ~ cannot be reached by legal moves, In
particular, two corners cannot be swapped without changing
the edges. | |

"Turniness" describes the orientations of the

eight corners, regardless of their locations. Every corner
/
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fig. 3)

The three
turniness
values

for the
ufr corner.
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[ [ ]

starts out on the top or bottom of the Cube, so0 every one
has a up side or a down side. The orientation of any corner
is defined to be 0 when the up side (or down side) of the
corner 1is parallel to the U face center, 1lwhen the up (or
down) side aﬁpears to be rotated clockwise one-third of =&
turn away from the 0 position, and 2 when rotated two-thirds
of a turn. Fig. 3 makes this Elear. The turniness of the
Cube is the sum of all eight corner ohientation values, mod

3. Note that the solved position of the Cube has turniness
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0.

Again the question "how does one move affect this
quantity?" is asked. The U and D moves do not change the
relative positions of the u and d center faces and the
corners; therefore, they leave the turniness (and the corner

orientation values) wunchanged. Any of the other four moves

affect the corners in the same way, illustrated in fig. 4. .

As shown, one of the corners on the top of the Cube moves to
the bottom, and the other one on top stays on top. This last
corner changes from orientation 0, 1, or 2 to orientation 1,
2, or 0; 1 is added to the corner‘s value (everything is
done mod 3 here). The corner that moves to the bottom of the
Cube shifts from 0, 1, or 2 to 2, 0, or 1; 2 is added to its
corner orientation value. The bottom two corners act in the
same fashion, so the net change in the turniness is 1+2+14+2,
which is 0 mod 3. Therefore, the turniness is invariant
under legal moves,

The fact that parity was conserved implied that
only half of the positions counted in equation (1) could be
reached. The same reasoning applied to turniness drops the
number of attainable pésitions by a factor of three, leaving
one sixth of the counted permutations still possible.l

| "Flippiness™ is for the edges what turniness was
for the corners. Each edge is assigned an orientation value
of 1 or 0, and then the flippiness is defined to be the sum
of these twelve values, mod 2. The value of every edge is 0
when the Cube is-solved. --Fig. 75 shows how a preferred

/
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ufrs 0 ‘ . ufrs'l
?ﬁg: 8 sum is 0 mod3 ' ¥§g: § sum is 0 mod3
rdb: O - rdb: 2

fig. 4) The change in corner orientation
values after one move.

direction of rotation can be defined on all three planes
which cut through the center of the Cube (right hand rule on
top, front, and right directions), allowing an edge cubie‘s
orientation to be compared with its solved orientation., If
‘the edge's orientation is the same as in the solved
position, then its value is 0; otherwise, the orientation is
défined to be equal to 1.

Once more the effect of a single move is studied.
Consider a pair of opposite edges on the side to be moved.

Before the side is turned, the orientation of the edgés is

/
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fig. 5) Bands defining orientation of edges.
Use right hand rule, with thumb along
u, T, orrrz Edge fr has value O here;

ru has 1,

defined relative to some direction, and after the move the
standard is some new direction., But both edge orientation
values are defined relative to the same direction;
therefore, either both the orientations stay the same after
the move, or both flip. In either case, the flippiness
remains the same, since either 0 or 2 ( which is 0 mod 2) is
added to it for each pair of opposite edges moved. Fig. 6
illustrates this.,

Again a constraint on the number of possible
positions has been found. Since the starting position of the
Cube has flippiness 0 and no legal move can change the value
of the flippiness, ali positions derived from a solid faced
Cube have flippiness 0. This eliminates another half of the
positions counted in equation (1).

These three invariants are the only limitations on

the positions of the corners and the edges, Therefore, the
/
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fig. 6 a)} Two eﬁges and difeétionudefining.orientation.
b} After one move, both edges have the same
orientation or both flip.

true value for the total number of positions is

total number of positions,

(2) 8t 121.37. 210
: 3x3x3 S-view Cube

4.3 x 1019

Later, in the section concerned with solving the
Cube, algorithms for moving to all possible positions will
be given; for now, it will be assumed that any position can

be attained as long as the flippiness, turniness, and parity

§
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are the same in the initial and final position. In other
'words, it is not possible to swap two cubies or  rotate one
cubile in place without disturbing the rest of the Cube.,
Thinking of these three restrictions as consefvatipn laws

leads to a concise summary of this theory:

3x3x3 Cube, S-view (only edges and corners move)
First Law: Cubies may be grouped into
non-interacting types.
Second Law: Any legal sequence of moves
conserves the parity,

turniness, and flippiness of the Cube.

Thé resemblance to a theory of physics is not
coincidental. The object here is to understand which
permutations of the corners and edges are not possible
positions; the object of physies is to understand some
physical system. Of course, the fact that the author is a
student of physies may not be inconsequential.

The next logical step would be to generalize this
theory to the 4x4x4 or even an NxNxN Cube; however, at this
point the S-view runs into problems. First, the U4x4x4 Cube
does not have any fixed cubles, so0 a co-ordinate system
based on the side colors cannot be set up. Second,
intuitively it seems that the two center planes should be
able to rotate without moving the outsides. This will kill

the parity argument as stated, since the "inner" moves cyele

/
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four of the twenty-four edges but do not disturb the outer

.eight corners, What about the new face centers? Should they

be returned to their original orientation when the Cube is
solved, or should they just be on the correct side?

These problems will just get worse if larger size
Cubes afe studied using the S-view. Fixing attention only on
the colors on the outside of the Cube is simply too

Inelegant, Another point of view must be found.
- the NxNxN (O-view)

Think of the 3x3%x3 Cube as an array of 27
identical cubies, each a solid cube, Only the outside faces
show, but ali have colors on six sides, just as the solved
Cube does. One cubie, in the exact center of the Cube,
cannot be seen. Fix an x-y-z Cartesian co~ordinate system in
space so that the y axes points "up," the same as the t face
of the Cube in solved position, and the z and x axes align
with the f and r faces, as shown in fig. 7. The Cube will be
considered to be in its "solved" or starting position when
all 27 cubies have their ryt, and f faces along the X,¥, and
Z axes. One legal move consists of a quarter turn of any
plane of the Cube, Note that it is now possible to make g
move which changes the edges without disturbing the corners
by rotating the center plane of +the Cube. This way of
looking at the Cube will be called the O-view, or

orientation view since it focuses attention on the spacial
! .
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+Y

+X

fig. 7) The 3x3x3 O-view Cube

orientations of the cubies.

What constitutes a "position" has been redefined,
so of course the number of possible positions has changed.
In particular, changing the spatial orientation of the
entire Cube or rotating any of the center faces will not
change the colors on the outside of the Cube; therefore,
all these different O-positions correspoqd to a single
S-position. A new theory of positions 1is needed. However,
rather than modifying the existing 3x3x3 S«vieﬁ theory, a
more general theory of the NxNxN Cube will be built up from
the basies. The 3x3x3 will then be just a special case,

The approach will be recursive=- assume the
(N-2)x(N-2)x(N-2) Cube is understood, then do the NxNxN by
adding another layerlof cubies on the outside. Note thét the

next layer of cubies inside an odd Cube is also odd;
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therefore, the Cube inside the NxNxN is not the
C(N-T)x(N=1)x(N=1).,

As before, the first order of business 1is to
Separate the cubies into different types. A more precise
dgfinifion of "type" is required than the handwaving of the
last section. Any group of cubies will be said to be of the
same type if they can be moved to each other's cubicles, For
the 3x3x3, this implies that there are exactly 4 types of
cubies: 1 central cubie, 6 center face cubies, 8 corners,
and 12 edges. Notice that adding another layer of cubies on
the outside to make a 5x5x5 will create some new types
(another kind of corner, for example), but does not affect
the inner types.

Thé natural approach would be to find out how many
different types of cubies there are on the outside layer of
an NxNxN Cube, and to examine how each behaves. An
appropriate invariant might be defined on each type, as on
the 3x3x3%s edges and corners (for a geometric version of
this procedure on a Tx7x7, see fig. 8). After all this work,
an Intriguing pattern would emérge: each cuble type either
acts 1like one of those already seen on the 3x3x3, or
contains exactly 24 cubies, each with a single orientation
per cubicle. Remember, the corners and edges of the 3x3x3
had two and three orientations per location; why now only a
single orientation?

Consider a single solid cubie sitting in 3-space.

There are 24 ways this cubie can be oriented relative to a

;
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fixed set of Cartesian co-~ordinates (any one of 6 faces

'along the +z axis, then one of Y4 faces along the +x). Now

put that cubie inside a larger Cube, and notice that it will
8till have 24 possible spatial orientations. And, each of
these ;orientations will always correspond to the same
cubicle. Rather than visualizing one move as a rotation of a
slice of the Cube, look from the cubie‘s point of view. As
far as it can tell, the entire Cube is rotating. This
perspective makes the argument easy to follow.

Corner cubies have 8 possible locations each, and
3 orientations per location, or 8 x 3 = 24 total possible
orientations. 3x3x3 edge cubies have 12 possible 1locations
and 2 orientations per, or 12 x 2 = 28 total possible
orientations. Center face cubies have 6 possible 1locations
and 4 orientations per, or 6 x 4 = 24 total possible
orientations. By now it is not too hard to see why a type
which has 24 cubies only allows 1 orientation per cubicle,

The reason for turning to the O-view of the Cube
is becoming c¢learer. In this viewpoint, the "orientation"
of a cubie will always refer to one of its 21 possible
alignments with the xyz axes. This orientation determines
the position of the cubie on the Cube uniquely, given its
type. Usually, people unconsciously make a distinection
between the location of a cubie on the Cube and its
“orientation" in that cubicle. Given the prevalent S-view of
the Cube, this distinction 1s understandable; however, it is

actually misleading and inelegant.

rer—.
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Before continuing, some new terminology is
.required. The cubies added to an NxNxN Cube to get an
(N+2)x(N+2)x(N+2) Cube will be called the N+2 "layer." Thus
the 5x5x5 Cube <ontains a 1 layer (the single central
cubie), a 3 layer (the 26 cubies visible on the 3x3x3 Cube),
and a 5 layer (the 98 outside cubies). Two types which act
in the same fashion belong to the same "class." "Corner,"
for example, is really a class of cubies, not a type, since
3x3x3 corners and 5x5x5 corners are different types.

All the different classes of cubies on the outer
layer of a T7x7x7 Cube are shown in fig. 8.'Adding more
layers will not introduce new classes, only more examples of
these., Once the properties of each'class-are understood, the
number of types of each class on the N layer can be counted,
and the number of positions of each type multiplied
together. Then, after considering constraints like parity
and including the different positions the inner 1layers ecan
attain, the total number of possible positions of the NxNxN

Cube will have been found,
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Just eight classes are enough to capture all the

.cubie types on an NxNxN Cube. The first is the 1x1x1
"central" cubie found in the center of all odd Cubes. This
1s the only class not displayed in fig. 8. A central cubie
always remains in the same cubicle, where it has 24
orientations. The second class 1is "corner,” which has
already been seen on the.3x3x3 Cube. Every layer except the
1 layer has exactly one corner type, with 8 cubies and 3
orientations per cubicle. Edges come in two classes,
"single™ and TM"double." If a type has 12 cubies, each
located in the middle of an edge on an odd layer; then it is
a "single edge." Any single edge cubie (like the ones on the
3x3x3) has 2 orientations per cubicle. Other edge types are
"double edges," having 2 of their 24 cubies on the same

edge, 7

Types with 24 different cubies are marked with

arrows in fig. 8, to illustrate that only one orientation is
possible per location. No sequence of moves will change the
the arrows, which may be thought of as invariants

constraining the possible orientations. |

The only classes left are those on the faces. In

the middle of every face on an odd layer is a "center face“
éubie, as on the 3x3x3. Each type has 6 cubies, with §
orientations per cubicle. Notice that fixing the orientation
of the central cubie keeps each center face cubie‘in a
single cubicle. The "corner face" and "edge face" c¢lasses

are easily understood; their cubies lie along the diagonals

!
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and central column/files of a face. Each type has 24

‘eubies, 1 orientation per cubicle. The last class 1is the
"half 8 face." This peculiar name is given because at first
glance it seems that 8 cubies on a face should belong to =
single type. Actually, only half of them are one type. These
types also have 2H‘cubies each.

Turniness and flippiness must now be defined
relative to the xyz axes rather than the face centers, but
after this is done the same result found in the last section
applies: each corner and single edge type must conserve
these variables. The central cubie determines the locations
of the face centers. All other types, taken separately, are
free to be in any permutation. Note here how powerful the
O-view is. Each of the new cubies has 24 possible locations,
orientation determines location, and there are 24 different
orientations; therefore, each cubie 1like this has one
orientation per location.

How many types of each class are there on the N
layer? Counting them is straightforward. The only tricky
calculation is computing the number of half 8 face types,
which is shown in fig. 9a. How many permutations for each
class? The number of possible corner and single edge
positions with constant flippiness and turniness has already
been done, The central cubie has 24 positions, and each face
center has one of four orientations in a determined cﬁbicle
given the central cubie’s status. The other types have 24

cubies; therefore, each has 24! permutations. These

/
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number of half 8 types
o in a row
AT/
‘l\- Ao - 'E Y i N/Z -z
4 lsié :
™NJZ13 A
‘.\. T 4
N/ o total =
= (N=2)(N-4)/4
fig. ga) Counting the number of
. half 8 types on the N layer.
fig. 9b) Properties of the eight classes.
number of types number of
positions
class N odd (not 1) N even per type.
corner 1 1 3?-8!
single edge 1 0 211-12!
double edge (N-3)/2 (N=2)/2 24
center face 1 0 46
corner face (N=3)/2 (N-2)/2 241
edge face (N=3)/2 0 241
half 8 face (H=3MN=5)/4 (N=2 ) (N=k) /% 241

characteristics are listed in fig. 9b.

Now that each +type's individual

behavior is

understood, the constraints on the interactions between

typés must be explored. When the 3x3x3 Cube was done, it was
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seen that the parity of the edges and corners had to match.
'The same result holds for the NxNxN, but now the parity of
all the types of cubies must be consistent. Again, the
parity of a type 1is defined as 0 (or “even") if the
permutation of thé cubies is even, and 1 (or "odd") if the
permutation is odd,
| | Let any move which moves the .corners on the N
layer be called an "N-move." The central slice move on an
odd Cube will be called a 1-move. Notice that every move
affects exactly one type of corner or the central cubie, so
the parity of the corners and the central cubie can be used
to define the parity of the entire Cube. The parity of every
other type must agree with the parity of the corners and
central cubie. This 1is the only constraint on the
interactions of the cubie types.
For example, move the center plane of the 3x3x3
one quarter turn. The parity of the central cubie is now 1,
and the parity of the 3-corners is 0 (still in solved
position). Any possible position must have the parity of the
edges consistent with this, i.e. the edge parity must be 1.
| Fihally the point has been reached when all these
results may be put together. Fix all the la&ers below N in
some given pdsition, and keep the parity of the N-corners at
0. For each type on the N-layer, half of the positions
cdunted in fig, O9b are consistent with this (since for every
m, only an -even number m-moves are allowed in moving to a

new position)., Define P(N) to be the number of positions
/
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which the N-layer 'can attain, keeping the inner layers

" fixed. One half of these keep the N-corner parity at 0, so

(3) P(N)/2 = l L (1/2 number of positions
types on for each type)
N layer

= 24/2 if N=1

= (37 81/2) (211, 12!/2)(J,Js/z)(24!/2)3_(N-3)/2+(1\;_,3)(1‘4_5)/1\L
if N odd, # 1

= (37 81 /2) (2h1 o) 2 N2)/2H (N-2) (N-4) /4

if N even

and the total number of positions of the NxNxN Cube, defined
to be T(N), is |

(4) T(N) = [ P{i) for an.odd.Cube
i o0dd N

(For N even, product is over even values of i.)
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Subbing in and collecting terms gives

(5) | a

In T(n) = In24 +[(N-1)/2}1n(81121372%})
R |
* ?Ei (1-3) (i-1)|-1n(2kt/2)
- i= m .
odd if N is odd, and
N
= (N-2)<1n(8137) + |33 (i-2)(i+2)/4) In(24i/2)
1=2 ‘ ‘
. even _
iL : if N is even. -

| 5,
T(Nogq) = 2”(8:12:2213?){N"1)/2 (242/2)(N 3N+12) /20

- 3
2N )= (8137) V2 (gyy pp) (VNI /24

even

The summations can be done by fitting a cubic to the
function sum=f(N)., There is an easier way to understand the
basics of this formula, though. All the classes of types of
cubies (whew!) divide into three sets:-a) the central cubie,
b) the corners, single edges, and center faces, and c) all
types having 24 cubies. An odd NxNxN Cube contains exactly 1
central cubie, and (N-1)/2 types of corners, center faces,
- and single edges. That accounts for 1+(8+6+12)(N~1)/2 of the
cubies; all the other types have 24 cubies, so there must be
[ N%%3 = (1+413%(N-1))1/2% of them. But this last expression
is just (N¥¥3 _ 13N + 12)/24, which is the exponent on the

/
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last ﬁerm in (5). So T(N) is just the product of the nuhber
-of positions of each type, eaéh with an exponent counting
how may of that type there are.

' Collecting terms of the same order, T(N) can be

re=-written as

(6) | .
. - -
T(Nogq) = 24(8!12!22137)_'1/2(24!/2)1/2

L3
L=

- ~ N
. r(g:12122137)1/2(24!/2)-13/24'1

3

it

- [hawr 2yt
N N2
= (44.9)(0.0561) (9,52)
| 1/2 al/é Nro 1/2# N
(N, )" [(8!37) (241/2) ] .[(24:/2) ]

3
= (1.18)9.52)N

For largé N, T(N) is about 9,5¥%(N¥%¥3); g particularly
simple result. This may be interpreted as saying that for
the purposes of counting positions, each cubie on a largé
Cube aects as if it has nearly 10 states, independent from
the rest of the Cube.

Needless to say, this function T(N) gets very big
very fast. Fig. 10 shows a plot of log(T) vs. N. In spite

/
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of the fact that the derived formula for T(N) has a
.different form for odd and even N, the points do lie on a
smooth curve, |

The next problem to be tackled on the road to
ungerséanding the Cube is how to manipulate it into these
different positions. What sequence of moves will take the
Cube from state A to state B? But before ending this
section, it seems appropriate to again sum up the basic laws
on which O-theory of the positions of the Cube rests. Some
of these ideas will continue to be wuseful in the next

perspective on the Cube, '

NxNxN Cube, O=view
(orientation of all cubies noticed)
First Law: Cubies may be grouped into different
types. which interact
only through parity consistency.
Second Law: Flippiness and turniness are conserved.
Third Law: Every cubie has exactly 24 different
orientations,
Fourth Law: Each orientation corresponds

to a unique location.
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The first thing péople ask when they see a Cube is
‘"Can you do it?" Ciearly. a full understanding of the Cube
would enable a person to manipulate the Cube to any possible
position, but this knowledge alone is not enough. As can be
seen from the last section, the more oné learns, the nmore
there is to understand.

Anyone reading this chapter hoping to find a quick
anﬁ dirty way to solve the Cube will probably be
disappointed, Holding a 3x3x3 Cube in your hand and turning
to change the colors is more of an art than a .séience; a
discipline which c¢an only be partly explained., Instead,
some basic principles of transformations will be discussed,
and a few easily explained but inecredibly long algoyithms

will be described, all in the context of group theory.
- Group Theory

In the last chapter, invariants were used to find
tﬁe restrictions on the number of possible positions. A new
problem is being considered now; therefore, the approach
must ©be slightly different. The new point of view will be
group theory, the same mathematical theory that describes
particle phyéics. quantum mechanics, and cosmology.

A mathematical group consists of a set of
elements, wusually called operators, and a binary product.
The elements of the Cube group are the possible positions of

the Cube, and the product AB of two positions A and B is the

7
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position reached after doing first A, and tﬁen B to the
-solved Cube. More precisely stated, if abc...d is a sequence
of moves from the solved position to position A, and mno...p
goes from solved to B, then AB is the position reach after
“the moves abe..dmno...p have been appliéd to the solved
position. On the 3x3x3 S-view Cube group. the twelve
possible single moves  (U,U',D.D',R,R',L,L',F,F'.B,B")
generate the rest of the group. The identity element I is
always the solved position. Note that any element A which
can be described by the move sequence abc...de has an
inverse called A' equal to e'd',..c'b'a!,

Now that the Cube has been modeled as a group. all
the theorems, notions, and language (i.e. the specific world
view) of groﬁp theory works on the Cube. This is exactly the
power of mathematical modeling. The next step 1is to take
some of the useful ideas of group theory, namely subgroﬁps.
permutations and c¢ycles, adjoints, and commutators, and
translate them into forms appropriate for the Cube.

A subgroup is a piecé of a group which 1is closed
and contains the identity. Usually subgroups are found by
fixing attention on a specific feature of the larger group.
Some of the subgroups of the Cube have already been
discussed, but before they were called "types" (to make this
precise requires equivalence classes and mods, but that's
not the point here). The types are essentially independent;
therefore., if these subgroups can be solved indiﬁidually,

the' Cube will be solved. The other interesting subgroups of

'
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the Cube are those elements generated by some smaller than
-complete set of bperators. Singmaster has a nice discussion
of these in his article, _

A permutation group is a set of operators which
move around m objeﬁts in n boxes, Ignoring for a moment the
fact that some cubies have more than one orientation per
cubicle, the different positions are Jjust different
arrangements of cubies in cubicles. An important (here,
anyway) theorem in group theory claims that any permutation
of a finite number of objects can be broken into disjoint
cycles, where a cycle takes n objects and shifts them
sequentially in a circle (a to b's place, b to ¢*s, ... n to
a*s place), This theorem will come in handy later in the
search for useful operators.

Given operators A and B, any operator of the form
BAB' is called an adjoint of A. People who can solve the
Cube usually have a fairly small set of operators which they
know cold, sequences of moves which will change small,
specific parts of the Cube. However, they hardly ever use
exactly these operators, they use their adjoints. Hofstader
talks about this in his article. For example. say Joe has a
sequence of moves (operator A4) which will cycle three
corners on the top of the Cube (those in cubicles ufl, ufr,
and ubr), without disturbing anything else. Assume Joe wants
to cyele two cubies on the top layer and one on the bottom
(ufl, ufr, and dbr cubicles), What he does is 1) move the

one on the bottom to the top with the quarter turn B, then
. ; .
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2) do..the operator A, and finally 3) move the out of place
'slice back via B', This sequence is just an adjoint of A&,
namely BAB',

The last group theory term to be defined _is the
commutator of two elements A and B, by definitidn equal to
ABA'B'. In quantum theory, the non-vanishing commutator of
position and momentum gives rise to the uncertaihty
principle. Here also. the commutator géts much of the
interesting nonintuitive behavior. If the group were Abelian
(or commutative. AB:BA), then ABA'B' would just be AA'BB'=I,
The Cube, however, is not even close to Abelian, so that
even though most of the cubies are restored after ABA'BRY,
not all are. It will turn out that a thorough understanding
of this kindiof idea and a smattering of Cube sense is
enough to solve the NxNxN.

Enough background. On with solving the Cube.
- a 3x3x3 method

The procedure described here to solve the 3x3x3
S-view Cube 1is incredibly slow, but does have a few
interesting features. First, all the operators are
variations on a simple four move commutator. Second, finding
the corner operator requires a trick which can be used quite
generally. Last, and most important, this algorithm isn‘t
too messy to explain.

The recipe contains the following stepsﬁ 1) get

/
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the parity equal to 0; 2) put the edges in the right places:
-.3) orient the edges; 4) pﬁt the corners in the correect -
cubicles; 5) orient the corners. Clearly, when all these
have been done, the Cube will be solved. Each will be taken
in sucéession.

1) is simple; just make any one move if the parity
is 1, and do nothing if the parity ié already 0. If at some
later stagé something goes wrong, reset the parity to 0 and
start again.

2) is done by 3 ecycles on the edges, letting +the
corners move anywhere they ‘will. FR'F'R cycles the three
edges around the ufr corner without moving any other edges,
and FRF'R' cycles 3 edges in = straight line. A single path
conhecting éll the edges can be made using these triangles
and lines. Fig. 11 illustrates these ideas. Put each edge in
its proper cubicle by starting at one end of the path and
working down, moving edges only along the path via the
operators described. This procedure only fails if at the end
two edges need to be exchanged; however, this would mean
that the parity was not 0.

3) is tedious. too. Examine the cohmutator shown
is fig. 11a, FR'F'R. This disturbs only threé edges and four
corners. the ones around the ufr corner. The coﬁmutator of R
and U' (RU'R'U), or of U and F' (UF'U'F) move the same three
edges and four <corners. After all three havé been done in
succession (the sequence [FR'F'RI[RU'R'UILUF'U'F]), all the

cubies have been restored to their original cubicles. but
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fig. 11b)
FR F'R'

[T/

Placing .
the: edges.

three corners are turned and two edges are flipped. The
position 1s shown in fig. 12. To orient the edges. Jjust
apply this routine as often as necessary along the path,
starting at one end and working down as before. Using
adjoints of this operator will probably shorten the required
number of applications.

4} uses the trick mentioned earlier. The idea 1is

/
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b

S[ATT R |2
'\\‘37 f\/ f fig. 12)
& R ?g;/ the orienter
\\/ R
) e

(FR'F'R)(R U'R'U)(U F'U'F)

fairly simple: take any reasonably short sequence of moves
and look at the resulting position as a set of independent
cycles. The theorem of the last section as witness that this
is possible. The length of the cycles may be relatively
prime; if so. repeating the sequence enough will restore
some but not all of the cycles. The result may be that only
a small number of cubies have moved. With luck, a useful
operator has been found. Note that if lcm is the least
common multiple of the cyecle 1lengths, then repeating the
sequence lecm times should restore the Cube,

To apply this to the corners on the 3x3x3, examine
the sequence FRF'R' (fig. 11b). This is one 3-cycle on the
edges and two 2-cycles on the corners (ignoring corner
orientation). Repeating the sequenée three times restores

the edges, disturbing only two pair of corners. Moving the

;
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-_top slice, doing the sequenée of moves another three times,
“and reétoring the top slice gives a 3~-cycle on the corners
ﬁhich does not move anything else. A path, like the one on
the edgés. can be found connecting the corners. Moving

corners along the path using the 3-cycle will then restore

fig. 13a) fig. 13b)
(FR F' R*)> (FR F' R*)JU(FR F* R')7U"

Placing:
the corners.

fig. 13c
a path

each to its proper cubicle, All this is shown in fig. 13.

!
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5) is the last step in this 3x3x3 solution recipe,
.the orientation of the corners. The same operator that
oriented the edges will work again (see fig. 12}, just do it
twice so that it leaves the edges unaffected. This gives a
sequence which turns three corners on the same layer in the
same direction. By turning corners a, b, and ¢ clockwise and
then turning a, b, and d counter-clockwise, ¢ and d can be
turned in opposite directions without affecting anything
else. These operators are enough to orient the corners,

Voilal A procedure for solving the 3x%x3x3 Cube.
However, anyone who actually read through that may not feel
particularly enlightened. Think of it as an existence proof,
not an algorithm to be learned.

A ﬁumber of useful 3x3x3 operators are given 1in
Aé. Caution, however: without a minimum of Cube sense. i.e.
the right point of view, they do not lead directly Eo a
solved Cube. Instead of focusing of the specific move
patterns, recognize where the outlook and important concepts
have been outlined. A Cubist must see a sequence of moves as
an operator, or a "macro" as a programmer might call it. and
believe in commutators, adjoints, and subgroups (even if he
does not use those words to describe them).

Also, notice that there were three operators which
were not searched for: a sequence‘ te swap two cornefs
without disturbing the edges. a single corner orientation
operator, ﬁnd a single edge flipper. Any of these would take

the Cube to impossible positions.

f
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- an NxNxN method

As seen in the last chapter, there are only eight
different classes of cubies on an NxNxN Cube. Most of these
cubies only have a single orientation per cubiecle. If
operators could be found to | manipulate each type
individually, then the NxNxN could be solved in the same way
the 3x3x3 was. At the end of this procedure , an algorithm
would have been found, but not much more would be
.understood. The whole idea sounds tedious.

There is a better way. "Better"™ here means more
general, simpler, easier to understand, and far more
elegant. And.in the final analysis, elegance is the only
true ceriterion which diétinguishes two working viewpoints.
This better way is just a mode of thinking, an outlook which
makes moviné small numbers of cubies intuitive.

The basics of the Cube solving procedure are still
the same: treat each tybe separately. working from the inner
layer to the outer. As each new layer is begun., first set
the parity correctly before proceeding, then orient the six
center faces if ﬁhe layer is odd. The only operator needed
to finish the layer is one which will cyele three cubies of
a given type without disturbing anything else. With a little
skill, the corners and single edges can be oriented as they
are moved 1into the proper cubicles; otherwise, they can be

turned or flipped by the technique shown in fig. 15.

!
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Here 1s how the idea works. Pick three cubies (1,
'2, 3) to be cyecled, 1 and 2 on the same slice S, 3 somewhere
else. Find some sequence of moves A which will swap cubies 1
and 3 without affecting the rest of slice S. A can mess up
the rest of the Cube; so it can be very short- usually Jjust
an adjoint of a slice rotation parallel to S. After doing
A, rotate slice S so that cubie 2 is in ~the cubicle where
cubie 1 started. Reverse A, restoring the scrambled parts of
the Cube and swapping cubies 1 and 3. Finally, move S back
to its original position. The whole sequence is ASA'3', the
commutator of A and S. A simple operator A that randomized.
much of the the Cube has become a 3-cycle;

Fig. 14 shows this trick done on the corners of a
3x3x3 Cube. FDF' takes the ufr corner off the top slice,
without.changing anything else on top. After moving ﬁrb over
with U, FD'F' will restore the bottom slices and put ufr
back on the top slice. The last move is to put the top slice
back with U', Only 3 corners have been moved.

A variation on this technique can be used to flip
two edges or turn ﬁwo corners. by 1) flipping the first
edge, leaving only the slice its on unscrambled, 2) moving
the slice in order to put another edge in flipping position,
3) reversing the flipper routine, and 74) restoring the
slice. Just the same kind of thinking again. David
Singmaster described an operator like this in his "Notes,"
he called it a'"monoflipper." The exact sequence to flip

two edges on the 3x3x3 is given in A2,

£
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fig. 14) a typical commop, the commutator
of an adjoint of D and the move U.

Once this way of thinking about moving cubies
about on the Cube is understood., then solving the NxNxN
becomes intuitive and straightforward, The peint is that

rather memorizing specific move sequences, the ability to
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improvise these "commutator operators" (or "commops" for

'short) should be  cultivated, for therein 1lies true
understanding. Anyone who still wishes to see detailed
algorithms to solve the NxNxN Cube can turn to the Appéndix.
They are too tedious to do here,

This entire section has probably been difficult to
follow. But whenever a new way of thinking is learned this
problem arises., Once the viewpoint is understood, all is
well; however, explaining that mind-set can be very
difficult. This problem of notation will be examined in the
next chapter.

For now, it will be enough to summarize the
notions of this section with another law in "the theory of

the NxNxN O-view Cube.™

NxNxN Cube, O=view
(continued)
Fifth Law: Commutators and adjoints are enough
to manipulate any single type
without disturbing the rest of the Cube.

- How many moves?

When two people who can solve the Cube get
together, often the big question each has for the other is
"How many moves can you do it in?" Many have worked on the

problem; therefore, it will only be mentioned briefly here.
) ,
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For more Information, see David Singmaster‘s "Notes" or
'Douglas Hofstader®s article. |

How can this problem be conceptualized? Imagine
that the set of possible positions are points in space, and
- that positions one move apart are connected by a line. "How
many moves?" questions involve trying to recognizably define
a metric on this network. The distance between two points
can be defined as the length of the shortest path between
them, but how can this information be obtained from the two
Cube positions? No one has as yet fully answered this
question. '

An upper bound can be given for the distance
| "across™ the network by considering the worst-case length of
algorithms ﬁhat solve the Cube, since in that number of
moves any two points can be connected. The fastest solutions
of the 3x3x3 S-view Cube take about 80 moves; therefore,.the
procedure outlined a few sections back, which could take
nearly 1000 moves to finish, does not exactly find a
straight path. Perhaps it should Se mentioned here again
that one S-view move consists of a quarter turn on an
outside face on the Cube. Not everyone defines a single move
in this way, so care must be taken to avoid confusion.

A lower bound on the size of the network is found
by a simple calculation described by Douglas Hofstader.
Starting at any point in the network, one move will reach
twelve new points, since there are twelve possible moves.

Each of these has eleven more (one move from each position

;
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goes backward to start) possibly new points another move
away, and so on outward. The "édge" of the network will not
be reached until, after some number M of moves, fhe' number
of points counted exceeds the total possible number of
positions; therefore, positions must exist which are at

least M moves apart. Doing the math gives

(7) 1+ 12 + 12-11 + 124112 4, .+ 12.11M1a 4,3 1019

11 = (5/6). 4.3.101°

MX 1n(3.6-107%) /In(11) = 18.8

M= 19

On the NxNxN O view Cube, one move is a quarter
turn of any slice. Since there are N slices in each of
three directions, the number of different single moves' is
6N. The total number of possible positions, T(N), is still

known, so M{N), the same lower bound found above, can again
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be calculated,

(8) 1+ 6N + 6N-(6N-1} +...+ 6N-(6N—1)M(N)‘1e T {N)

3N-1

M(N)2= 1In T(N)- N

/ 1In(6N-1)

3
but T(N):::loN for big N, so

,
M{N)2 1n (10" )/ 1n(6N)

d.N3

some sample values

N T(3) M(N)

3 2.1-102% 20

5 5.,6110117 81

10 2,5:10979 554

100 3.6-109'8'1Os 352, 422

Solving the NxNxN using commops requires about eight moves
to orient each cubie, so the maximum number of moves for the
entire procedure 1s of the order 10%#N%¥#¥3 (ten to the n
cubed) or so. M(N), the minimum bound on the network, is
also nearly proportional to N¥¥3 for large N. Caught between
these two, the true maximum number of moves separating two
pésitions must, likewise, grow as the number of cubies. This
is important enough to be another law in the Theory of the

NxNxN Cube.
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The NxNxN Cube, O-view
(continued)
Sixth Law: The size of the space of all
possible positions grows as

the number of cubies.

All of.these solution methods have a fatal flaw.
Each aims at subgoals short of a complete solution. None of
these "stopping points"™ need to lie anywhere near the
initial and final position; therefore, a soiution which
passes through them is 2 loné, windy path. There must exist,
though, a nearly straight path.

Cubists call this shortest sequence "God's
Algorithm." So far, He has kept it to himself, and He alone
knows whether or not its complexity falls in side the human
sphere of comprehension. Can even a human/computer team map
the wilderness of this Cube network?

| Maybe tomorrow some inspired addict will invent a
simple, 'elegant scheme to describe the metric on the space
of possible positions, and the long search will be over.

But then again- maybe not.
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IV, Representations

- Anyone attempting to understand the Cube must find
a way to record his work, a language to write and think in.
A- repfesentation of the Cube 1in English is unthinkable.
- English is only truly suited for politics. So far, the only
notation that has been wused in this paper has been
Singmaster’s : writing a string of letters to represent a
sequence of moves. While this is enough when discussing'
algorithms, it still does not represent the Cube itself. In
particular, given two sequences of moves, the only way %o
tell if they result in the same.position is to actually do
them out and then compare the two Cubes. These two strings,

for instance, get to the same Cube position.

(9)
a) RU' B2 un2uRglyp Ry

2

b) (.U F' U' F¥ R' F* R y' R* U )7

-Both of these arrive at the same position.

In this chapter, two true representations of the
Cube will be presented. Matrices and vectors will be the
format of these representations since they are familiar
non-Abelian structures which can stqre -a great deal of
information, All the properties which have been derived 1in

this paper can be seen in these mathematical languages, for



Representations Page 60

everything that the Cube does, they do also. In addition,

‘any computer program which works on the Cube could well use

one of these formats. Each is just another way of looking at

the Cube.
f3x3x3 Cube
The S-view of the 3x3x3 Cube notices only the

locations and orientations of the eight corners and twelve

edges. A straightforward way to represent this information

1s simply to wuse a twenty place column vector. where each

slot in the vector is a cubicle, the numbers 1- 20 stand for
the cubies, and factors of e to some imaginary power
represent the orientation. The twelve possible moves can be
written as 20x20 matrices which move the numbers in the

vector around and multiply them by the appropriate

Y LA L PPT R 8 RR N W A Yo% T e th— o w4
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orientation factor. Doing the move U looks like this:

(10)
01000000000000000C0CQ0O0 1
001000000000000C00C0CO0COQC 2
000100000000000C00C0QO0OO 3
100000000000000006000 L
0O0001000000C0O0000ODOCODODO 5
000001 000000C00000CO0O00D 6
0000001 0000000000000O0 7
0000000C1000C00000C0O00O00 8
0000000001 0000Q000O0O0CODO 9
CO0O0O000CGC0O00-1 CO0C0OO0O0O0O0CDO 10
000000000001 0000000CO0C}! * |1t
000000001 000C0D00C0O0CO0O0DO0 12
0000000000001 0000000¢OC i3
co0QC0000CO00C0O0001 000000 14
00000000C0C00O0C0D0D1O0CO0DO0O00O 15
000000000000 0001000090 16
000000000000000D01O0O0CO0 17
0000000600000 000CO0DO01O0CO 18
0000000C000C0O00D0CO0OO0DO0CO0O1 O 19
LO 00000000 0C000C00C0O0O00O01 20

Now the Cube has been reduced to a vector which
can be transforméd by multiplying it by one of twelve
matrices. The matrices are not very nice, but at least the
entire system 1is imbedded inside a mathematical system.
Unfortunately, understanding the Cube is not made
particulariy easier by this translation. Nor is it

particularly elegant. But then, the S-view never was.

- the NxNxN Cube

Label the cubicles on the NxNxN Cube with - vectors

i/
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from the origin of the xyz co-ordinate system. Rather than
.specifying explicitly which cubie is in a given cubicle, the
O-view notices the orientation in three space of whichever
cubie is in the cubicle.  The 24 possible values of the
orientation are just the stmetries of a solid cube, which
is called the cube group (not the Rubik‘s Cube group, a
Platonic solid type cube). 3x3 rotation matrices may be
used to write down the 24 elements of the cube group (these
matrices are listed in A3).

Each position will be represented by a function
whose domain is the set of cubicles, and whose range is the
24 element cube group. The Cube has now become a large set
of matrix valued functions of vectors. Structures like this
are usually called tensor fields, and are found throughout
physics. The electromagnetic stress tensor is one,_for
example.

The S-view representation made a distinction
between positions and operators on positions; this O-view
does not. The 6N single moves are just the same as the 6N
positions closest to the solved position. Every position can
be thought of as an operator. Given two positions A and B,

the position resulting from doing first A and then B is

-
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This needs a bit of expléining. "Y" is a column _veotﬁr
'representing a particular cubie. B' 1is, as always, the
inverse of B, B'(V)*¥, the product of a 3x3 matrix and a 3x1
column vector, is a vector representing the cubicle which
the cﬁbie now in v was in before B was done. Therefore, the
entire formula is the product of two rotation matrices
describing the orientation of the particular cubie that ends
up at ?.

While +this may seem amazingly roundabout and
complicated, 1t is actually reasonably elegant. Every cubie
'is treated in exactly the same way, and the location of each
is readily available. A position which cannot be reached by
legal moves can be described as easily as a legal position.
And, nowheré is 1t necessary to create matrices of
indeterminate size.

Further work on this representation is outside-the
scope of this paper, but an approach along these lines might

yield some interesting results.



Conelusion Page 64

V. Conclusions

Around the turn of the century, a man named Albert
Einstein developed a theory deseribing the interaction of
time and space and the speed of light. His understanding of
these concepts was particularly elegant and simple because
he was able to think inside an unorthodox but peculiarly
appropriate framework of assumptions,

The Cube may not be as profound as kelativity. but
trying to figure it out is a lot of fun. Almost as much fun
as iearning physiecs, and for essentially the same reason:
elegance. Elegance is the quality of being fundamentally
simple, yet decidedly non-trivial. Most mathematicians and
many physiciéts thrive on elegance.

The trick to figuring out any system is finding
ways of thinking which make it intuitive., Different aspécts
of the system may even require different viewpoints.
Mechanics. for instance. 1Is usually done within Newton's
frame of reference when treating speeds much 1less than ¢,
and according to Einstein when the speed is near c. In the
same way, the S-view aﬁ the O-view treat different regimes
of the Cube. |

Inside or even defining a point of view,
invariants and models are important tools in developing an
understanding. This is hardly news; people have used them
for éenturies. Nevertheless, these techniques are so

fundamental that an illustration can be helpful. The purpose

!
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~of this paper has been to present the Cube as such an
illustration. |

The big question is how these viewpoints and
what-not can be found. Answer: inspiration, Searching for
general principles helps, too. Most of +the laws in the
BTheory of the NxNxN O-view Cube™ were found empirically,
and only later wunderstood within a formal system. The
procedure cannot be defined more precisely than this; too
much of creating science is art.

But one guiding principle in the quest for
comprehension stands out. Strive for elegance. A theory that
is too messy is bound to be wrong. The facts are important
too, but by themselves do not impart wisdom. Understanding
means finding a nice, simple theory that explains what is
going on, It means elegance.

Simplicity and elegance.
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adjoint:
algorithm:

class:
commop:

corner:

Cube, the:

cube group:

cubicle:

cubie:

edge:
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Glossary

If & and B are operators, ABA' is an
adjoint of B. (A' is A-inverse.)

In_this paper, a sequence of moves which
adclomplishes some well defined task.
Two cubie types belong to the same class
if they are essentially the same. See
fig. 8 for the basic classes.

An operator made from adjoints and
commutators. See appendix A2.

A class of cubies. See fig., 8.

What this paper is about. An array of
smaller cubies which can be moved about
by rotating planes of the Cube. The
3x3x3 version 1is so0ld in stores uﬁder
the name "Rubik's Cube™ or the M"Magic
Cube. ™

A structure of group theory. The group
has 24 elements which represent the
symmetries of a solid cube. See any good
group theory text

The place in space where a éubie lives.

One of the smaller cubes that make up

_the Cube (see fig.1). On the 3x3x3 they

are labeled by their exposed colors.

On the 3x3x3, the type of cubie with two

!
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elegance:

face:

God:
God's Algorithm:

group theory:

half 8 face:

invariant:
 kluge:
layerf

location:

M(N):

move:

A quarter rotation of any plane

page 67
faces showing. Otherwise, the normal

"~ edge of any cube.
The quality df being fundamentally

slmple yet <decidedly non=trivial., See
"God,."
The outside flat part of a cube.

"The simplest of all." (see  the

dedication)

The shortest sequence of moves between
any two positions.

A set of mathematical = structures
satisfying a certain group of
restrictions (ha ha). Check your 1local
math text for more detail.

A class of cubies. See fig. 8.

Any wvariable which remains wunchanged

under transformations of the system.

The quality of being decidedly
inelegant.

The cubies showing on the outside of an
NxNxN Cube are the N-layer.

A place in space. See "cubicle."

A lower bound on the size of the Cube
network. See equation (8).

of the
Cube., In the S-view, the center planes

do not nmove.
f{
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network:

O-view:

operator:

orientations;

parity:

physics:

position:

possible position:
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In this paper, the topological space
created by assigning a point in space to
every possible position of the Cube, and
connecting points separated by a single
move by a line,

Pictures the Cube as N cubed cubies,
each with one of 24 orientations. All
moves and positions are defined relative
to an absolute space.

A term borrowed from group theory. Here
it refers to a sequence of mbves.

In the S-view, the ways that a cubie can
fit into a2 given cubicle. In the O-view,
an element of the cube symmetry group
(see A3),

Describes whether an even or odd number
of moves have been done to a given
layer.

The attempt to understand 1'real world"
systems, i.e. the Universe, the
sub-atomic world, and what lies in
between. |

A state of the Cube. Defined differently
for S- and O-views. See the Positions
chapter

A position that can be reached by a

sequence of legal moves, starting at the
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"representation:

S—view:

~single edge:
slice:
solution:

T(N):

thesis:

turniness:
type:

6nderstanding:
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solved position.

A mathematical structure that has the
same properties as the system in
question,

A way qf looking at the Cube_which only
notices the colors on the outside faces.
It‘ is especially used in the context of
the edges and corners of the 3x3x3 Cube.
A class of cubies. See fig, 8.

A plane of the Cube,

A string of moves which will take the
Cube from 1its current position to the
solved position.

The total number of possible positions
for an NxNxN Cube (O-view).

Defined by example: this paper 1is a
thesis. (Who says self-reference doesn*t
work?)

An invariant defined on the corners of
any layver,

Two cubies are of the same type if they
can be moved into each other‘s cubicles.
To have some notion of the what and the

why.
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A1, the Theory of the NxNxN O-view Cube

Law:

Law:

Law:

Law:

Law:

Law:

Cubies may be grouped into
different types which interact
through parity consistency.
Flippiness and turniness are
conserved,

Every cubie has exactly 24
orientations,

Every orientation corresponds
to a unigque location.
Commutators and adjoints are
enough to manipulate any given
type without disturbing the
rest of tﬁe Cube.

The size of the space of all
possible positions is proportional

to the number of cubies,.
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A2. sample commops

Notation: The positive rotation direction 1is defined as
shown, [ 3x 1 stands for a quarter turn of the plane x=3
(each cubie has size one). Periods are used to seperate
moves. [ 1y.1y ] may be shortened to [ y" '], The inverse of
[ -z 1 is [ -z' 1. Only the cubies marked are affected.

Note that the central cubie always stays in the

same cubicle, and may be oriented by the 0x, Oy, and 0z

moves,
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A2

corner

(xe=zZox") iz . (xXu=z'. '), 2"
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A2

(x.-z".x').(y'.—z".y).z.(y'.-z".yj.(x.-z".x').z'
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A2

single edge

l(ox.—“z‘.ox‘).1Z.<OX.—1Z.0X')-12'
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A2

(y'.Oz.y".Oz".y').z'.(y.Oz".y".Oz'.y).z
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A2

double edge

NN
AN

1=2-2>3->1

Use the same sequence shown for the single edges.



A2

[
A

YN
Zxﬁﬁ-\/\?
\

A

center face

2\

(Y.-y-xlc-y'oY')-OZ-(Yo—y-x.'Y'-Y')-OZ'

page 77
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A2

corner face

1-2->3 1

~2y'.-2z.~2y) .3z

.=2y).3z.(

("‘EYE .-227
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A2

edge face

123 —=1

0x1).321.(0x.-12.0x') .3z

(0X.—1Z'
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A2

half 8 face

12531

(-1y'.-2z.-1y).32'.(-1y'.-22'.-1y) .3z
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A3. the 28 element cube group

These matrices represent the 24 possible
orientations of a so0lid cube in 3-D space. Each is a
roctation about one of the three symmetry axes, corner, edge

center, or face center, Any vector pointing along the
| rotation axis of a particular operator is an eigen-vector of
that operator. The determination of which axis corresponds

to which matrix has been left as an exercise for the reader.
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A3

0 0 -1

0 0 -1

-1
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A3

-1

-1

=1

0 0 -1

-1

0 0 -1
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A3

-1

-1

-1

0 -1

=1

0 0

-1

0 0 -1

-1

=1

-1

-1

0 O
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finis



