When rolling two six sided dice, the possible outcomes (each with probability 1/36) are : rolls total odds --------------------------------------------------------------- (1,1) 2 1/36 (1,2), (2,1) 3 2/36 (1,3), (2,2), (3,1) 4 3/36 (1,4), (2,3), (3,2), (4,1) 5 4/36 (1,5), (2,4), (3,3), (4,2), (5,1) 6 5/36 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 6/36 (2,6), (3,5), (4,4), (5,3), (6,2) 8 5/36 (3,6), (4,5), (5,4), (6,3) 9 4/36 (4,6), (5,4), (6,4) 10 3/36 (5,6), (6,5) 11 2/36 (6,6) 12 1/36 Craps rules: 1st roll: 7, 11 wins 2, 3, 12 loses 4, 5,6, 8, 9, 10 sets "point" following rolls: point wins 7 loses anything else continues So the ways to win with their probabilities are : --- way to win -------------- odds -------------------- 7 on roll 1 : 6/36 11 on roll 1 : 2/36 4 on roll 1 & (not 4, not 7) for n rolls & 4 on roll n+2 3/36 * (27/36)**n * 3/36 5 on roll 1 & (not 5, not 7) for n rolls & 5 on roll n+2 4/36 * (26/36)**n * 4/36 6 on roll 1 & (not 6, not 7) for n rolls & 6 on roll n+2 5/36 * (25/36)**n * 5/36 8 on roll 1 & (not 8, not 7) for n rolls & 8 on roll n+2 5/36 * (25/36)**n * 5/36 9 on roll 1 & (not 5, not 7) for n rolls & 9 on roll n+2 4/36 * (26/36)**n * 4/36 10 on roll 1 & (not 10, not 7) for n rolls & 10 on roll n+2 3/36 * (27/36)**n * 3/36 For all the continued rolls, for the total probability we need to sum a series like (1 + x + x**2 + x**3 + ...) which we can derive from the following trick: S = 1 + x + x**2 + x**3 + ... + x**N x*S = x + x**2 + x**3 + ... + x**N + x**(N+1) ---------------------------------- S*(1-x) = (1 - x**(N+1)) so S = (1 - x**(N+1)) / (1 - x) For an infinte sum, this becomes just S = 1/(1-x). So the total probability of winning is 6/36 + 2/36 + (3/36)**2 * 1/(1 - 27/36) + (4/36)**2 * 1/(1 - 26/36) + (5/36)**2 * 1/(1 - 25/36) + (5/36)**2 * 1/(1 - 25/36) + (4/36)**2 * 1/(1 - 26/36) + (3/36)**2 * 1/(1 - 27/36) The complicated terms all simplify nicely, like this: 4/36 * 4/36 * 1/( 36/36 - 26/36) = 4/36 * 4/36 * 1/(10/36) = 4/36 * 4/36 * 36/10 = 4/36 * 4/10 Simplying the last six terms and grouping them gives = 8/36 + 2 * (3/36 * 3/9 + 4/36 * 4/10 + 5/36 * 5/11) = 2 * (1/9 + (1/12 * 1/3) + (1/9 * 2/5) + (5/36 * 5/11)) = 2 * (1/9 + 1/36 + 2/45 + 25/396) = 244/495 = 0.49292929...