
Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

1 of 10 4/4/07 10:29 PM

Huffman Coding: A CS2 Assignment
From ASCII Coding to Huffman Coding
Many programming languages use ASCII coding for characters (ASCII stands for American Standard
Code for Information Interchange). Some recent languages, e.g., Java, use UNICODE which, because it
can encode a bigger set of characters, is more useful for languages like Japanese and Chinese which
have a larger set of characters than are used in English.

We'll use ASCII encoding of characters as an example. In ASCII, every character is encoded with the
same number of bits: 8 bits per character. Since there are 256 different values that can be encoded with 8
bits, there are potentially 256 different characters in the ASCII character set. The common characters,
e.g., alphanumeric characters, punctuation, control characters, etc., use only 7 bits; there are 128
different characters that can be encoded with 7 bits. In C++ for example, the type char is divided into
subtypes unsigned-char and (the default signed) char. As we'll see, Huffman coding compresses data by
using fewer bits to encode more frequently occurring characters so that not all characters are encoded
with 8 bits. In Java there are no unsigned types and char values use 16 bits (Unicode compared to
ASCII). Substantial compression results regardless of the character-encoding used by a language or
platform.

A Simple Coding Example

We'll look at how the string "go go gophers" is encoded in ASCII, how we might save bits using a
simpler coding scheme, and how Huffman coding is used to compress the data resulting in still more
savings.

With an ASCII encoding (8 bits per character) the 13 character string "go go gophers" requires 104 bits.
The table below on the left shows how the coding works.

coding a message
ASCII coding 3-bit coding

char ASCII binary
g 103 1100111
o 111 1101111
p 112 1110000
h 104 1101000
e 101 1100101
r 114 1110010
s 115 1110011

space 32 1000000

char code binary
g 0 000
o 1 001
p 2 010
h 3 011
e 4 100
r 5 101
s 6 110

space 7 111

The string "go go gophers" would be written (coded numerically) as 103 111 32 103 111 32 103 111
112 104 101 114 115. Although not easily readable by humans, this would be written as the following
stream of bits (the spaces would not be written, just the 0's and 1's)

1100111 1101111 1100000 1100111 1101111 1000000 1100111 1101111 1110000 1101000 1100101 1110010 1110011

Since there are only eight different characters in "go go gophers", it's possible to use only 3 bits to

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

2 of 10 4/4/07 10:29 PM

encode the different characters. We might, for example, use the encoding in the table on the right above,
though other 3-bit encodings are possible.

Now the string "go go gophers" would be encoded as 0 1 7 0 1 7 0 1 2 3 4 5 6 or, as bits:

000 001 111 000 001 111 000 001 010 011 100 101 110 111

By using three bits per character, the string "go go gophers" uses a total of 39 bits instead of 104 bits.
More bits can be saved if we use fewer than three bits to encode characters like g, o, and space that
occur frequently and more than three bits to encode characters like e, p, h, r, and s that occur less
frequently in "go go gophers". This is the basic idea behind Huffman coding: to use fewer bits for more
frequently occurring characters. We'll see how this is done using a tree that stores characters at the
leaves, and whose root-to-leaf paths provide the bit sequence used to encode the characters.

Towards a Coding Tree

A tree view of the ASCII character set

Using a tree (actually a binary trie,
more on that later) all characters
are stored at the leaves of a
complete tree. In the diagram to the
right, the tree has eight levels
meaning that the root-to-leaf path
always has seven edges. A
left-edge (black in the diagram) is
numbered 0, a right-edge (blue in
the diagram) is numbered 1. The
ASCII code for any character/leaf
is obtained by following the
root-to-leaf path and catening the
0's and 1's. For example, the
character 'a', which has ASCII
value 97 (1100001 in binary), is
shown with root-to-leaf path of
right-right-left-left-left-left-right.

The structure of the tree can be used to determine the coding of any leaf by using the 0/1 edge
convention described. If we use a different tree, we get a different coding. As an example, the tree below
on the right yields the coding shown on the left.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

3 of 10 4/4/07 10:29 PM

char binary
'g' 10
'o' 11
'p' 0100
'h' 0101
'e' 0110
'r' 0111
's' 000
' ' 001

Using this coding, "go go gophers" is encoded (spaces wouldn't appear in the bitstream) as:

10 11 001 10 11 001 10 11 0100 0101 0110 0111 000

This is a total of 37 bits, which saves two bits from the encoding in which each of the 8 characters has a
3-bit encoding that is shown above! The bits are saved by coding frequently occurring characters like 'g'
and 'o' with fewer bits (here two bits) than characters that occur less frequently like 'p', 'h', 'e', and 'r'.

The character-encoding induced by the tree can be used to decode a stream of bits as well as encode a
string into a stream of bits. You can try to decode the following bitstream; the answer with an
explanation follows:

01010110011100100001000101011001110110001101101100000010101 011001110110

To decode the stream, start at the root of the encoding tree, and follow a left-branch for a 0, a right
branch for a 1. When you reach a leaf, write the character stored at the leaf, and start again at the top of
the tree. To start, the bits are 010101100111. This yields left-right-left-right to the letter 'h', followed
(starting again at the root) with left-right-right-left to the letter 'e', followed by left-right-right-right to the
letter 'r'. Continuing until all the bits are processed yields

her sphere goes here

Prefix codes and Huffman Codes

When all characters are stored in leaves, and every interior/(non-leaf) node has two children, the coding
induced by the 0/1 convention outlined above has what is called the prefix property: no bit-sequence
encoding of a character is the prefix of any other bit-sequence encoding. This makes it possible to
decode a bitstream using the coding tree by following root-to-leaf paths. The tree shown above for "go
go gophers" is an optimal tree: there are no other trees with the same characters that use fewer bits to
encode the string "go go gophers". There are other trees that use 37 bits; for example you can simply
swap any sibling nodes and get a different encoding that uses the same number of bits. We need an
algorithm for constructing an optimal tree which in turn yields a minimal per-character
encoding/compression. This algorithm is called Huffman coding, and was invented by D. Huffman in
1952. It is an example of a greedy algorithm.

Huffman Coding
We'll use Huffman's algorithm to construct a tree that is used for data compression. In the previous
section we saw examples of how a stream of bits can be generated from an encoding, e.g., how "go go
gophers" was written as 1011001101100110110100010101100111000. We also saw how the tree can

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

4 of 10 4/4/07 10:29 PM

be used to decode a stream of bits. We'll discuss how to construct the tree here.

We'll assume that each character has an associated weight equal to the number of times the character
occurs in a file, for example. In the "go go gophers" example, the characters 'g' and 'o' have weight 3, the
space has weight 2, and the other characters have weight 1. When compressing a file we'll need to
calculate these weights, we'll ignore this step for now and assume that all character weights have been
calculated. Huffman's algorithm assumes that we're building a single tree from a group (or forest) of
trees. Initially, all the trees have a single node with a character and the character's weight. Trees are
combined by picking two trees, and making a new tree from the two trees. This decreases the number of
trees by one at each step since two trees are combined into one tree. The algorithm is as follows:

Begin with a forest of trees. All trees are one node, with the weight of the tree equal to the weight
of the character in the node. Characters that occur most frequently have the highest weights.
Characters that occur least frequently have the smallest weights.

1.

Repeat this step until there is only one tree:

Choose two trees with the smallest weights, call these trees T1 and T2. Create a new tree whose
root has a weight equal to the sum of the weights T1 + T2 and whose left subtree is T1 and whose
right subtree is T2.

2.

The single tree left after the previous step is an optimal encoding tree.3.

We'll use the string "go go gophers" as an example. Initially we have the forest shown below. The
nodes are shown with a weight/count that represents the number of times the node's character occurs.

We pick two minimal nodes. There are five nodes with the minimal weight of one, it doesn't matter
which two we pick. In a program, the deterministic aspects of the program will dictate which two are
chosen, e.g., the first two in an array, or the elements returned by a priority queue implementation. We
create a new tree whose root is weighted by the sum of the weights chosen. We now have a forest of
seven trees as shown here:

Choosing two minimal trees yields another tree with weight two as shown below. There are now six
trees in the forest of trees that will eventually build an encoding tree.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

5 of 10 4/4/07 10:29 PM

Again we must choose the two trees of minimal weight. The lowest weight is the 'e'-node/tree with
weight equal to one. There are three trees with weight two, we can choose any of these to create a new
tree whose weight will be three.

Now there are two trees with weight equal to two. These are joined into a new tree whose weight is
four. There are four trees left, one whose weight is four and three with a weight of three.

Two minimal (three weight) trees are joined into a tree whose weight is six. In the diagram below we
choose the 'g' and 'o' trees (we could have chosen the 'g' tree and the space-'e' tree or the 'o' tree and the
space-'e' tree.) There are three trees left.

The minimal trees have weights of three and four, these are joined into a tree whose weight is seven
leaving two trees.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

6 of 10 4/4/07 10:29 PM

Finally, the last two trees are joined into a final tree whose weight is thirteen, the sum of the two weights
six and seven. Note that this tree is different from the tree we used to illustrate Huffman coding above,
and the bit patterns for each character are different, but the total number of bits used to encode "go go
gophers" is the same.

The character encoding induced by the last tree is shown below where again, 0 is used for left edges and
1 for right edges.

char binary
'g' 00
'o' 01
'p' 1110
'h' 1101
'e' 101
'r' 1111
's' 1100
' ' 100

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

7 of 10 4/4/07 10:29 PM

The string "go go gophers" would be encoded as shown (with spaces used for easier reading, the spaces
wouldn't appear in the real encoding).

00 01 100 00 01 100 00 01 1110 1101 101 1111 1100

Once again, 37 bits are used to encode "go go gophers". There are several trees that yield an optimal
37-bit encoding of "go go gophers". The tree that actually results from a programmed implementation of
Huffman's algorithm will be the same each time the program is run for the same weights (assuming no
randomness is used in creating the tree).

Why is Huffman Coding Greedy?

Huffman's algorithm is an example of a greedy algorithm. It's called greedy because the two smallest
nodes are chosen at each step, and this local decision results in a globally optimal encoding tree. In
general, greedy algorithms use small-grained, or local minimal/maximal choices to result in a global
minimum/maximum. Making change using U.S. money is another example of a greedy algorithm.

Problem: give change in U.S. coins for any amount (say under $1.00) using the minimal number
of coins.

Solution (assuming coin denominations of $0.25, $0.10, $0.05, and $0.01, called quarters, dimes,
nickels, and pennies, respectively): use the highest-value coin that you can, and give as many of
these as you can. Repeat the process until the correct change is given.

Example: make change for $0.91. Use 3 quarters (the highest coin we can use, and as many as we
can use). This leaves $0.16. To make change use a dime (leaving $0.06), a nickel (leaving $0.01),
and a penny. The total change for $0.91 is three quarters, a dime, a nickel, and a penny. This is a
total of six coins, it is not possible to make change for $0.91 using fewer coins.

The solution/algorithm is greedy because the largest denomination coin is chosen to use at each step, and
as many are used as possible. This locally optimal step leads to a globally optimal solution. Note that the
algorithm does not work with different denominations. For example, if there are no nickels, the
algorithm will make change for $0.31 using one quarter and six pennies, a total of seven coins.
However, it's possible to use three dimes and one penny, a total of four coins. This shows that greedy
algorithms are not always optimal algorithms.

Implementing/Programming Huffman Coding
In this section we'll see the basic programming steps in implementing huffman coding. More details can
be found in the language specific descriptions.

There are two parts to an implementation: a compression program and an uncompression/decompression
program. You need both to have a useful compression utility. We'll assume these are separate programs,
but they share many classes, functions, modules, code or whatever unit-of-programming you're using.
We'll call the program that reads a regular file and produces a compressed file the compression or
huffing program. The program that does the reverse, producing a regular file from a compressed file,
will be called the uncompression or unhuffing program.

The Compression or Huffing Program

To compress a file (sequence of characters) you need a table of bit encodings, e.g., an ASCII table, or a
table giving a sequence of bits that's used to encode each character. This table is constructed from a
coding tree using root-to-leaf paths to generate the bit sequence that encodes each character.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

8 of 10 4/4/07 10:29 PM

Assuming you can write a specific number of bits at a time to a file, a compressed file is made using the
following top-level steps. These steps will be developed further into sub-steps, and you'll eventually
implement a program based on these ideas and sub-steps.

Build a table of per-character encodings. The table may be given to you, e.g., an ASCII table, or
you may build the table from a Huffman coding tree.

1.

Read the file to be compressed (the plain file) and process one character at a time. To process each
character find the bit sequence that encodes the character using the table built in the previous step
and write this bit sequence to the compressed file.

2.

As an example, we'll use the table below on the left, which is generated from the tree on the right. Ignore
the weights on the nodes, we'll use those when we discuss how the tree is created.

Another Huffman Tree/Table Example

char binary
'a' 100
'r' 101
'e' 11
'n' 0001
't' 011
's' 010
'o' 0000
' ' 001

To compress the string/file "streets are stone stars are not", we read one character at a time and write the
sequence of bits that encodes each character. To encode "streets are" we would write the following bits:

 010011101111101101000110010111

The bits would be written in the order 010, 011, 101, 11, 11, 011, 010, 001, 100, 101, 11.

That's the compression program. Two things are missing from the compressed file: (1) some
information (called the header) must be written at the beginning of the compressed file that will allow it
to be uncompressed; (2) some information must be written at the end of the file that will be used by the
uncompression program to tell when the compressed bit sequence is over (this is the bit sequence for the
pseudo-eof character described later).

Building the Table for Compression/Huffing

To build a table of optimal per-character bit sequences you'll need to build a Huffman coding tree using
the greedy Huffman algorithm. The table is generated by following every root-to-leaf path and recording
the left/right 0/1 edges followed. These paths make the optimal encoding bit sequences for each
character.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

9 of 10 4/4/07 10:29 PM

There are three steps in creating the table:

Count the number of times every character occurs. Use these counts to create an initial forest of
one-node trees. Each node has a character and a weight equal to the number of times the character
occurs. An example of one node trees shows what the initial forest looks like.

1.

Use the greedy Huffman algorithm to build a single tree. The final tree will be used in the next
step.

2.

Follow every root-to-leaf path creating a table of bit sequence encodings for every character/leaf.3.

Header Information

You must store some initial information in the compressed file that will be used by the
uncompression/unhuffing program. Basically you must store the tree used to compress the original file.
This tree is used by the uncompression program.

There are several alternatives for storing the tree. Some are outlined here, you may explore others as part
of the specifications of your assignment.

Store the character counts at the beginning of the file. You can store counts for every character, or
counts for the non-zero characters. If you do the latter, you must include some method for
indicating the character, e.g., store character/count pairs.

You could use a "standard" character frequency, e.g., for any English language text you could
assume weights/frequencies for every character and use these in constructing the tree for both
compression and uncompression.

You can store the tree at the beginning of the file. One method for doing this is to do a pre-order
traversal, writing each node visited. You must differentiate leaf nodes from internal/non-leaf
nodes. One way to do this is write a single bit for each node, say 1 for leaf and 0 for non-leaf. For
leaf nodes, you will also need to write the character stored. For non-leaf nodes there's no
information that needs to be written, just the bit that indicates there's an internal node.

The pseudo-eof character

When you write output the operating system typically buffers the output for efficiency. This means
output is actually written to disk when some internal buffer is full, not every time you write to a stream
in a program. Operating systems also typically require that disk files have sizes that are multiples of
some architecture/operating system specific unit, e.g., a byte or word. On many systems all file sizes are
multiples of 8 or 16 bits so that it isn't possible to have a 122 bit file.

In particular, it is not possible to write just one single bit to a file, all output is actually done in "chunks",
e.g., it might be done in eight-bit chunks. In any case, when you write 3 bits, then 2 bits, then 10 bits, all
the bits are eventually written, but you cannot be sure precisely when they're written during the
execution of your program. Also, because of buffering, if all output is done in eight-bit chunks and your
program writes exactly 61 bits explicitly, then 3 extra bits will be written so that the number of bits
written is a multiple of eight. Your decompressing/unhuff program must have some mechanism to
account for these extra or "padding" bits since these bits do not represent compressed information.

Your decompression/unhuff program cannot simply read bits until there are no more left since your
program might then read the extra padding bits written due to buffering. This means that when reading a
compressed file, you CANNOT use code like this.

Huffman Coding: A CS2 Assignment http://www.cs.duke.edu/csed/poop/huff/info/

10 of 10 4/4/07 10:29 PM

 int bits;
 while ((bits = input.readbits(1)) != -1)
 {
 // process bits
 }

To avoid this problem, you can use a pseudo-EOF character and write a loop that stops when the
pseudo-EOF character is read in (in compressed form). The code below illustrates how reading a
compressed file works using a pseudo-EOF character:

 int bits;
 while (true)
 {
 if ((bits = input.readbits(1)) == -1)
 {
 System.err.println("should not happen! trouble reading bits");
 }
 else
 {
 // use the zero/one value of the bit read
 // to traverse Huffman coding tree
 // if a leaf is reached, decode the character and print UNLESS
 // the character is pseudo-EOF, then decompression done

 if ((bits & 1) == 0) // read a 0, go left in tree
 else // read a 1, go right in tree

 if (at leaf-node in tree)
 {
 if (leaf-node stores pseudo-eof char)
 break; // out of loop
 else
 write character stored in leaf-node
 }
 }
 }

When a compressed file is written the last bits written should be the bits that correspond to the
pseudo-EOF char. You will have to write these bits explicitly. These bits will be recognized by the
program unhuff and used in the decompression process. This means that your decompression program
will never actually run out of bits if it's processing a properly compressed file (you may need to think
about this to really believe it). In other words, when decompressing you will read bits, traverse a tree,
and eventually find a leaf-node representing some character. When the pseudo-EOF leaf is found, the
program can terminate because all decompression is done. If reading a bit fails because there are no
more bits (the bit reading function returns false) the compressed file is not well formed.

Every time a file is compressed the count of the the number of times the pseudo-EOF character occurs
should be one --- this should be done explicitly in the code that determines frequency counts. In other
words, a pseudo-char EOF with number of occurrences (count) of 1 must be explicitly created and used
in creating the tree used for compression.

Owen L. Astrachan
Last modified: Wed Feb 4 20:36:33 EST 2004

