1. Show that for any real number c, the graph of $y=x^{4}+4 x+c$ has at most two x-intercepts.
2. A number a is a fixed point of a function f if $f(a)=a$. Show that if $f^{\prime}(x) \neq 1$ for all real numbers, then f has at most one fixed point.
3. Sketch the graph of one function that satisfies all of the given conditions:

$$
\begin{aligned}
& f^{\prime}(3)=f^{\prime}(-2)=0, \\
& f^{\prime}(x)<0 \text { if }-2<x<3, \\
& f^{\prime}(x)>0 \text { if } 3<x<5, \\
& f(x)=-2 \text { if } x>5 \text { or } x<-2, \\
& f^{\prime \prime}(x)<0 \text { if }-2<x<0, \\
& f(x) \text { has an inflection point at }(0,-1), \text { and } \\
& f(x) \text { is continuous everywhere. }
\end{aligned}
$$

4. Graph the function $f(x)=x^{5}-40 x$. Label any maxima, minima, inflection points, and intercepts.
5. Hermione is designing a poster advocating the liberation of house elves. She needs the poster to contain 750 square inches of printing and have margins of 2 inches at the top and bottom and 1 inch at the sides. What dimensions should she have the printed area of the poster be in order to minimize the amount of posterboard needed?
