NSC 562
 DISCRETE MATHEMATICS

FALL 2017

Homework 2

(1) (Exercise 15 from Concrete Mathematics Chapter 4) Euclid numbers are defined by the recurrence

$$
\begin{aligned}
& e_{0}=2 \\
& e_{n}=e_{0} \cdot e_{1} \cdots e_{n-1}+1 \text { for } n \geq 1 .
\end{aligned}
$$

Does every prime occur as a factor of some Euclid number e_{n} ? Explain.
The rest of the problems come from Daniel J. Velleman's How to Prove It.
(2) (Exercise 2 from Introduction) Make some conjectures about the values of n for which $3^{n}-1$ is prime or the values of n for which $3^{n}-2^{n}$ is prime. (You might start by making a table similar to what we did in class, Figure 1 in the book.)
(3) (Exercise 4 from Introduction) Find five consecutive integers that are not prime.
(4) (Exercise 3 from §1.1) Analyze the logical forms of the following statements:
(a) Alice and Bob are not both in the room.
(b) Alice and Bob are both not in the room.
(c) Either Alice or Bob is not in the room.
(d) Neither Alice nor Bob is in the room.
(5) (Exercise 6 from $\S 1.1$) Let S stand for the statement "Steve is happy" and G for the statement "George is happy." What English sentences are represented by the following expressions?
(a) $(S \vee G) \wedge(\neg S \wedge \neg G)$.
(b) $[S \vee(G \wedge \neg S)] \wedge \neg G$.
(c) $S \vee[G \wedge(\neg S \vee \neg G)]$.
(6) (Exercise 2 from §1.2) Make truth tables for the following formulas:
(a) $\neg[P \wedge(Q \vee \neg P)]$.
(b) $(P \vee Q) \wedge(\neg P \vee R)$.
(7) (Exercise 8 from §1.2) Use truth tables to determine which of the following formulas are equivalent to each other:
(a) $(P \wedge Q) \vee(\neg P \wedge \neg Q)$.
(b) $\neg P \wedge Q$.
(c) $(P \vee \neg Q) \wedge(Q \vee \neg P)$.
(d) $\neg(P \vee Q)$.
(e) $(Q \wedge P) \vee \neg P$.

