
Some Minesweeper Configurations

Richard Kaye
School of Mathematics and Statistics

The University of Birmingham
Birmingham

B15 2TT

R.W.Kaye@bham.ac.uk

http://for.mat.bham.ac.uk/R.W.Kaye

13th August 2000

Contents

1 Introduction 1

2 Minesweeper is difficult 2

3 What is NP-completeness about? 2

4 Configurations proving NP-completeness 4

5 Other questions concerning Minesweeper 6

6 Variations on the original Minesweeper game 8

7 Revision history and acknowledgements 8

1 Introduction

In a recent paper in The Mathematical Intelligencer, I prove that Minesweeper
is NP-complete.

The purpose of this particular document is to collect together some interest-
ing configurations I have found in the course of the research leading to the result
mentioned above. I welcome people to email me (at R.W.Kaye@bham.ac.uk)
with their comments, questions, and suggestions. My home page is

http://www.mat.bham.ac.uk/R.W.Kaye/

And my Minesweeper page is

http://www.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

1

http://web.mat.bham.ac.uk/R.W.Kaye/
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

2 2 2 2
2 0 0 2
2 0 0 2
2 2 2 2

Figure 1: Determine the location of all mines.

I will be happy to include any other interesting configurations here, with full
credit, that I receive. For background information, please see my Intelligencer
paper. The Minesweeper Problem is to determine if a given configuration is
consistent (i.e., that there can be real positions of mines that give the position
you see). See my paper for the reason that this really is the right question to be
asking about a Minesweeper configuration and why a good algorithm to solve
it will enable you to play the game better.

In the configurations here, a star, ∗ will be used to denote a mine that has
been identified. A blank denotes an unknown square, and a number denotes
a square that has been cleared. Squares outside the thick black lines should
be thought of as having been cleared, all with zeros. The rules are as for
Minesweeper as provided with Microsoft’s Windows.1

2 Minesweeper is difficult

Figure 1 gives a nice minesweeper puzzle to think about. If you find it easy you
probably are a real minesweeper addict, and are getting to be quite good at the
game. Personally, I can solve it, but don’t consider it to very easy. There are
many variations of this puzzle, such as changing the size of the playing area.
Please email me with other entertaining puzzles like this that you have found
or know about.

In general, it is not easy to tell if a guess is required at a given posi-
tion in the game, or if the whole position can be calculated directly. In Fig-
ure fig:mineswpuz no guess is required, but many players may not spot this fact.
My theorem on minesweeper, that it is NP-complete demonstrates these points
very nively.

3 What is NP-completeness about?

My first observation when playing Minesweeper is that it seems that the whole
of the playing area must be considered when one makes a move (i.e., clears a
square or labels a mine). For example see the configuration in Figure 2. (Real
minesweeper addicts will not find this puzzle at all difficult, but it illustrates
the point.)

1‘Windows’ is a trademark of Microsoft. The author has no connections with Microsoft,
and nothing here should be regarded as comment on any of Microsoft’s products.

2

2 3 ∗ 2 2 ∗ 2 1
∗ ∗ 5 4 ∗ 2

? ∗ ∗ ∗ 4 ∗
∗ 6 6 ∗ ∗ 2
2 ∗ ∗ 5 5 2
1 3 4 ∗ ∗ 4 ∗
0 1 ∗ 4 ∗ 3
0 1 2 ∗ 2 3 ∗ 2

Figure 2: Consider the whole playing area!

The idea that the whole of the playing area must be considered is the reason
why Minesweeper configurations can be difficult, and the main reason why I
originally suspected that Minesweeper is NP-complete.

I don’t know any good mathematical way of proving that ‘to solve some kinds
of minesweeper problems you must consider the whole of the configuration’, but
the theory of NP-completeness comes quite close. No one knows if any NP-
complete problem can be solved efficiently, but most people believe none of
them can.

NP-complete problems all take the form of general problems requiring a
yes/no answer. A rather nice (non-minesweeper) example of such a problem is
the ‘BIN-PACKING’ problem which asks, given n floppy disks each of size x
and m computer files of size y1, y2, y3, . . . , ym, is it possible to copy all of the
files to the floppy disks given? Obviously some times the answer will be ‘yes’,
and sometimes ‘no’. It depends on the numbers n, m, x and y1, . . . , ym. What is
required is an efficient computer program or algorithm that will give the answer
in all cases. (Here and thoughout, I mean ‘efficient’ in the technical sense of
‘running in polynomial time’.)

Obviously problems like this are of great practical importance, and an effi-
cient algorithm would be very useful. Unfortunately no-one has such an algo-
rithm, and many people suspect that there isn’t such an algorithm. In principle,
it would be possible to prove that there is no such algorithm, but again no-one
has managed to do this either. Just about all that we do know is that if any of
the known NP-complete problems has an efficient algorithm, then they all do—
and conversely if one of them can be proved not to have any efficient algorithm
then they all have the same status.

The famous ‘P,NP question’ or ‘P=NP?’ question is just this: to determine
whether any NP-complete problem has an efficient algorithm (in which case
they all would have), or if any NP-complete problem can be proved not to have
an efficient algorithm (in which case none of them would have). This is one of
the biggest and most important open problem in mathematics at the moment,
and is the subject of a $1,000,000 prize offered by the Clay institute in the USA.

There are hugely important reasons why one would want to know the answer
to this question, whatever the answer would be. Even a ‘negative’ answer that P
is not equal to NP would have important practical consequences. In particular,
many codes used on the internet are designed on the basis that a potential code-
breaker would have to find an efficient algorithm for an NP-complete problem
to break the code in reasonable time.

3

· · · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · x 1 x′ x 1 x′ x 1 x′ x 1 x′ x 1 x′ x · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

X −→

Figure 3: A wire.

I showed the ‘consistency problem for minesweeper’ is NP-complete. This
says that to present knowledge there is no algorithm for Minesweeper much
better2 than simply checking all of the 2n or so possible ways the remaining
mines can be distributed around the n uncovered squares.

The diagram in Figure 2 has what I call a single ‘wire’ looping round on
itself. A simpler kind of wire is featured in Figure 3. I came across this idea of
a wire when playing the game (and other people who play minesweeper must
have come across similar things). It was when I started to think about wires
as wires carring a logical signal that I started to ask myself whether it would
be possible to construct logic gates. This turned out to be the way to prove
Minesweeper to be NP-complete.

4 Configurations proving NP-completeness

The way I proved minesweeper is NP-complete is by designing Minesweeper
configurations for ‘logic circuits’, and making a Minesweeper configuration be-
have like a computer. (Experts will recognise that this is a reduction of the
known NP-complete problem SAT to Minesweeper.) For the details, you’ll have
to go to my original paper, but I present a few configurations here as hints for
those people that might like to try to figure out on their own what they do. (As
a bonus, there are some configurations here that don’t appear in the original
paper.) As before, if anyone finds other interesting configurations, please send
them to me, and if I like them I’ll include them in future versions of this article.

Figure 3 gives a wire carrying either TRUE or FALSE, but to start with
there is no real difference between these truth values: we must take a somewhat
arbitrary decision to define which of the two possibilities is to be called ‘true’
and which ‘false’.

The way I define the value in the wire is this. First, give the wire some
orientation (here, going from left to right). Now look at the squares just behind
the central 1’s in the wire. (Behind, meaning with respect to the direction of
the wire which we just fixed once and for all.) If this is a mine, the value is
TRUE else it is FALSE.

Wires can be bent, terminated, or split as Figure 4 and Figure 5 show.
(Figure 4 (b) corrects a minor error in the original paper: thanks to Harry
Hutchinson for pointing this out to me.)

Figure 6 shows a NOT-gate. I’ll leave you to work out how this works.
To change phase, you can use two NOT gates, as Figure 7 shows.

2The phrase ‘much better’ has a technical meaning which I won’t go in to right here

4

1 2 2 1
· · · 1 1 1 2 ∗ ∗ 3 1
· · · 1 x′ x 2 x′ ∗ ∗ 2
· · · 1 1 1 1 2 x ∗ 2

1 2 2 1
1 x′ 1
1 x 1
1 1 1...

...
...

X −→

X
↓

1 1 1
2 ∗ 3 1 1 1 1 1 · · ·
3 ∗ x′ x 1 x′ x 1 · · ·
2 ∗ 3 1 1 1 1 1 · · ·
1 1 1

X −→

(a) (b)

Figure 4: (a) A bent wire. (b) A terminated wire.

...
...

...
1 x 1
1 x′ 1
1 1 1

· · · 1 1 1 1 x 1 1 1 1 · · ·
· · · x′ x 1 x′ 2 x′ 1 x x′ · · ·
· · · 1 1 1 1 x 1 1 1 1 · · ·

1 1 1
1 x′ 1
1 x 1...

...
...

X −→ X′ −→

X
↓

↑
X

Figure 5: A three-way splitter.

1 1 1
· · · 1 1 1 1 1 2 ∗ 2 1 1 1 1 1 · · ·
· · · x′ x 1 x′ x 3 x′ 3 x x′ 1 x x′ · · ·
· · · 1 1 1 1 1 2 ∗ 2 1 1 1 1 1 · · ·

1 1 1

X −→ X′ −→

Figure 6: A not gate.

1 1 2 1 1
· · · 1 1 1 1 1 2 ∗ 3 ∗ 2 1 1 1 1 1 · · ·
· · · x′ x 1 x′ x 3 x′ 5 x 3 x′ x 1 x′ x · · ·
· · · 1 1 1 1 1 2 ∗ 3 ∗ 2 1 1 1 1 1 · · ·

1 1 2 1 1

X −→ X −→

Figure 7: A phase-changer made from two not gates.

5

1 1 1 1 1 1 1 1 1
1 1 1 1 2 ∗ 3 3 ∗ 2 1 2 ∗ 2 1 1 1
u′ u 1 u′ u 3 ∗ ∗ 3 w w′ 3 w 3 w′ w 1
1 1 1 1 1 2 u′ w′ 2 1 1 2 ∗ 2 1 1 1

1 2 3 3 2 2 2 3 2 1
1 1 1 1 3 ∗ u w ∗ 3 ∗ ∗ 2 1
v′ v 1 v′ v ∗ v′ 6 x 4 x′ 6 ∗ 2
1 1 1 1 2 3 ∗ x ∗ 3 ∗ x ∗ 2

2 3 5 3 3 2 x′ 2 1
1 ∗ x′ ∗ 1 1 1 1
2 3 4 2 2 2 x 1
2 ∗ x 1 2 ∗ x′ 2 1
2 ∗ 5 x′ 4 x 5 ∗ 1
1 2 ∗ ∗ 3 ∗ ∗ 2 1

1 2 2 2 2 2 1

U −→

V −→

W −→

Figure 8: An xor gate.

The next configuration, in Figure 8, doesn’t appear in my paper, but de-
scribes an XOR gate. Again, I leave you the fun of working out the details.

The final and most difficult configuration in my Intelligencer article is the
AND gate, and this is reproduced in Figure 9. A full explanation of how it
works is my Intelligencer article, as is some informaion of how to put these
gates together to make up more complicated boolean circuits.

The main difficulties in putting these gadgets together are concern firstly
how to make other standard gates (such as OR, and so on) out of the ones
already found, and secondly how to cross wires over one another. It turns
out that both these problems were well-understood, and I showed how they
can be solved in principle in my article. On the other hand, if one follows
the method prescribed the resulting configurations can be rather large. After
reading my article, Stefan Schwoon sent me (on 5th October 2000) two of his
own configurations that manage to reduce this size quite a lot. They are: an
OR gate (Figure 10); and a way of crossing wires (Figure 11) and are also
reproduced here.

Stefan’s OR gate is substatially smaller than my original AND gate and is
based on a slightly different and simpler method. (I had previously spotted
this sort of trick, and had used it in the write-up to my ‘infinite’ version of
Minesweeper, but I noticed it too late to appear in the original article.)

5 Other questions concerning Minesweeper

The NP-completeness of Minesweeper answers many questions about the game,
including some I have seen posted on the web. For example, it is not true that
if you are playing Minesweeper and are working on a symmetrical configuration
then the final solution will be symmetrical.

Some people have mentioned to me that playing Minesweeper is really about

6

...
...

...
1 1 1 1 2 2 1 1 1 1 1 1 1
1 u′ 1 2 ∗ ∗ 3 2 3 ∗ 2 1 2 ∗ 3 2 1
1 u 1 1 2 4 ∗ s a1 a2 a3 t′ 3 t t′ 3 ∗ ∗ 2

1 2 2 1 1 ∗ ∗ 4 ∗ 3 2 3 ∗ 2 1 1 2 t ∗ 2
2 ∗ u′ 2 2 4 s′ 3 1 1 0 1 1 1 0 0 1 2 2 1
2 ∗ ∗ 3 u u′ s 2 1 1 1 1 1 1 1 1 1 t′ 1 1 1 1 1 · · ·
2 4 5 ∗ 4 ∗ 4 t t′ 1 t t′ 1 t t′ 1 t 2 t 1 t′ t 1 · · ·
2 ∗ ∗ 3 v v′ r 2 1 1 1 1 1 1 1 1 1 t′ 1 1 1 1 1 · · ·
2 ∗ v′ 2 2 4 r′ 3 1 1 0 1 1 1 0 0 1 2 2 1
1 2 2 1 1 ∗ ∗ 4 ∗ 3 2 3 ∗ 2 1 1 2 t ∗ 2

1 v 1 1 2 4 ∗ r b1 b2 b3 t′ 3 t t′ 3 ∗ ∗ 2
1 v′ 1 2 ∗ ∗ 3 2 3 ∗ 2 1 2 ∗ 3 2 1
1 1 1 1 2 2 1 1 1 1 1 1 1...

...
...

U
↓

↑
V

T −→

Figure 9: An and gate.

U
↓

V −→ R −→

1 1 1
1 u′ 1
1 u 1 1 2 3 2 1

1 2 3 2 1 1 ∗ ∗ ∗ 1
1 1 1 2 ∗ u′ ∗ 2 2 3 r′ 3 2 1 1 1
1 v′ v 3 v′ 6 r r′ 1 r 2 r 1 r′ r 1
1 1 1 2 ∗ s ∗ 5 4 3 r′ 2 2 1 1 1

2 4 ∗ ∗ ∗ ∗ ∗ 4 ∗ 1
2 ∗ s′ a1 a2 a3 r ∗ 3 1
2 ∗ ∗ 3 2 3 ∗ ∗ 2
1 2 2 1 1 2 2 1

Figure 10: An or gate

7

U
↓

U
↓

V −→ V −→

1 1 1
1 u′ 1

1 2 3 2 1 1 u 1 1 2 3 2 1
1 ∗ ∗ ∗ 2 2 3 2 1 1 ∗ ∗ ∗ 1

1 1 3 5 v′ 5 4 ∗ u′ ∗ 2 2 3 r′ 3 2 1 1 1
1 v′ v ∗ ∗ ∗ v v′ 6 r r′ 1 r 2 r 1 r′ r 1
1 1 3 4 v′ ∗ ∗ ∗ s ∗ 2 1 1 r′ 1 1 1 1 1

1 ∗ 4 v ∗ 5 3 2 1 0 1 2 2 1
1 2 ∗ 5 ∗ 4 s′ 2 1 1 1 r ∗ 2

1 3 ∗ v′ v s r′ r 2 r′ 5 ∗ 2
2 ∗ 3 2 2 2 1 2 ∗ ∗ 2 1
1 1 1 1 s′ 1 1 2 2 1

1 s 1
1 1 1

Figure 11: A wire crossing

probabilities, not certainties. I agree, but the NP-completeness result shows that
the question ‘what is the probability of a mine in square X?’ is even harder than
solving an NP-complete problem such as the travelling salesman problem!

6 Variations on the original Minesweeper game

There is no reason why Minesweeper need be played on a square grid, and you
will find plenty of other Minesweeper games on other grids avaiable if you look
on the web. I suspect that they are all NP-complete for much the same sorts of
reasons.

I even played a three-dimensional version of Minesweeper once. (This was
particularly fiendish!)

I have recently been working on an ‘infinite’ version of Minesweeper that
is mathematically as complicated as an arbitrary computer, in the same way
that ordinary minesweeper is as complicated as finite logic circuits. A (some-
what technical) paper on this is now available via my Minesweeper web page,
http://www.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

7 Revision history and acknowledgements

Unless stated otherwise, all the configurations and ideas presented here are
my own. (I will continue to credit any future contributions fully here in later
versions of this article.)

This article was originally written and published on the web on 4th August
1999. The article was expanded on 14th August 2000 and revised again on
November 3rd 2000.

8

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

