NSC 562

DISCRETE MATHEMATICS

FALL 2017

Homework 1

(1) Consider the following variation of the Tower of Hanoi: you have as many pegs as you desire, or "infinitely many" pegs, if you like. Again the objective is to transfer the entire tower (consisting of n decreasing disks), moving only one disk at a time and never moving a larger disk on top of a smaller disk.

Let R_{n} be the minimum number of moves it takes to perform this task, starting with n-many disks.
(a) Draw a picture showing the moves required for $n=0, n=1, n=2$, and $n=3$.
(b) Explain in words how this recursive formula describes the method for moving the tower of n-many disks:

$$
\begin{aligned}
& R_{0}=0 \\
& R_{1}=1 \\
& R_{n}=R_{n-1}+2 \text { for } n>1 .
\end{aligned}
$$

(c) Prove by induction that the following is the closed form solution: $R_{n}=2 n-1$, for $n>0$.
(2) Warmup Exercise 1 from Concrete Mathematics.
(3) Warmup Exercise 5 from Concrete Mathematics.
(4) Warmup Exercise 7 from Concrete Mathematics.
(5) Homework Exercise 14 from Concrete Mathematics.

