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Preface

Let me try to explain what this book is, why I wrote it, and how I think it can and
should be used. To begin with, it is a text designed to be used in the second semester
of a more-or-less standard “freshman physics” course. It presupposes a familiarity with
the standard topics covered in the first semester of a college physics course — kinematics,
projectile motion, circular motion, Newtonian dynamics, momentum, and energy. The
book uses calculus and is therefore probably best used in a “University” (calculus-based)
as opposed to “College” (non-calculus-based) Physics course, at least for institutions
large enough to have such a distinction. But I have used this material extensively and
successfully at a small college where there is only one “freshman physics” course and
many of the students have not had calculus.

Many of the topics covered in this text are standard ones for this kind of course —
e.g., rotational kinematics and dynamics, gravitation, the physics of gases, and some
thermodynamics. But this is not just another ordinary textbook, with its boring and
(to the student) seemingly arbitrary progression from one chapter to the next. Instead,
the standard topics have been tightly integrated into two broad historical arcs, cover-
ing the origins, development, and applications of two great theories of pre-20th century
physics: Newton’s Theory of Universal Gravitation and the Atomic Theory of Matter.
The standard topics are therefore supplemented and integrated with significant addi-
tional material that might normally be found in a history of science book, but is (too)
rarely seen in science textbooks.

The original purpose of this re-organization of the curriculum was simply to make
the standard material more interesting, by placing it in a historical context and giving
the course as a whole a sense of drama and mystery — one might say, a plot. I think it
succeeds on this front. But the inclusion of historical material serves additional goals as
well, most importantly the inculcation in students of a realistic understanding of science
and scientific method. In virtually all other disciplines (in the humanities, arts, and
social sciences) it is taken for granted that literacy in that field requires a firsthand
knowledge of and appreciation for the important historical figures of that field. A proper
education in philosophy, for example, simply requires that one has read Plato, Aristotle,
Descartes, Hume, and Kant. What well-educated literature student has never read
Shakespeare? There is a kind of irony (or perhaps tragedy) in the fact that the natural
sciences — where contemporary work is most obviously and most hierarchically grounded
on earlier historical discoveries — tend to educate students un-historically. This means
that science students are largely asked to accept the claims they are taught without
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understanding their historical origins — i.e., without understanding the evidence which
makes it scientifically rational to accept those ideas. In other words, science — too often
— is taught as a kind of dogma which students are asked to accept on faith from an
authority (the textbook or the teacher). The tragedy is that the sciences are precisely
the area where such an appeal to authority and faith is unnecessary. Actually, the real
tragedy is that students taught this way will never fully appreciate the difference between
science and the (irredeemably dogmatic) ideas that also vie for influence over their lives.

Research in science education in recent decades has revealed that traditional lecture
classes tend to increase students’ (often already-existing) sense that science is all about
memorizing equations without thought or question or understanding — i.e., that science
is dogma. We have thus seen an explosion in the use of more inquiry-based and project-
based approaches to structuring classrooms and class time. We have not, however,
seen similarly radical restructuring of the content of such courses, as manifested most
obviously in textbooks.

This isn’t to say that there haven’t been some important improvements. For example,
Priscilla Laws’ Workshop Physics curriculum is specifically designed to allow a course
in which a traditional textbook plays, at best, a secondary role. And other modern
texts (e.g., Understanding Physics by Cummings et al.) make some valuable attempts
to connect the material in the text with experiments and projects which may be per-
formed by students in class. Also, the “Tutorials” pioneered by the PER group at the
University of Washington have made significant headway in encouraging and allowing
teachers to spend some class time (often what used to be spent on “problem sessions”)
having students work in small groups to confront and master challenging qualitative and
conceptual issues.

Still, for the most part, even the (in this sense) best current textbooks have tables
of contents that are virtually indistinguishable from those of many decades ago. So one
of the things I am after in this book is to try a more radical re-structuring of (at least
this part of) the curriculum. This is not merely a small tweak to the standard sequence
of topics, pertaining only to how class time is spent or whether end-of-chapter exercises
are phrased in the third or second person. It is rather the result of stepping as far back
as possible from the standard curriculum and asking: what should students at this level
actually be learning and doing? And perhaps more importantly: what should students
know and be able to do before they go on to more advanced coursework in physics (or
elsewhere)? And perhaps most importantly: what should students know and be able to
do as preparation for life in the real world (whether as scientists or not)?

My answers, in outline, are as follows. Students should know something about the
broad historical development of the important theories in physics, and this historical
knowledge should be tightly integrated with their technical, mathematical knowledge of
those same theories. That is, they should genuinely understand why it is scientifically
rational to accept and use the theories — and they should know some of the practical
benefits, whether to technology or to subsequent science, of doing so. Students should
be spending time actually doing real physics — working with raw data, participating
actively in important derivations, performing experiments, thinking creatively about how
to set up challenging problems, and occasionally making (or reproducing) important
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discoveries. Students should understand that plugging numbers into formulas is not
physics. They should understand that science is fundamentally a way of knowing in
which all claims are ultimately traceable back to empirical evidence. And they should
begin to see the virtue in applying the methods of science to every aspect of their lives.

The historical structure of the text is, I think, an indispensable means to the achieve-
ment of these goals. This, however, is no history (or history of science) book. I am no
historian, and (although I have made significant efforts to read all of the primary litera-
ture that is discussed in the text) the historical accounts found here are still heavily based
on secondary sources and will no doubt suffer from many of the vices (such as Whig-
gishness and an unrealistic emphasis on the importance of theorists) often attributed
to “bad history.” My only defense against such charges is that this is not intended as
history, but rather as physics — at a level that can and should be understood by every
“freshman physics” student.

There is a more important sense in which this is not a history of science. History
texts are typically written for humanities students, whose technical math skills are not
strong. This is a book written for scientists and science students. Hence, our goal is
not to teach history per se, but to teach the technically rigorous physics ideas (as they
have evolved historically). Thus, instead of shying away from technical discussions and
resorting to loose qualitative analogies, we tackle mathematically rigorous material head-
on and expect students to do the same. If anything, the level of mathematical rigor in this
text will be seen as higher than a standard freshman-level text. The equation-to-word
ratio is probably a bit lower than in normal texts, but the fact that each equation and
derivation plays some important role in the evolving plot raises the stakes: individual
results cannot be taken (memorized, applied) in isolation, but must be fully digested as
part of a coherent whole.

Let me say a few things about how I think this book should be used. It is designed
to be used in — or more precisely, is designed to help bring about — a more “inquiry”
based or Problem- (or Project-) Based-Learning (PBL) classroom environment. This
has several aspects. First, the text itself is written in a way that students should be
able to follow and understand. I see no need to spend valuable class-time having the
teacher lecture on the material covered in the text (much as it would be regarded as
preposterous for a literature professor to spend class-time reading Shakespeare to his
students). Students should read the text outside of class — before class — thus freeing up
class-time for more focused and purposeful Q& A periods, discussion of difficult concepts
or derivations, working through derivations and discoveries that are merely sketched in
the text, etc. I have included a number of “Questions for Thought and Discussion” at
the end of each chapter to stimulate productive, open-ended discussions.

Each chapter also contains a number of end-of-chapter “Projects.” These are typically
very different from the end-of-chapter Exercises or Problems found in most texts. Since
this book is designed for use in a physics course, a necessary pre-requisite for which is
students’ ability to do algebra, I simply take for granted that students can algebraically
manipulate given equations and plug numbers into them. Those activities are appropriate
for an algebra course, but they are not physics. The Projects in this book, by contrast,
ask students to engage in real physics. For example, students are given raw data and
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asked to interpret it from the perspective of various theoretical models. They are asked
to invent their own theoretical models. They are asked to fill in steps that were missing
from important derivations sketched in the text. They are asked to use computers to
solve equations which are too complicated to solve analytically. And they are asked to
participate in and reproduce important moments of discovery.

These Projects are generally somewhat open-ended. They almost always require some
amount of creative integration, by the student, of different pieces that were covered in
the text. And very often they are designed to put the student in the shoes of actual
scientists working with actual data and making actual discoveries. Thus, not just the
main text of the book, but also the end-of-chapter assigned work, is designed to convey
to students a much more realistic picture of science and its methods. Traditional plug-
and-chug exercises teach students that deep understanding and creative thought are
not required in science — that doing science consists of blindly grabbing pre-formulated
“magic formulas” and then going through a rote procedure. None of the Projects in this
book can be done blindly — without creative thought, genuine understanding, and hard
work.

Note that the open-endedness, complexity, and sheer difficulty of (many of) the
Projects in this book may require a shift in perspective when it comes to assessment and
grading. Good students who genuinely understand the material, work in earnest, and
actually think about what they’re doing, may nevertheless not get “the right answer”
at the end of the day. (Indeed, in some cases, there is no clear right answer.) That’s
OK. The shift in focus urged by this text — from physics as out-of-context dogmas, to
physics as fundamentally a method of knowing — must extend all the way to how student
homeworks and exams are graded. What matters most is that students understand what
they are doing and have a coherent, rational, scientific justification for their approach
and their conclusions. One of the crucial lessons of the history of science is that people
on the losing side of scientific debates — those who had the wrong answers, as judged by
future hindsight — should not necessarily be judged fools, and may not even have done
anything wrong. (Often it is only later discoveries which show, finally and conclusively,
that a given claim is definitely false.) Having learned this important lesson from history,
we should surely extend the same courtesy to our students in the present.

I've already mentioned that I like to spend (at least part of ) one class period each week
in a kind of open discussion format, typically using students’ answers to the “Questions
for Thought and Discussion” as a jumping-off point. I’ve also explained that I envision
the book being used with a project-based classroom structure. What that means specif-
ically is that significant class-time each week should probably be spent working through
the end-of-chapter Projects.

Sometimes the Projects are similar enough to material that was covered in the text
that students (perhaps working in small break-out groups) could be immediately set to
the task of working through them. Others are perhaps best approached in a whole-
class-demonstration format, with the instructor taking the lead in working through the
Project (but with lots of active participation from students). Weekly homework assign-
ments should probably consist of several additional Projects. (If there is a particularly
challenging or complex Project that I want to assign as homework, I sometimes give



students time in class to start working on it — by themselves, or in groups, or with some
assistance from me.) I also like to reserve a little bit of class time at the end of each
week (or whenever the homework is due) for students to ask questions about the assigned
Projects, to compare solutions with one another, etc.

Let me finally say something about the book’s (still tentative) title. It was only
long after embarking on this curricular project that I learned that, in some ways, I
was re-inventing the wheel. Many before me have had the idea of spicing up science
education by incorporating historical material. In physics, the best and best-known
and most systematic attempt in this direction was Harvard’s Project Physics (Cassidy,
Holton, Rutherford, et al.) which began in the early 1960s (growing out of some earlier,
related work, e.g., that leading to the splendid “Harvard Case Histories in Experimental
Science”) and produced textbooks and supplementary materials that stayed in print
until at least 2002. I have benefited greatly from this work, and the current text owes
much to it. But (despite its title), Project Physics was in no way project-based. Its
scripted content was, I think, a significant improvement over standard texts, by virtue
of its historical, inductive approach to the subject matter. But the work assigned to
students was largely standard, plug-and-chug type exercises that gave students little
opportunity to think creatively, use contemporary tools and develop contemporary skills,
or participate in the discovery process in a genuinely first-hand way. Actually, the earlier
editions of the curriculum (from the 1960s) are pretty good on this front. The more recent
incarnations (with title Understanding Physics) are not only significantly dumbed-down
relative to the original, they also lost the spirit of creative scientific inquiry that was,
at the beginning, the whole point. (It is also sad and rather telling that the far more
rigorous original text from the 1960s was intended for high school students, while the
contemporary dumbed-down incarnation is intended for college students, even if not
scientists and engineers.)

In any case, the (tentative) title is in some ways an homage to the original Project
Physics course. It is particularly appropriate since one of my central motivations was to
design a curriculum that left significant creative work to be done by students, in the form
of the Projects. I also wanted a title that would make obvious that this is a book for
use not in the first, but in the second, semester of “freshman physics.” Hence: Project
Physics 2.

Let me finally mention some of the other texts that I have learned from or leaned
on in the preparation of this book. Malcolm Longair’s Theoretical Concepts in Phsyics,
which is intended for junior or senior physics majors, is perhaps the most similar book
I’ve found to the current one and also one of the most inspirational to my project. In
some ways, my whole project is a response to Longair’s book: the topics he covers and the
way he covers them are so important and right that they, I thought, should and must be
done at the introductory level. The Feynman Lectures on Physics has also been inspira-
tional to me... though what physicist wouldn’t claim that? Feynman’s legendary course
was not organized historically and did not include open-ended Projects to be tackled by
students in class and in homework. But I have attempted to imitate, as much as possi-
ble, Feynman’s casual-yet-penetrating style, and the way he tightly integrates technical,
conceptual, and historical material. The works of Stephen Brush, including especially
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his (and Gerald Holton’s) Physics: The Human Adventure and his Statistical Physics
and the Atomic Theory of Matter, have been particularly helpful. Thomas Kuhn’s clas-
sic tome on The Copernican Revolution first sparked my serious interest in the history
of science and subsequently helped me navigate through some otherwise-impenetrable
primary texts. Cohen’s Birth of a New Physics was a particularly influential example of
how to explain the discoveries of Galileo and Kepler at an appropriate level. The Har-
vard Case Histories in Ezrperimental Science were probably the most useful secondary
sources for the second half of the book. And lots of other things too...

Let me finally say that this is very much a work in progress at this point. And so
your feedback will be greatly appreciated!
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Part 1

Newton’s Theory of Universal
Gravitation






Chapter 1

Greek Astronomy

Isaac Newton first published his theory of universal gravitation in his most important
book, the Principia Mathematica, which came out in 1687. This book presented the
entire structure of Newtonian mechanics (the three laws of motion, momentum, etc.)
that was covered in the first half of your course. But it also extended the previously-
familiar terrestrial notion of gravity out into the heavens and presented a detailed theory
of how objects in the universe attract one another gravitationally. The primary evidence
for this new theory was that it correctly accounted for a wide range of astronomical and
terrestrial phenomena such as: the motion of the planets around the Sun, the motion
of moons around planets, the motion of comets, the twice-daily rising and falling of the
ocean tides on earth, and the fact that the earth’s rotation axis changes its direction
over a period of thousands of years. We’ll discuss all of these effects as the semester
progresses.

If we want to understand Newton’s theory of universal gravitation, though, our first
job must be to understand how the theory came about. And given the central role
played in his thinking by the motion of the planets around the Sun, it makes sense to
first try to understand how and why Copernicus proposed (way back in the first half of
the 1500s) that the planets (including the earth) moved around the Sun. And in order
to understand that, it makes sense to first try to understand how astronomers prior to
Copernicus thought about what was going on in the heavens. So, for this first week, we’ll
need to do our best to forget everything we think we know about Newton and gravity
and Copernicus and the fact that the planets go around the Sun, and start, as it were,
from the beginning. One should think of this as an attempt to understand clearly the
earliest seeds out of which Newton’s theory of gravitation eventually grew.

1.1 Basic Observations

If you open your eyes and just look at how various things move, there are a couple of
things that jump out at you. First, familiar terrestrial objects (like rocks and cars and
people and trees) pretty much just sit there at rest unless something applies a force to
make them move. A rock will just sit there on the ground — until or unless someone

3
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comes along and kicks it, in which case it will move some distance but then come again
to rest. And it’s clearly the same with lots of other things. Even people seem to have
stillness as a kind of natural state: you can of course move around, but it takes some
effort or energy to do so — and eventually (when you die) you’ll lose the ability to exert
that needed effort and hence stay at rest permanently. To summarize, it seems that
things on earth have rest as their natural state, and that the unnatural state of moving
requires some kind of force to be exerted. A budding physicist might try to summarize
this with something like the following law:

F o (1.1)

where F' represents the applied force, and v represents the velocity of an object. The
idea is: if no force acts on an object, its velocity will be zero, and the faster you want
it to move, the harder you have to push. Of course, we (who know about F' = ma)
know this is wrong. But if we forget about that and try to just consider familiar sorts
of observations in a naive, unbiased way, Equation 1.1 is at least not crazy.

Let’s then consider things up in the heavens such as the Sun, Moon, and stars. How
do these things move? Probably the motion of the Sun is most familiar to you: it rises
every morning in the east, travels slowly in a big arc across the sky during the course of
the day, and then sets in the west. It seems plausible to guess that the Sun doesn’t go
out of existence each night and get re-born again in the morning. Rather, it just keeps
going in a big circle around the earth — we just can’t see it at night.

You may or may not already know that the stars move in a very similar way. First
of all, the stars move in some sense as one — that is, the stars all move in the same
way such that their relative positions with respect to each other are the same, night
after night after night. (This is why there are recognizable collections of them such as
constellations.) If you pick some one star and follow its motion throughout the night,
you’ll find that it does pretty much what the Sun does: it will rise in the east, travel in
a big arc across the sky during the night, and then set in the west. And, just as with the
Sun, it seems pretty obvious that the stars are “out there” during the day, too: the ones
you can see at night are not visible during the day because they’re below the horizon,
and the ones that are in principle “out” during the day are simply too dim to see when
the Sun is also out.

Actually, it’s a bit misleading to say that the stars move the same way the Sun moves.
Lots of them do. But stars in the extreme southern part of the sky just barely come up
over the horizon to the south — they don’t so much rise in the east and set in the west,
as rise just east of directly south, and then set just west of directly south — and they’re
only up for a short period of time around midnight. And then the stars in the north
behave rather differently, too: they go in the same kind of big circle we talked about the
Sun and other stars going in, but (unlike the Sun and other stars) their circular paths
never dip below the horizon. See Figure 1.1.1

An important point here is that there is a particular star — the north star or Polaris
— which doesn’t move at all. And all the other stars move in circles centered on the

Much of what we’re saying here applies only for observers in the northern hemisphere.
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Figure 1.1: A several-hour-long exposure taken from Hawaii, facing north, during the
night. Note that the stars move in concentric circular paths — and hence leave circular
“star trails” — centered at a certain point on the sky (the north celestial pole) that is
very close to Polaris, the north star.

north star. The north star (assuming you live in the Northern Hemisphere — if you
don’t, you won’t be able to see the North Star at all) is above the horizon to the north
by an angle equal to your latitude. Hence, if you live down in the South, the north
star will be 25 — 30° above the horizon, while if you live up near the Canadian border
it will be 45 — 50° above the horizon. (If you lived at the North Pole, the north star
would be directly up — 90° above the horizon!) Any star whose angle from the north
star is less than the north star’s angle above the horizon will never rise or set, but will
always be “up.” (Of course, you won’t be able to see it during the daytime!) And those
stars which are farther than this from the north star will rise and set like the Sun. And
presumably there are even stars which are so far south that they never rise above the
horizon. Indeed, if one were to travel south — to Mexico, say — there would be new stars
visible in the southern part of the sky which weren’t visible from Vermont.

We’ll come back shortly to talk in more detail about the precise motion of the stars,
Sun, Moon, and planets. But it is helpful at this stage to introduce the so-called “two
sphere model” of the cosmos, to summarize what has been said so far. The model is
just this: the Earth is a sphere, and then all the stars are (so to speak) painted on the
interior of another big sphere which rotates around and around the earth. See Figure
1.2.

We’ll develop this model in more detail shortly. For now, the main point is just this:
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North Star
/

Shell of Fixed Stars

v
Daily Westward Rotation

Figure 1.2: The two sphere model of the universe. The outer sphere is the shell of
the fixed stars, which rotates westward once per day (or technically every 23 hours 56
minutes) around the Earth, which is at rest in the middle.

in contrast to terrestrial objects like rocks and people which seem to have rest as their
natural state, the stars (and Sun and Moon) seem to incessently, “naturally” move in
circles. This is a pretty fundamental difference, and it became, for the Ancient Greeks,
the basis for the idea of a fundamental dichotomy between the earthly realm and the
astronomical or heavenly realm.

It is worth briefly summarizing here what we might call Aristotle’s Cosmology. This
is just the basic worldview (including the heavens as part of the world) that was more
or less accepted by Ancient Greek thinkers around the time of Aristotle (circa 350 BC)
and was then orthodoxy until the Copernican revolution some 2,000 years later.

The whole cosmology is best illustrated with a picture: see Figure 1.3. The first
thing to note is the radial lines and concentric circles, which are meant to be a kind
of polar-coordinates “cosmic graph paper.” The earth sits at its center, and the other
(outer) sphere contains the stars. The Greeks had figured out that the Sun was closer to
Farth than the stars, and that the Moon was closer to Earth than the Sun, so the Sun
and the Moon occupy intermediate positions between the Earth and stars. Indeed, the
sphere of the Moon functioned as a kind of dividing line between heaven and Earth.

The Greeks believed in four terrestrial elements: earth, air, fire, and water. One
can think of these as basically standing for what we now think of as the three phases
of matter (solid, liquid, and gas), plus fire, which didn’t seem to fall under any of those
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Figure 1.3: Simple sketch of Aristotle’s universe. The matter (earth, water, air, fire, and
aether) arranges itself relative to a fixed background space (the “cosmic graph paper”)
with the earth clumped up nearest the center, then water, then air, then fire, and finally
(above the sphere of the Moon) the aether making up the Sun, stars, and other heavenly
bodies (not shown).

categories. (Actually, sometimes people say that “plasma” is a fourth state of matter,
and fire is indeed a kind of plasma.) We talked above about the concept of a “natural
state of motion” for various kinds of things. The Greeks also inferred, from familiar
sorts of observations, that in addition objects had natural places. For example: rocks
sink in water, whereas air bubbles up through water to the surface. Water poured from
a pitcher falls down toward the ground, whereas fire tends to move up (and pull other
things with it). It is not crazy to infer that everything spontaneously “wants” to move
down, but that there’s a kind of hierarchy: earthy things like rocks are, so to speak, more
desperate to “get down” than water, which is in turn more desperate to “get down” than
air, which is in turn more desperate than fire.

Positing something like that as a basic physical law can explain why the Earth has
the basic structure that it has. It is essentially a big ball of (what else?) earth — a ball
being the most efficient way for as much as possible of the earthy material to get as close
as possible to the center of the universe (where the radial lines of the “cosmic graph
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paper” all converge). The water also likes to be as close as possible to the center of the
universe (but gives way to earth) and so it tends to pool up in low spots on the surface
— hence oceans, lakes, etc. And then the air also wants to be as close as possible to the
center, but it gives way to both earth and water and so forms a fairly uniform blanket
around the earth called the atmosphere. And evidently there should be some fire up in
the outer regions of the atmosphere — e.g., lightning!

Of course, all these materials aren’t in equilibrium. Things are, apparently, constantly
getting churned up. Water somehow gets pulled up into the atmosphere for a while (in
the form of clouds) before eventually falling back down to earth; there is evidently some
fire trapped down here in things like trees, which gets released back up toward its natural
place in the process we call burning; volcanoes occasionally spew earthy and watery and
fiery junk up into the atmosphere where it lingers for a while before slowly moving back
toward its natural place; etc. But as a rough account of why the materials should more
or less arrange themselves (from the bottom up: earth, water, air, fire) as they appear
to do, this all makes good sense.

As already mentioned, the idea is that the outer sphere with the stars on it just
rotates around and around and around. The Greeks actually believed in a fifth element
called “aether” — basically the stuff that stars and other heavenly bodies were supposed
to be made of. And just as the natural, unforced state for the terrestrial elements is
rest (namely, rest in as close to its “natural place” as it can get to, given the constraint
that all the other hunks of stuff are also trying to achieve their natural places, too), the
natural state for aether is circular motion. So that explains why the sphere of stars just
turns around and around.

The other heavenly bodies (Sun, Moon, and planets) move in a rough way just like
the stars move — around and around in circles. But their motion isn’t quite as perfectly
circular as that of the stars. They drift, slowly, relative to the stars. The Greeks thought
of this as a sort of imperfection, and thought that, as one moved in from the outer sphere
of stars, the heavenly bodies were increasingly corrupted with a little bit of the terrestrial
elements (e.g., it does seem like maybe the Sun has a lot of fire in it since it’s so warm and
so bright), resulting in motion that is roughly circular (due to the aether) but imperfectly
so (due to the fire, earth, etc.).

In Aristotle’s cosmology, there is also an interesting dynamical connection between
the heavens and the Earth. He believed that the incessant rotation of the outer sphere of
stars was mechanically responsible for pretty much all the other motion in the universe.
The rotation of the stars pulled the planets around, which in turn pulled the Sun around,
which in turn pulled the Moon around, and then the Moon in turn communicated this
motion down into the Earthly (sub-lunary) region. This also has a kind of plausibility
to it: for example, the sloshing of ocean water we call tides correlates with the motion
of the Moon and Sun, as do the daily warming and cooling of the Earth, and yearly
progression through the seasons. So the “churning” of the Earthly regions of the cosmos
discussed above is maintained, according to the Greeks, by the motion of objects up in
the heavens.

This is all really interesting, but for us it’s just background. So let’s move along and
discuss now in more detail the motion of the Sun, Moon, and planets.
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1.2 Astronomical observations in more detail

Let’s jump off from the two sphere model mentioned above, and see how the Sun, Moon,
and planets can be incorporated in a way that is consistent with their actual motion.
Note, to begin with, that in this model the sphere of stars rotates in about a day (which
we can define as the amount of time between noon on one day and noon on the next
day). But it is not ezactly a day. If one measures carefully the amount of time between
the rising of some bright star (Sirius, say) on two subsequent nights, it will be about 4
minutes less than 24 hours: 23 hours and 56 minutes. This amount of time is called a
“sidereal day.” So, in this model, the outer sphere of stars rotates around and around,
always and uniformly toward the west, once every 23 hours and 56 minutes.
Now let’s discuss, in turn, the Sun, Moon, and planets.

1.2.1 The Sun

The first thing to say about the Sun is that it moves with the stars. If one only watches
for a few days and/or doesn’t watch too carefully, one would probably think that the Sun
is just sitting on some particular spot on the sphere of stars, and hence rotating around
with it as it rotates. But more careful observation reveals that this isn’t quite right. The
Sun moves just a bit each day relative to the stars — in particular, it slides just about 4
minutes to the east each day. Here’s what that means: compared to (say) the rising of
Sirius, the Sun will rise (on average) 4 minutes later each day than it did the day before.
Or one can turn it around the other way. Since, in fact, we measure time in terms of the
Sun, we could describe the relative motion of the Sun and stars by saying that the stars
are all a little bit further west each night, compared to the previous night at the same
time. So if, say, Sirius was exactly to the south at midnight on some particular night, it
would be just a bit to the west of south at midnight on the next night. And how far to
the west exactly? Four minutes to the west — meaning, the distance that Sirius moves
across the sky in 4 minutes.
Note here an amazing numerical coincidence:

4 minutes x 365 ~ 24 hours (1.2)

What does this mean? Well, if one prefers to think of the Sun as moving (each day) a
little bit east relative to the stars, it means this: after an entire year, the accumulated
slightly-late-rising of the Sun (relative to Sirius) will have it rising late by exactly a day
— which means, it’ll actually be rising in exactly the same place relative to the stars, and
at the same sidereal time as at the beginning of the year. In effect, the Sun will have
“gone all the way around” and come back to its original location in the stars.

This periodic motion of the Sun is what defines the year: astronomically speaking,
the year is the amount of time it takes the Sun to slowly wander all the way around a
big circle through the stars (through the 12 constellations of the zodiac, actually) and
come back to where it started.

So, during a year, the Sun moves through a closed circular path through the stars.
There is a technical name for this path: it is called the ecliptic. Thus, the Sun is always
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Figure 1.4: The two-sphere model of the universe, now including the Sun and the ecliptic
(the Sun’s path through the fixed stars). Note that the ecliptic and the celestial equator
can be thought of as circles — specifically, intersections of the sphere of fixed stars with a
plane passing through the center of the earth. The plane that cuts through the celestial
equator and the plane that cuts through the ecliptic make approximately a 23.5° angle
with one another. Thus, during the course of the year, the Sun is as much as 23.5° north
of the celestial equator, and as much as 23.5° south of the celestial equator. It reaches
these two extremes on the Summer and Winter Solstices, respectively, and goes back and
forth between them in between, crossing the equator on the spring and fall equinoxes.

located somewhere on the ecliptic, but slowly moves to the east along the ecliptic during
the course of a year.

It is useful to define another, related path through the stars called the “celestial
equator.” This is defined as all the points on the star-map that are exactly 90° away
from the north star. If you are at the north pole of the earth, the north star will be
straight above you and you’ll just be able to see the stars on the celestial equator at the
horizon. If you are at the earth’s equator, the celestial equator will form a big arc across
the sky, from directly east, to straight up above you, to directly west. If you're in the
continental United States, the north star is about halfway between the horizon to the
north and straight up, and the celestial equator forms an arc going from directly east,
through a point about 45° up from the horizon to the south, and then over to directly
west. I say all of this mostly to encourage you to get some kinesthetic feel for how the
diagram in Figure 1.4 relates to the real world around you.

It is very important to understand that the ecliptic and the celestial equator aren’t
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Figure 1.5: This is a composite of three photos taken at sunrise from the exact same
location, at three different times during the year: the summer solstice, the winter solstice,
and one of the equinoxes. The Sun is rising just to the east at the equinox, a bit north
of east at the summer solstice, and a bit south of east at the winter solstice.

the same. If they were, then the Sun would basically follow the same path through the
sky each day throughout the year. But they’re not, so it doesn’t. The ecliptic is “tilted”
by about 23.5° relative to the equator. So one day each year, the Sun is a whole 23.5°
south of the celestial equator — which means it will be very low on the horizon even
at noon, and will rise and set considerably south of (respecitvely) east and west. This
day is called the winter solstice. Since the arc of the Sun between rising and setting is
considerably less than half a circle, the length of the daytime (the time between rising
and setting) is considerably less than 12 hours.

There is then a corresponding day about 6 months later (the summer solstice) when
the Sun is 23.5° further north than the celestial equator. On the summer solstice, the
Sun rises and sets considerably north of east and west, and its arc takes it almost directly
overhead at noontime. And since its arc is considerably greater than half a circle, the
time between the rising and setting of the Sun is considerably greater than 12 hours.

During the rest of the year, the daily arc of the Sun slowly interpolates back and
forth between these two extremes. The midpoints of this yearly cycle — when the Sun
is at one of the two points where the ecliptic crosses the celestial equator — also have
special names: the vernal (or spring) and autumnal (or fall) equinoxes. On these two
days, the Sun rises and sets ezxactly to the east and west, and there is exactly half a day
(12 hours) between Sunrise and Sunset.

To summarize: it is the motion of the Sun along the ecliptic which gives rise to the
seasons. During the summer, the days are long and the Sun is close to directly overhead
at noon, so it tends to be warm. And during the winter, the Sun is low on the horizon
even around noon and the days are short, so it tends to be cold. The yearly progression
of temperatures and weather (and all of the biological and ecological phenomena this
cycling gives rise to) can be explained by the fact that the ecliptic is tilted relative to
the celestial equator!

(Just for the record, some of what I've said here only applies to the middle latitudes
of the northern hemisphere. The seasons work a bit differently if you go far enough south
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or north. But I'll leave that for you to puzzle out.)

The take-home point here is pretty simple: the Sun basically moves each day the
same way the stars do, but not exactly. We can abstract out the extra motion of the
Sun by thinking about its motion relative to the stars. And this extra, relative motion
is also pretty simple: the Sun moves around in a circle, the ecliptic, with a period of
exactly one year.

1.2.2 Moon

In all but a few details, the motion of the Moon is exactly like the motion of the Sun. The
Moon shares the (rough) daily motion of the Sun and stars, and also shares with the Sun
a more subtle motion with respect to the stars: it, too, moves along the path through the
stars called the ecliptic. The only difference is that the Moon moves eastward along the
ecliptic faster than the Sun. Where the Sun takes a whole year to complete its circuit
around the ecliptic, the Moon takes only about a month (27.3 days to be precise).

The Moon exhibits one other unique feature, too: phases. During its monthly circuit
around the ecliptic, the Moon alternates between “full” (when the entire circular disk
of the Moon is illuminated) and “new” (when the entire circular disk is dark). These
phases are readily explainable by the assumption that the Moon’s light is not intrinsic,
but reflected light from the Sun. The Moon presents as full when it is just opposite
the Sun in the sky, such that, from here on earth, it is precisely the bright side of the
Moon that is visible. New Moon occurs when the Moon is very close to the Sun in the
sky, meaning that the side of the Moon that is illuminated faces away from earth, with
only the dark side being “visible” from here. And so forth for all of the intermediate
(crescent, half, gibbous) phases. Note that this explanation requires that the Moon be
closer to the earth than the Sun.

It is worth mentioning here another occurrence involving the Moon: eclipses. There
are two types. A lunar eclipse happens when the Moon passes through the shadow cast
by the earth and thus appears dark for a short period of time right around full Moon.
(Do you see why a lunar eclipse can only happen at full Moon? It doesn’t happen every
full Moon because the Moon’s path isn’t exactly along the ecliptic — it is rather within a
couple of degrees of the ecliptic, but this is enough that most of the time it doesn’t pass
directly through the earth’s shadow.) The other type of eclipse is a solar eclipse. This
occurs when the Moon gets right between the earth and the Sun, so that the view of
some or all of the Sun is blocked. And, again, this doesn’t happen every time there is a
“new” Moon, because the Moon’s path is only roughly along (within a couple of degrees
of) the ecliptic.

1.2.3 Other Planets

The Moon and Sun have several things in common as against the stars. First, unlike the
stars, they are not fized in their positions relative to (other) stars. Rather, they move
(more or less) slowly through the stars, along the ecliptic. And second, the Sun and
Moon just look different than stars: stars look like little points of light, while the Sun
and Moon both present a large disc.
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Careful observation of the heavens, however, reveals several additional objects which
look like stars (in the sense of the second point just mentioned) but which have the
first point in common with the Sun and Moon. That is, these objects look like little
points of light (though they are typically as bright as some of the brightest stars), yet
their positions are not fixed. Like the Sun and Moon, they wander. There are five such
“planets” (from the Greek word for “wanderer”) that are visible to the naked eye and
hence were known about by the Greeks: Mercury, Venus, Mars, Jupiter, and Saturn.
Actually, not surprisingly, the Greeks tended to think of all seven of the wandering
objects we’ve talked about as “planets.”

Not only do these additional five planets, like the Sun and Moon, wander — they
wander in much the same way. Each of them (in addition, of course, to sharing the daily
rotation of the stars) moves with a roughly-steady eastward drift along the ecliptic.
Mercury and Venus each move around the ecliptic in (on average) one year, just like the
Sun. The other three planets take longer: about two years for Mars, about twelve years
for Jupiter, and about thirty years for Saturn.

The Greeks basically just assumed that the correlation between distance-from-earth
and ecliptic-period which held for the Moon and Sun, continued to hold for the other
planets as well. So they inferred that the seven planets had distances from earth in the
following ascending order:

e Moon

Mercury, Venus, Sun (order ambiguous!)

e Mars

Jupiter
e Saturn

Note that Mercury, Venus, and the Sun cannot be placed unambiguously on this list
because they all take, on average, exactly one year to go around the ecliptic.

To understand why it is necessary to say “on average” we must clarify a further
important detail about the observed motion of the planets. Whereas the Sun and Moon
always move eastward along the ecliptic, the five planets only do this most of the time.
They also occasionally stop their eastward drift, move for a short period of time to the
west, and then stop and return to their normal eastward motion. This bizarre behavior
is referred to as “retrograde” (backward) motion. Each planet retrogrades at regular,
periodic intervals, but the period varies from planet to planet. Saturn does it once every
378 days, Jupiter does it every 398 days, Mars does it every 779 days, Venus every 584
days, and Mercury every 116 days. So there is no obvious correlation here between the
(distance) order of the planet and their frequencies of retrograding.

Another curious feature is that the planets are not uniformly bright. A given planet
(say, Mars) is sometimes brighter and sometimes dimmer than its average brightness,
and (curiously) the planets Mars, Jupiter, and Saturn achieve their maximum brightness
just as they retrograde.
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Figure 1.6: A sequence of images of Mars, stacked so that the stars line up in each frame.
Mars begins on the right, moving left (to the east). But over the course of several days,
Mars reverses direction, moving for a while westward, only to eventually return to is
“normal” eastward drift along the ecliptic. Notice that the motion relative to the stars
here is not exactly along the ecliptic — there is some motion in the orthogonal direction
in the figure. The discussion in the text thus over-simplifies things a bit by ignoring
this other aspect of the motion. One can also observe in the figure that Mars achieves
maximum brightness during its retrograde motion. Finally, notice that there is some
other planet in the background, which also leaves a trail through the stars.

It is a little harder to determine the brightnesses of Venus and Mercury, since both
planets are always near the Sun in the sky. Think of this in terms of their motion along
the ecliptic. Most of the time, Venus moves eastward along the ecliptic at a rate just
a little faster than the rate of the Sun. But then, when it gets about 45° ahead of the
Sun, Venus reverses direction and moves for a time westward along the ecliptic, until it is
about 45° behind the Sun, at which point it resumes its eastward motion. It’s important
that the motion is “centered” on the Sun: the “normal” eastward motion of Venus along
the ecliptic always has it catching up to and then overtaking the Sun, and then it passes
it again in the other direction as it retrogrades, only to start over again (584 days later).
Mercury does basically the same thing, only it goes back and forth faster, and doesn’t
get as far away from the Sun on either side.

One of our main projects for the week will be to examine some more detailed data
about all of these things, and figure out how to incorporate it into a theory about how
these things move. The point is: if you're a little confused and fuzzy (or just plain
overwhelmed by the confusing complexity of these planetary motions), it’s OK. We’ll
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spend the week trying to get clear on all this.

1.3 Measuring the distance to the Sun and Moon

It is rather amazing that the Ancient Greeks had figured out the sizes of and distances
to the Sun and Moon. (It’s amazing because it seems like, and is, a pretty sophisticated
kind of discovery which, one might naively guess, people would only have figured out
in the last couple hundred years. But it is also amazing in a kind of opposite way: it
is interesting that one could discover such geometrical facts about the heavenly bodies
when one was nevertheless so wrong about such fundamental facts as whether the Sun
moved around the earth or vice versal) For that reason alone, it’s worth spending a few
minutes to understand how they figured these things out. But the fact that (especially)
the distance to the Sun was known, becomes an important part of the story here — as
we’ll see in due course.

So how did the Greeks figure this stuff out? Well, to begin with (and contrary to
what one sometimes hears in the context of Christopher Columbus), the Greeks knew
that the earth was round and they even knew how big it was. There are several pieces
of evidence for the earth’s round shape that they knew. Here is the Greek astronomer
Ptolemy’s summary:

“the more we advance towards the north pole, the more the southern stars are
hidden and the northern stars appear. So it is clear that here the curvature
of the earth covering parts uniformly in oblique directions proves its spherical
form on every side. [Also|, whenever we sail towards mountains or any high
places from whatever angle and in whatever direction, we see their bulk little
by little increasing as if they were arising from the sea, whereas before they
seemed submerged because of the curvature...” (1.4)

Another piece of evidence has to do with lunar eclipses: the earth always casts a circular
shadow, and so must itself be shaped like a ball.

Anyway, once it is established that the earth is spherical, it becomes possible to
measure the size of the sphere. This was first accomplished by the Greek astronomer
Eratosthenes (273-192 BC). Assuming (not arbitrarily) that the Sun is far enough away
that its rays can be treated as parallel when they reach the earth, Eratosthenes arranged
the experiment illustrated in Figure 1.7. The city of Syene (now Aswan, Egypt) is on
the Tropic of Cancer (23.5° north latitude), which means that each year on the summer
solstice, the Sun at noon would be directly overhead — as evidenced by the observable
fact that a vertical pole would cast no shadow at that moment. By contrast, 500 miles
to the north, in Alexandria, a vertical pole does cast a shadow at noon on the summer
solstice. It is easy enough to measure the height of the pole (h) and the length of the
shadow (s), and hence determine the angle 6 according to

sin(f) = % (1.3)

Eratosthenes found that § = 7.2° = 0.126 radians.
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Sunlight

Figure 1.7: Schematic diagram of Eratosthenes’” method of measuring the size of the
earth. It is assumed that the Sun is far enough away that the incoming light rays can
be treated as parallel. Then, one can determine the angle 8 by measuring the height of
a pole and the length of the shadow it casts (and using some trigonometry). And then,
as is clear from the geometry in the figure, the angle 6 is also the difference in latitude
between the two locations. And so, since the distance (along the surface of the earth)
between the two locations can also be measured, the radius of the earth R4, can be
calculated.

Also, as the geometry illustrated in the Figure makes clear, the angle # which the
Sun’s rays make with the pole in Alexandria, is the same as the angle between Syene
and Alexandria as measured from the center of the earth. And so the radius of the earth
could be computed from what is essentially the definition of angle in radians:

D
Rearth

0= (1.4)
where D = 500 miles is the distance between Syene and Alexandria along the (curved)
surface of the Earth). The result is

D
Regrin = 5= 4,000 miles = 6.4 x 10° meters. (1.5)

Once the radius of the earth is known, the sizes and distances to the Moon and Sun
can be inferred from a series of observations which relate them to the size of the earth.
Let’s go through these in turn.

First, the distance to the Moon can be determined by observing what is called the
“parallax” of the Moon — i.e., its slightly different apparent position (relative to the
background fixed stars) as seen from two different points on earth, or, equivalently, from
the same point on earth at two different times (after the heavens have rotated a bit).
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Figure 1.8: Due to the observer’s location on the surface (as opposed to the center) of the
earth, the Moon occupies three distinct apparent positions (relative to the fixed stars)
at three times during the night. (Note that to highlight the phenomenon of parallax,
the figure shows the Moon’s “true position” — i.e., its apparent position as would be
seen from a hypothetical observer at the center of the earth — as constant throughout
the night, which in fact it isn’t.) The parallax angle 6 is the maximum deviation of the
apparent position from the true position. And this measurable parallax angle relates
the Earth’s radius (Regrtn) to the previously unknown distance to the Moon (Djy0n) by
simple trigonometry: sin(6) = Reqrth / Dmoon -

Figure 1.8 shows schematically how the apparent position of the Moon will change over
the course of the night due to the observer’s position on the surface of, as opposed to in
the center of, the earth.
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Here is Ptolemy’s description of the Moon’s parallax:

“since the distance from the earth’s centre to the lunar sphere is not as that
to the ecliptic circle which is so great that the magnitude of the earth is in
the ratio of a point to it, therefore the straight line drawn from the Moon’s
centre to sections of the ecliptic, according to which the true courses of all the
stars are conceived, necessarily does not everywhere sensibly coincide with
the straight line according to which its apparent course is observed — that
is, the straight line drawn from some part of the earth’s surface or rather
from the observer’s eye to the Moon’s centre. But when the Moon is directly
above the observer, then only are the straight lines drawn from the earth’s
centre and the observer’s eye to the Moon’s center and the ecliptic one and
the same straight line.” (IV.1)

The parallax angle (# in the figure) is the maximum deviation from the “true position”
(i.e., what an observer at the center of the earth would see) due to the real observer’s
position on the surface of the earth. Careful observations revealed that the Moon displays
a (maximum) parallax angle of just a little less than a degree: 6 ~ 1°. The geometry of
the figure — in particular the triangle formed by the Moon, the observer, and the center
of the earth — then makes it clear that

. Rearth
sin(f) = 1.6
( ) Dmoon ( )
so it is possible to solve for
. Rearth o o . _ 8
Dioon = — 0 = 60Rcqrtn, = 240,000 miles = 3.8 x 10° meters (1.7)
sin

You should be wondering: how is the parallax angle 6 actually measured, since this is (as
shown in the figure) an angle between two stars as seen from the Moon. The answer is:
we are assuming here that (contrary to the not-to-scale figure!) the shell of fixed stars is
very large compared to the circle representing the Moon’s orbit. So the angle between
stars A and B in the figure as seen from the Moon (i.e., the angle § shown in the figure)
will be the same as the angle between those stars as seen from here on earth. And that,
of course, is readily measurable.

There is one other slight “cheat” here which is worth mentioning. In the figure,
the Moon’s “actual position” (namely: on top of Star B) doesn’t change during the 12
hours or so between the three moments pictured. But in fact the Moon moves slowly
and steadily relative to the fixed stars, along (roughly) the ecliptic. So you couldn’t in
fact measure the parallax of the Moon just by comparing the Moon’s apparent position
when it rises, and then later when it is overhead. You’d have to already have measured
the Moon’s average rate of motion along the ecliptic, so one could subtract off the part
of the difference angle due to the motion of the Moon relative to the stars, leaving the
parallax angle. One of the Projects at the end of the chapter steps you through this.

It is worth making a couple other comments about this method of determining the
distance to the Moon.
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First, the method relies on already knowing the size of the earth. In determining
the size of the earth, we had to assume the Sun is very far away compared to the size
of the earth. And then in measuring the Moon’s parallax angle, we had to assume that
the stars are very far away compared to the Moon. Is there any evidence to support
these assumptions? Yes. First of all, the Moon displays an easily-noticable parallax of
about one full degree. But no such parallax is observed in the Sun. (Well, it can be
observed today, but the angle is so tiny the Greeks never noticed it.) So the Sun must
be much further away than the Moon, and hence very far away compared to the size of
the earth. And of course, since the shell of fixed stars is in this model the outside edge
of the universe, the stars must be further away than the Sun! Or more directly: the
stars also display no observable parallax. And so they, like the Sun, must be very far
away compared to both the distance to the Moon or the size of the earth. Indeed, “that
the Earth has the ratio of a point to the heavens” is one of the first points stressed in
Ptolemy’s book. He writes that “in all parts of the earth the sizes and angular distances
of the stars at the same times appear everywhere equal and alike, for the observations
of the same stars in the different latitudes are not found to differ in the least.” (I1.6)

Second, the parallax angle is in fact quite difficult to measure accurately, in part
because the Moon is big and bright. A precise measurement of its position relative to
the fixed stars requires some particular point on the Moon to be identified and tracked,
and also requires that the background stars right next to the Moon can be seen — which
is difficult because the Moon’s brightness tends to overwhelm the surrounding stars. So
it can be surprisingly tricky to measure the apparent position of the Moon, relative to
the fixed stars, to an accuracy significantly better than a degree.

Given these sources of uncertainty, it is impressive that the parallax of the Moon can
be measured at all. The implication is of course that the uncertainty on 6 is pretty small
compared to the reported value of 6. Actually, although Ptolemy reports a value for the
parallax of the Moon and uses it to infer the distance to the Moon by essentially the
argument described here, his description of the methods of determining the parallax angle
(and hence that angle’s uncertainty) leaves much to be desired by modern standards. In
fact, he rather races through the argument presented here, and then proudly presents
the reverse argument from the (now “known”) distance to the Moon to the observable
parallax angle. It is as if he is embarrassed to have to use observation to figure out how far
away the Moon is, and so hurries through this, then lingering on what he considers more
logically sound: using facts about the world to calculate appearances. We mention this
here only to stress the very different approaches to science taken by the Ancient Greeks,
as compared to modern empirical science — which of course is not at all embarrassed to
base its conclusions about the world on observation.

So much for the determination of the distance to the Moon. Once this is known, it
is relatively easy to determine the size of the Moon by measuring the angle ¢ subtended
by the Moon, i.e., the angle between two opposite points on its edge, i.e., its angular
diameter. The angle is easily measured to be about half a degree ~ 0.0087 radians.
Using the small angle approximation (according to which sin(z) = tan(z) = z), we then
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Figure 1.9: At half-moon, the earth, Moon, and Sun form a right triangle. Careful
measurement of the angle between the Sun and Moon (# in the figure) can therefore
reveal via trigonometry the relative lengths of the sides of the triangle, i.e., the Sun’s
distance relative to the Moon’s distance. This allows an absolute determination of the
Sun’s distance, since the Moon’s distance is already known.

have
2Rmoon

Dmoon

o=

where R,,00n is the moon’s radius. Plugging in the numbers,
1
Rimoon = 5 Dimoon 0.0087 radians = 1,000 miles = 1.7 x 10 meters. (1.9)

So the moon is about a quarter the (linear) size of the earth. (Its volume is thus the
earth’s volume times a quarter cubed, i.e., it is about a sixty-fourth as big as the earth
in that sense.)

Now what about the Sun? In principle, one could determine its distance, and then
its size, by following the method just outlined for the Moon: first measure its parallax
angle relative to the fixed stars, and then measure its angular diameter. But as already
noted, the Sun turns out to be considerably farther away than the Moon, giving it a
considerably smaller parallax angle that was simply too small for the Greeks to measure.
(Plus, it’s really hard to see which stars are right next to the edge of the Sun!) So a
different approach is needed.

The simplest approach, first used by Aristarchus (310 - 230 BC), is to measure the
angle between the Moon and the Sun at half-moon. In order for the Moon to appear
precisely half-illuminated, the angle between the Moon-earth line and between the Moon-
Sun line must be precisely 90°. And so the three bodies form a right triangle. See Figure
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Figure 1.10: This is a composite of several photos shows the Moon passing in front of
the Sun during a solar eclipse. Note in particular that when the Moon is just over the
Sun (“totality”), its disc just covers the disc of the Sun (revealing the fuzzy solar corona,
which is too dim compared to the ordinarily-blinding solar disc to see except during a
solar eclipse).

1.9. It is clear that

D
9 — moon 1.1
cos(0) = (1.10)
or, equivalently, that
Dmoon
Dgyn = . 1.11
cos(6) (1.11)

Aristarchus reported that & = 87°, which then implies that Dy, = 20D,,00n = 1200 R gt -

It is clear, though, that since the angle is very close to 90°, the calculated distance to
the Sun will be very sensitive to the measured angle. For example, using instead a value
of 88° gives a distance ratio of about 30 instead of 20. In fact, accurate contemporary
measurements reveal that § = 89.85°, which gives

Dun = 400D 000 = 24,000Reqrin, = 93,000,000 miles = 1.5 x 10" meters.  (1.12)

And finally, once the distance to the Sun is known, its size can be calculated from
its apparent (angular) diameter. Just as with the similar calculation for the Moon, we
have that the angular diameter ¢ is

2RSU/]’L
- . 1.1
=5 (1.13)

It turns out that the angular diameter of the Sun is just equal to that of the moon, as
evidenced most dramatically during a solar eclipse. See Figure 1.10. Thus, plugging in
the same ¢ = .0087 radians used above yields

Rgun = 6.9 x 10® meters (1.14)
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if one uses the correct, modern value for Dy,,. The Greeks underestimated this value
by about a factor of 20, and hence also underestimated the size of the Sun by about a
factor of 20.

The actual radius of the Sun is thus about 100 times the radius of the earth. The
Greeks thought it was a mere 5 times bigger. Even with their underestimate for its size,
then, the Greeks (correctly) believed that the Sun was more than a hundred times bigger
(in volume terms) than the earth. (In fact it is about a million times bigger.)

1.4 Ptolemy’s Theory

Claudius Ptolemy (85 - 165 AD) was the most important of the Greek Astronomers,
partly because he systematized and cataloged many of the things that had been done
earlier by Eudoxus, Aristarchus, Eratosthenes, and Hipparchus (whose writings have
largely been lost). But Ptolemy also helped develop and improve the kinds of obser-
vations we were cataloging above, and he systematically developed a theory that had
been posited earlier to to explain and integrate in particular the observed motions of the
planets.

The Ptolemaic theory basically starts with the two-sphere model described previously,
and incorporates the Sun, Moon, and the other planets in roughly the way we’ve already
suggested. So, according to Ptolemy’s theory, the earth is at rest at the center, with a
big rotating sphere of fixed stars on the outside. The Sun, Moon, and planets are placed
in the region between the earth and the stars, in the order we’ve already mentioned.
To begin with, each of these seven planetary objects is pulled around (some way or
other, either mechanically or just mathematically) by the rotating sphere of stars. This
accounts for the shared gross daily motion of all the heavenly bodies.

1.4.1 Epicycles

Ptolemy’s major innovation was a clever scheme for accounting for the details of the
planets’ motions — namely, their average eastward drift along the ecliptic, punctuated
(for all but the Sun and Moon) by occasional retrograde motions. But to understand
why this scheme was clever, one must first appreciate what Ptolemy was trying to do.
Remember here the apparent ubiquity of circular motion for the heavenly bodies: not
only do they all move in circles each day, but the extra motion of the planets relative
to the stars is (at least on average) also circular. Plus, these objects were conceived to
be made of a substance (aether, the fifth element) whose natural motion was circular
motion. So the problem — the assignment, if you will, which is usually attributed to Plato
— was to figure out a way of explaining the detailed, observed motions of the planets in
terms of circles.
Here is Ptolemy’s own statement of the guiding principle of his work:

“it is first necessary to assume in general that the motions of the planets in the
direction contrary to the movement of the heavens are all regular and circular
by nature, like the movement of the universe in the other direction. [....] But



1.4. PTOLEMY’S THEORY 23

the cause of this irregular appearance [i.e., deviations from the just-stated
first assumption!] can be accounted for by as many as two primary simple
hypotheses. For if their movement is considered with respect to a circle in the
plane of the ecliptic concentric with the cosmos so that our eye is the cenre,
then it is necessary to suppose that they make their regular movements either
along circles not concentric with the cosmos, or along concentric cricles; not
with these simply, but with other circles borne up on them called epicycles.
For according to either hypothesis it will appear possible for the planets
seemingly to pass, in equal periods of time, through unequal arcs of the
ecliptic circle which is concentric with the cosmos.” (I11.3)

To summarize, the idea is to account for the observed motions of the planets — including
especially the fact that they don’t just move uniformly along the ecliptic circle relative
to the stars — by compounding or otherwise fiddling with circular motions. Ptolemy here
mentions two devices for achieving this. The first, called the “eccentric”, involves using
circles whose centers are shifted away from the earth. We will explore this later, in the
Projects at the end of the chapter. The second and more immediately important device
is called the “epicycle” and involves letting the planet move around a smaller, second
circle which is itself pulled around a circular orbit centered at the earth. There is also a
third device, called the “equant”, which we will also come back to later.

For now let’s focus on the epicycles and see how these are useful in accounting for
retrograde motion. The idea, to repeat, is to compound two circular motions for each
planet. The first would account for the average easterly drift along the ecliptic, while
the second would account for the occasional retrograde motion. The way it works is
sketched in Figure 1.11. It should be clear (looking at the figure) how this compounding
of two circular motions (one circular motion relative to another point which is itself
undergoing circular motion) can give rise to precisely the sort of behavior observed for
the planets. In particular, by adjusting the relative sizes of the two circles and the two
speeds involved for each planet, one can match pretty well the observed motions.

A few things are worth noting. First, since the Sun and Moon never retrograde, the
secondary circle (“epicycle”) is only needed for the 5 other planets: Mercury, Venus,
Mars, Jupiter, and Saturn. And second, although this scheme works pretty well to
explain the observed gross motions of the planets along the ecliptic, it doesn’t quite get
all the details exactly right. So in fact Ptolemy’s full theory for each planet involved all
three of the devices mentioned before: not just an epicycle, but also an eccentric and an
equant.

See the Projects at the end of the chapter for some more information about these
extra devices; they do play an important role in understanding what was and what wasn’t
immediately seductive about Copernicus’ heliocentric theory, when he proposed that a
millenium and a half later. But for the moment we’ll ignore these other two devices and
work with the simple one-deferent-one-epicycle construction.

The basic idea is that there is a special point (the “deferent”) which moves in uni-
form circular motion around the ecliptic, and then a second point (actually occupied by
the planet) which moves around a second, smaller circle (the “epicycle”) with uniform
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Epicycle

Figure 1.11: Sketch of the basic deferent-epicycle combination in Ptolemy’s theory. The
point marked + moves uniformly around the deferent circle, while the planet moves
uniformly around the epicycle (which is centered at the + and pulled around the def-
erent as it moves). Both circles — the deferent and the epicycle — lie (approximately)
in the plane of the ecliptic. This compounding of two circular motions gives rise to a
trajectory like that sketched in the dotted line. As seen from the earth, the motion is
generally counter-clockwise (which here means eastward along the ecliptic), but the oc-
casional retrograde motion is also accounted for. Note too that the theory automatically
explains the observed correlation between retrograde motion and brightness: the planet
retrogrades when it is closest to the earth, which accounts for its increased apparent
brightness.
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Figure 1.12: An object (the black dot) moves along a circle of radius R. Its position
can thus be specified by the angle 6 that the object makes with (say) the x-axis. The
object’s x and y coordinates are then given by z = Rcos(f) and y = Rsin(f). The
object’s angular velocity w is given by the rate at which 6 increases in time: w = df/dt.

circular motion relative to the deferent point. It is worth developing some mathematical
technology for dealing with all of this.

1.4.2 Angular Kinematics

Let’s begin with simple uniform circular motion, described in terms of angle. For an
object moving in a circle, its position can be described in terms of the angle as shown in
Figure 1.12. For uniform circular motion the angle just increases linearly in time:

O(t) = B + wt. (1.15)

This should remind you of a corresponding equation from 1-D translational kinematics:
x(t) = o + vt. In accordance with this analogy, the quantity w — which evidently
describes the rate at which the angle 0 increases — is called the angular velocity. Not
surprisingly, it can be defined (generally, i.e., not necessarily assuming that the angular
motion is uniform) as follows:
_do
=
This is just parallel to the familiar definition of (translational) velocity in terms of
position: v = dz/dt.

For an object moving with constant angular velocity, its motion will be periodic —
that is, it will repeat itself over and over again. Since a complete circuit comprises 27
radians and occurs in an amount of time we’ll call T (the period of the motion), the

w (1.16)
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angular velocity for uniform angular motion can also be written: w = 27/7. And this is
equivalent to
2

T (1.17)

w

Note that this last formula only makes sense if w is constant in time.
Following the analogy with 1-D translational kinematics, we may also define the
angular acceleration
dw  d*0
a=——=—. (1.18)
dt  dt?
as the rate of change of the angular velocity. Since the mathematics is all completely
parallel, we can immediately steal some familiar results from 1-D kinematics. For exam-
ple, if an object moves with constant angular acceleration «, its angular coordinate will
evolve in time according to:

1
6(t) = 6y + wot + §at2 (1.19)

where 6y and wq are, respectively, the angle and angular velocity at ¢ = 0.

1.4.3 Angular and Rectangular Coordinates

Let’s now consider how to relate the angular coordinates of a moving object to its
rectangular coordinates. Assume (again) that the object is moving in uniform circular
motion with angular velocity w and initial angle 8y. And let’s choose the origin of our
coordinate system to lie at the center of the circle the object moves along. Then simple
trigonometry gives

xz(t) = Rcos[f(t)] = Rcos|wt + O] (1.20)
y(t) = Rsin[f(t)] = Rsin|wt + 6] (1.21)

where R is the radius of the circle.

Probably the simplest way to think about Ptolemy’s scheme for explaining retrograde
motion in terms of epicycles, is in terms of vector addition: the position of a given planet
relative to the earth is found by adding two vectors — one representing the position of
the deferent point, and the other representing the position of the planet relative to the
deferent point. And, of course, if we want to add these two vectors to figure out where
the planet is relative to earth, the easiest way to do that is by adding (separately) the x
and y components of the two vectors.

Let’s work through this in detail. Suppose the deferent for a given planet has radius
R4 and moves with angular velocity wy. Then the x,y coordinates of the deferent (as
functions of time) will be

zq(t) = Rycos(wgt + 62) (1.22)
ya(t) = Rgsin(wgt + 63). (1.23)
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Likewise, suppose the epicycle for this planet has radius R. and angular velocity we.
Then the z,y coordinates of the planet (relative to the deferent point!) will be

ze(t) = Recos(wet + 65) (1.24)
Ye(t) = Resin(wet + 65). (1.25)

And so the z,y coordinates of the planet relative to the earth will be given by the vector
sum:

xz(t) = wq(t) + ze(t) = Ry cos(wgt + 93) + R cos(wet + 65) (1.26)
y(t) = yalt) + ye(t) = Rysin(wgt + 03) + Re sin(wet + 6F) (1.27)

Of course, the Greeks only knew how to measure the angle of a planet along the ecliptic.
And this angle is related to the z and y coordinates as follows:

~y(t)  (Rgq/Re)sin(wqt + 60d) + sin(wet + 65)
Canl0O] = 20 = (Ru/Re) cos(wat + 08) + cos(ert £ 06) (1.28)

So this is, in a way, the fundamental equation of the Ptolemaic theory. It connects the
observational angle 6(t) — the angular coordinate of the planet on the ecliptic at time ¢
— with the parameters in the theory (Rg, wq, Hg, R, we, and 6§5) which give rise to the
planet’s detailed motion.

Note that this basic equation has been written so that only the ratio R4/ R. appears.
This makes it clear that, from data about the ecliptic angle 6(¢), one is never going to
be able to find the absolute sizes of the deferent and epicycle — one can only find the
relative size of the one circle relative to the other. This makes sense, since all the angles
will be the same if both circles are (say) doubled in size. (Draw a picture if that isn’t
clear.)

If these parameters were known (for each planet), the above equation makes it clear
that it would be possible to predict exactly how the observational ecliptic angle would
vary in time. Of course, in reality, it works the other way: the problem is not to figure
out how the planet will appear to move relative to the stars given the detailed parameters
about its deferent and epicycle; rather, the problem is to figure out how big the epicycle
and deferent radii and angular velocities need to be in order to account for the observed
angular position, 0(¢). We’'ll be spending quite a bit of time this week (in the Projects)
figuring out how to do this. And the numbers that come out have some interesting
surprises hidden in them.

1.5 The Precession of the Equinoxes

So far we have discussed the daily rotation of the heavens as a whole, and then also the
motions (more or less along the ecliptic) of the Sun, Moon, and the other 5 planets. But
there is one additional motion that was first discovered by Hipparchus. Here is Ptolemy’s
summary:
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Figure 1.13: How the observable angle 8 of a planet on the ecliptic relates to the radii
(Rq and R.) of the deferent and epicycle, and the angles 64 and 0..

“Hipparchus [noted that] for the apparent returns of the sun with respect
to the tropics and equinoxes, the length of the year is found to be less than
365 1/4 days, but for its returns observed with respect to the fixed stars it is
found to be more. And from that he conjectures that the sphere of the fixed
stars also has a very slow movement, and like that of the planets is in the
direction contrary to that of the prime movement which revolves the circle
that passes through the poles of the equator and the ecliptic.” (III.1)

Let us try to unpack what he is saying here.

There are two subtly different ways of defining a year, and they turn out not to be
precisely equal. The first way — the so-called “sidereal year” — is defined as the amount of
time it takes the Sun to complete a full circuit around the ecliptic and return to precisely
the same spot relative to the fixed stars. The other way — the “solar year” — is defined
as the amount of time between (say) two subsequent spring equinoxes. Based on what
has been explained so far, one would expect these to be equal, since the ecliptic and
the celestial equator have been described as fized paths through the fixed stars, and the
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equinoxes occur when the Sun is at the intersection of these two paths. So equivalent to
the claim that the sidereal and solar years are not quite equal, is the claim that either
the ecliptic or the celestial equator moves!

And that is just right. It turns out that the ecliptic really is fixed (in the sense that,
even over long periods of time, the Sun always moves along the same path, i.e., in front
of the same set of fixed stars). But the celestial equator moves (very slowly) through
the fixed stars. And since the celestial equator is just all those points on the sky that
are perpindicular to the celestial pole, a simpler way to understand this claim is that the
celestial pole moves! We described this at the beginning of the chapter by saying that
there is a particular star (the “north star” or Polaris) at (or, really, near) the celestial
pole, i.e., the point that all the other stars move in circles around. So the point here is
that this is true today, but was not true in the past, and will not be true in the future.
Instead, the celestial pole is a moving target, that moves around (of course!) a circle,
which is concentric with the ecliptic.

This slow motion of the celestial pole means that the sidereal and solar years will
be slightly different: the Sun will be at a certain point on the ecliptic on the spring
equinox one year, but the next spring equinox will occur slightly before the Sun returns
to that same particular spot on the ecliptic in the following year. That is, the solar year
is slightly shorter than the sidereal year. Or put the same point again this way: the
location of the Sun on the ecliptic at the moment of the spring equinox slowly moves
(westward) along the ecliptic. And this is also equivalent to saying that the sphere of
fixed stars as a whole not only rotates once per day about an axis perpindicular to the
plane made by the earth’s equator, but that it also “wobbles” or “precesses” such that
the intersection of this axis (passing through the geographic poles of the earth) with
the fixed stars moves slowly to the east around a circle 23.5° down from the pole of the
ecliptic.

How fast is this precessional motion?

“having sighted Spica and the brightest stars about the ecliptic .... we find
their distances with respect to each other very nearly the same as those
observed by Hipparchus [i.e., the arrangement of the stars themselves has
not changed in the several hundred years between Hipparchus and Ptolemy]
but their distances with respect to the tropic and equinoctial points to have
shifted eastward very nearly 2 1/2° compared to the record of Hipparchus.”
(VIL.2)

This 2 1/2° of precession in the 2 1/2 centuries between Hipparchus and Ptolemy makes
for an overall precession rate of approximately one degree per century. So this is indeed
a small effect, noticable only with a long span of accurate measurements. With several
additional centuries of observation to work with, the number has been more recently
pegged at about 1.4° per century. Thus, in about 26,000 years, the north celestial pole
will again be near the star Polaris (having drifted quite far — 47° — away from it over
this period).
This subtle motion will play an interesting role in the story to come.
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1.6 Arguments against heliocentrism

That pretty much wraps up what there is to say about Greek Astronomy and in par-
ticular Ptolemy’s geocentric theory for the motion of the planets. It should come as no
surprise that, in the next chapter, we are going to discuss the transition to the alternative
heliocentric theory proposed in 1543 by Copernicus. But in understanding that transi-
tion, it will be helpful to know that Copernicus wasn’t the first to propose a heliocentric
theory. In all but some details, Copernicus’ theory had been proposed already in Ancient
Greece by Aristarchus, who is thus sometimes referred to as the Greek Copernicus!
An account of Aristarchus’ proposal is given by another great Greek scientist, Archimedes,

in his book The Sand Reckoner:

“You King Gelon are aware the ‘universe’ is the name given by most as-
tronomers to the sphere the centre of which is the centre of the earth, while
its radius is equal to the straight line between the centre of the Sun and the
centre of the earth. This is the common account as you have heard from
astronomers. But Aristarchus has brought out a book consisting of certain
hypotheses, wherein it appears, as a consequence of the assumptions made,
that the universe is many times greater than the ‘universe’ just mentioned.
His hypotheses are that the fixed stars and the Sun remain unmoved, that
the earth revolves about the Sun on the circumference of a circle, the Sun
lying in the middle of the orbit, and that the sphere of fixed stars, situated
about the same centre as the Sun, is so great that the circle in which he
supposes the earth to revolve bears such a proportion to the distance of the
fixed stars as the centre of the sphere bears to its surface.”

That is, in this heliocentric theory, it is not the sphere of fixed stars but the earth which
(gasp!) rotates around once per day. Likewise, the yearly motion of the Sun around the
ecliptic is accounted for by a yearly orbit of the earth around the Sun. It is sometimes
speculated that Aristarchus proposed the heliocentric system not only because he saw it
was an alternative (and arguably simpler) way of accounting for the observed apparent
motion of the heavens, but also because he knew that (as discussed earlier) the Sun
was significantly larger than the earth — and somehow it seemed more plausible for the
smaller object to orbit around the bigger object, than vice versa.

Why does the heliocentric theory require the universe to be “many times greater”
than implied by the geocentric theory? Recall that the only direct observational evidence
bearing on the size of the sphere of fixed stars was the lack of observed parallax.

We discussed above how the parallax of the Moon could be used to measure the
distance to the Moon. In principle, one could use the same effect to measure the distance
to the stars, if only their parallax could be detected. Or, since no parallax was detected,
this placed a lower limit on the distance to the stars. Assuming that, using the whole
diameter of the earth as a baseline, the stars’ parallax is less than (say) a hundredth of
a degree (i.e., 0.000175 radians, which would definitely prevent it from being noticed by
the Greeks), one can infer that the distance to the stars must satisfy

2Rea7’th
.000175 radians

Ditars > = 50,000, 000 miles. (1.29)
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Remember that (due to not-very-accurate measurement of the angle between Sun and
Moon at half-moon) the Greeks thought it was only about 5,000,000 miles to the Sun.
So it was conceivable to them that the outer edge of the whole universe — the sphere
of fixed stars — was only about one order of magnitude farther out than the Sun. This
maybe seemed about right, as it left just about the right amount of room for the shells
of Mars, Jupiter, and Saturn.

But if the earth orbits the Sun (instead of vice versa), the baseline for parallax
increases dramatically! Instead of just being able to look at the stars from opposite sides
of the earth, one can look at the stars from opposite sides of the earth’s orbit — which the
Greeks thought to have a diameter of some 10,000,000 miles. And with that baseline,
the condition on the size of the shell of fixed stars (required to account for their lack of
observable parallax) becomes

10,000,000 miles -
Ditars > =560 775 vacdions. = 7 000, 000, 000 miles. (1.30)

This is really an incredible distance, about a thousand times bigger than the earlier
geocentric estimate (because they thought the distance to the Sun was about a thousand
earth radii). To the Greeks, it seemed impossible that the universe could be so vast,
so much bigger than the biggest other things known. And hence it seemed to them
impossible that the earth could orbit the Sun. So this was one major reason why,
despite being proposed much earlier, the heliocentric worldview proposed by Copernicus
was not taken seriously by the Greeks.

Another reason has to do with the several motions of the earth required by the
heliocentric system. If the earth is spinning around on its axis once per day, then the
surface of the earth near the equator must be moving at an incredibly large speed:

o 27 Reartn

v 24 hours

~ 1,000 miles/hour. (1.31)
The Greeks thought: wouldn’t we notice this? Shouldn’t we have to hold on for dear
life just to keep up with the earth as it moves? And, for example, wouldn’t this imply a
constant westerly wind of about this same speed? And if you dropped a rock, wouldn’t
it fall straight down (as rocks are known to do) while the earth raced out from under it
to the east such that the rock would hit the ground a mile or more to the west of where
it was dropped? As Ptolemy summarizes,

“never would a cloud be seen to move toward the east nor anything else that
flew or was thrown into the air. For the earth would always outstrip them
in its eastward motion, so that all other bodies would seem to be left behind
and to move towards the west.” (1.7)

Yet none of these fantastic implications are in accordance with actual experience. So the
earth cannot possibly be rotating in the way suggested by the geocentric model.

And note that all of these same objections can be made again — and with even more
force — in relation to the alleged yearly motion of the earth around the Sun, which
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evidently requires the earth as a whole to be moving with a speed

v= 2mDsun ~ 20 miles/second. (1.32)
1year

Thus, for example, a ball thrown high up in the air such that it stays up for 5 seconds
should evidently land 100 miles away. Or more precisely: we’d be 100 miles away when
the ball came back down to the same place it had been thrown from. And so forth.

Another argument against the heliocentric system makes (even more explicit) refer-
ence to the Aristotelian physics ideas we began with: even if the earth were somehow
displaced from the center of the universe, it would simply return to the center. That,
after all, is what the laws of physics sketched in the beginning of this chapter require. In
order to perform the sorts of circular motions attributed to it in the heliocentric model,
the earth would have to be made of aether, not earth — which is clearly preposterous.

It is easy to laugh at this sort of objection. It’s maybe less easy to take it seriously
and answer it clearly. So it’s something to puzzle over for yourself before we cover the
arguments of Copernicus and his followers in the following chapter.

Questions for Thought and Discussion:

1. What other observations can you think of that are consistent with — and might
have been taken as evidence for — the Greek cosmology sketched in Figure 1.37
Can you think of any observations that are definitely contrary to this picture?

2. Orient yourself spatially, i.e., figure out which way is north. Now indicate with
a sweep of the arm the path that the Sun will take across the sky today. Now
indicate (again with your arm) how this path changes over the course of the year.

3. Describe how the daily trajectory of the Sun across the sky would vary over the
course of the year if you were in Ecuador (which, of course, is on the equator).
How about at the north pole? What is the significance of the Tropic of Cancer and
the Arctic Circle (in the northern hemisphere, and correspondingly the Tropic of
Capricorn and Antarctic Circle in the southern)? What are the latitudes of these
“special” points, and why are those numbers significant?

4. Suppose it is the Winter Solstice, so the Sun’s arc across the sky during the day
is low and short. What can you say about the path taken by the Moon across the
sky — and/or about the duration of time between the Moon’s rising and setting —
that night? What if in addition you are told that it happens to be full Moon? In
general, how does the path/duration of the Moon — around full Moon — relate to
the path/duration of the Sun, over the course of the year?

5. Everybody knows that it’s hotter in the summer because the Earth’s orbit takes it
closer to the Sun during those months. Which Ptolemaic corrective device allows
for this? What about the fact that it’s winter in the southern hemisphere when
it’s summer in the northern? How is that explained?
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6. It was mentioned in passing in the text that the Moon can only exhibit the full range
of observed phases (new, crescent, half, gibbous, full) if the Moon is closer to the
earth than the Sun. Explain why. For example, suppose to the contrary that the
Moon and Sun both orbited earth in circles, but the Sun’s orbit was smaller /closer
than the Moon’s. What range of lunar phases would then be observed?

7. It was mentioned in passing in the text that, unlike the Moon, the stars do not
exhibit any parallax (that would have been noticable to the Greeks). Explain, by
reference to Figure 1.8 or some diagram of your own, what it would mean for the
stars to display parallax. (Parallax for the Moon or Sun means a change in the
apparent position of that body relative to the background fixed stars. How could
the fixed stars appear to move relative to themselves?)

8. You should understand how the deferent-epicycle device sketched in Figure 1.11
can account for the retrograde motion of a planet. But look more carefully at
Figure 1.6. What aspects of the actual motion of Mars cannot be accounted for
by the deferent-epicycle device as shown in Figure 1.117 How could this be fixed
in Ptolemy’s theory?

9. As you probably know, lunar and solar eclipses are somewhat rare. They certainly
don’t happen as often as every month. What does this imply about the deferent
circles for the Sun and Moon in Ptolemy’s system? In particular: does the deferent
circle for the Sun lie in the plane of the ecliptic? Does the Moon’s?

10. Can observers at different locations on earth disagree about whether a lunar eclipse
is “total” (i.e., whether all of the Moon enters the earth’s shadow cone)? Can
observers at different locations disagree about whether a solar eclipse is total (i.e.,
whether the Sun is completely covered by the Moon)?

11. Argue using vector addition that the apparent motion of a planet is the same if
(a) it moves on an epicycle of radius R, and angular velocity w. = 0, and (b) it
moves around the deferent circle directly, but with the center of the deferent circle
displaced by a distance R, from the position of the earth.

12. In the Ptolemaic theory discussed in this chapter, the moon, Sun, and 5 other
planets all orbit around the earth. We discussed explicitly how the distances to
the Moon and Sun could be measured. What about the distances to the other
planets? Could the Greeks have measured these? Why or why not? What other
sorts of arguments could be used (within the Ptolemaic system) to estimate or put
bounds on the size of the universe?

Projects:

1.1 Reproduce Eratosthenes’ measurement of the size of the earth, perhaps by coordi-
nating with another class in a different part of the country.
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1.2 Your teacher will provide some data for the apparent angular position of the moon,
along the ecliptic, over the course of several days. Do a linear curve-fit to find the
average angular velocity of the moon. Is it what you expect? Look at the residuals
of your fit and explain qualitatively what gives rise to the obvious feature. (The
data include one unrealistic feature, which is that exact positions for the Moon
are given throughout the course of several days, even when the Moon is below the
horizon!) The data were taken from near the Equator when the Moon’s position
in the stars was close to one of the Equinox points (i.e., when the moon was at the
same location relative to the stars that the Sun occupies at one of the Equinoxes).
What is the distance to the Moon?

1.3 Here is another way to determine the relative distances to the Sun and moon.
(Ptolemy discusses the method and credits it to Aristarchus.) During a lunar
eclipse, the Moon passes through the shadow cast by the earth. Because the Sun is
bigger than the Earth, the region of complete shadow “behind” the Earth is shaped
not like a cylinder, but like a cone. From a knowledge of the size and distance of
the Moon — and from observing the size of the Earth’s shadow at the position of
the Moon during an eclipse — the “slant” of the cone can be determined, and one
can hence work out the distance to the Sun.

Dsun Dmoon x

Figure 1.14: During a lunar eclipse, the moon passes into the conical shadow cast behind
the earth.

Figure 1.14 shows the relevant geometry, and Figure 1.15 shows the relevant kind of
observation. Use Figure 1.15 to estimate the relative size of the shadow compared
to the Moon (e.g., is the shadow twice as wide as the moon, or 2.5 times as wide,
or what?). Be as precise as you can. Then use the already-known relationship
between the Moon’s radius and the Earth’s radius to determine how the size of the
shadow (at the Moon’s distance) compares to the size of the Earth. Knowing also
already the distance to the moon allows one to then calculate the angle that the
edge of the shadow slants at in the Figure. And this now known slant angle can
then be related to the size and distance to the Sun. Finally, combine this relation
with Equation 1.13 to yield an expression for the distance to the Sun. There are
some tricky aspects to this, which should warrant further thought and discussion.
In particular, it is worth considering whether this method is more or less reliable
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than the method described in the main text.

Figure 1.15: A mosaic of pictures showing the moon passing through the earth’s shadow
during a lunar eclipse. By looking at one of the shots of the moon where it is approxi-
mately half-shadowed, it is clear that (a) the shadow has a round edge (helping establish
the round shape of the earth), and (b) that the size of the shadow is bigger than — one
might guess roughly twice as big as — the size of the moon itself. Photo by Anthony
Ayiomamitis, http://antwrp.gsfc.nasa.gov/apod/ap040506.html

1.4

1.5

1.6

Your teacher will provide some data for the angular position (along the ecliptic) of
the Sun, over the course of several years. Use Excel to make a graph of the angle vs
time. Then use Excel to compute the angular velocity vs time. What is the average
value of the Sun’s angular velocity? What is the period of its motion (relative to
the stars)? Are these numbers related the way they should be? Does the Sun
move with constant angular velocity? Describe qualitatively any deviations from
constancy.

Your teacher will provide some data for the angular position (along the ecliptic) of
a planet such as Mars, over the course of several years. Use Excel to make a graph
of the angle vs time. Then use Excel to compute and graph the angular velocity
vs time, and the angular acceleration vs time. Be able to explain in words any
interesting features of the graphs, and how the graphs relate to one another.

Putting the Sun in a circular orbit around the earth with constant angular velocity
accounts for its motion pretty well. But it is not exact. You probably noticed
in Project 1.4 that the angular velocity is not exactly constant, but is rather
sometimes a bit faster and sometimes a bit slower than usual. One way to account
for this behavior in Ptolemy’s system is by having the Sun move in a circular orbit
with uniform angular velocity relative to the center of the circle — but displacing
the center of that circle somewhat from the earth. This construction is referred to
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as an “eccentric” circle, and was in fact used by Ptolemy not only for the Sun, but
also for the moon and the other 5 planets. Let’s see how it works for the Sun.

Figure 1.16: An eccentric circle. The point P (which represents a planet, here the Sun)
moves around the circle with uniformly-increasing 6. But since the center of the circle
doesn’t coincide with the earth, the observed angle of P relative to the stars will be ¢,
which will increase in a not-quite-uniform way.

1.7

Use the triangle in the figure to write an expression for ¢ (the observable angular
position of P on the ecliptic) in terms of §. Then use the fact that 6 should increase
according to 6(t) = 6y + wt (with w a constant) to write an expression for ¢(t). It
should depend on ¢/R, and w. Finally, do a curve-fit with the actual data for the
Sun to find the best values for these parameters. How good is the fit? Examine
the residuals. Are there still systematic errors?

Following up again with the Sun: hopefully you found that an eccentric orbit can
reproduce quite accurately the data for the Sun’s progression along the ecliptic to
within an accuracy of about a tenth of a degree. Let’s now explore how well you
can do with the final scheme developed by Ptolemy for accounting for “anomalous”
motion of the planets: the “equant.” Here the motion of the Sun is around a circle
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1.8

centered at the earth, but the angular velocity is constant with respect to a point
called the equant which is off to the side by some distance. Draw a simple diagram
to help you work out how the observed ecliptic angle of the Sun should vary in
time in this scheme, and then do another curve-fit. You should find that you
can do just about as well with the equant as with the eccentric (though the exact
nature of the remaining small errors will be slightly different with the two devices).
According to Ptolemy, the Sun has just one “anomaly” and it is hence a matter of
choice whether one corrects this using an epicycle, an eccentric, or an equant. The
5 planets, however, turn out to have three anomalies each — so the fully detailed
account of their motion required, in Ptolemy’s system, all three devices for each
planet! This turns out to play an important role in Copernicus’ arguments for a
heliocentric system.

Your teacher will provide some data for the angular position (along the ecliptic)
of a planet, over the course of several years. Perform a curve-fit to find the values
of wy, we, and Ry/R. — from Equation 1.28 — that provide the best fit to the
data. (The data will be pre-arranged so that, at t=0, the planet will be in the
middle of its retrograde cycle — so you can automatically set 63 = 0 and 65 = 7.)
Note also the time between subsequent retrogradings of your planet, the so-called
synodic period. Be as accurate as possible and get at least two significant figures
of precision for each parameter. Students should be assigned to different planets,
so the class as a whole can compile and discuss the results for all the planets.
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Chapter 2

The Copernican Revolution

This chapter covers the transition from the geo-centric theory of Ptolemy, to the now
widely-known and -accepted helio-centric theory of Copernicus. We begin by simply
presenting the Copernican theory of the solar system, with a focus on the numerical
coincidences in the Ptolemaic system which are removed and explained by Copernicus’
theory. We then briefly survey the two sets of ways that Galileo contributed to the
acceptance of Copernicus’ ideas — and paved the road for Newton. And finally we
describe the contributions of Kepler, who clarified and supplemented Copernicus’ basic
scheme with some additional insights that were crucial to Newton’s eventual discovery
of his theory of gravity.

2.1 Copernicus

Perhaps the most surprising thing about Copernicus’ revolutionary 1543 On the Revolu-
tion of the Heavenly Spheres is how un-revolutionary it is. Although he is arguing for a
radical reconception of the place of earth (and hence mankind) in the universe, Coperni-
cus accepts and implements almost all of the cosmological and astronomical premises of
the Greeks: for example, that the universe is spherical and bounded by a sphere of fixed
stars, that the proper motion of heavenly bodies is eternal circular motion, and that the
small irregularities or anomalies in the motion of the heavenly bodies should be accounted
for with Ptolemaic correctives such as eccentrics and epicycles. Indeed, Copernicus’ own
central argument for his heliocentric system was a seemingly very marginal point of de-
tail: it allowed him to do without the particular Ptolemaic device called the equant,
which Copernicus regarded as an abhorrent departure from the basic axiom of uniform
circular motion. Copernicus was, in short, a surprisingly conservative revolutionary.

But nevertheless, Copernicus’ work did begin a revolution that ultimately culmin-
nated in Newton’s theory of universal gravitation. So let us examine it.

Copernicus’ first big claim is that the (apparent) daily westward rotation of the entire
heavens is best understood (instead) as a daily eastward rotation of the earth:

“Although there are so many authorities for saying that the Earth rests in
the centre of the world that people think the contrary supposition inopinable

39
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and even ridiculous; if however we consider the thing attentively, we will see
that the question has not yet been decided and accordingly is by no means
to be scorned. For every apparent change of place occurs on account of
the movement either of the thing seen or of the spectator, or on account of
the necessarily unequal movement of both. For no movement is perceptible
relatively to things moved equally in the same directions — I mean relatively
to the thing seen and the spectator. Now it is from the Earth that the celestial
circuit is beheld and presented to our sight. Therefore, if some movement
should belong to the Earth it will appear, in the parts of the universe which
are outside, as the same movement but in the opposite direction, as though
the things outside were passing over. And the daily revolution in especial
is such a movement. For the daily revolution appears to carry the whole
universe along, with the exception of the Earth and the things around it.
And if you admit that the heavens possess none of this movement, but that
the Earth turns from west to east, you will find — if you make a serious
examination — that as regards the apparent rising and setting of the Sun,
moon, and stars the case is so.”

Part of the argument for the rotating earth is that it gives a simpler explanation of the
apparent motion of the heavens. What observation supports is merely the claim that the
entire extra-terrestrial universe (the stars, the planets, the Sun, and the moon) moves in
a certain way relative to the earth. So why have all those other objects move, when the
motion of just one object — the earth — will equally well account for the observations?

Interestingly, Copernicus also rests his argument in favor of the rotating Earth on the
fact that the Earth is a sphere, and circular or rotational motion is (he claims) natural
and proper for a spherical object:

“the movement of the celestial bodies is circular. For the motion of a sphere
is to turn in a circle; by this very act expressing its form, in the most simple
body, where beginning and end cannot be discovered or distinguished from
one another, while it moves through the same parts in itself.”

Thus, since “the Earth is held together between its two poles and terminates in a spherical
surface”

“Why therefore should we hesitate any longer to grant to it the movement
which accords naturally with its form, rather than put the whole world in a
commotion — the world whose limits we do not and cannot know? And why
not admit that the appearance of daily revolution belongs to the heavens but
the reality belongs to the Earth?”

If — on either of these arguments — you are willing to accept that the earth rotates,
it is then only a little more of the same to accept that the yearly (apparent) motion of
the Sun around the ecliptic, is in fact due to the yearly orbit of the earth around the
(stationary) Sun. Thus, according to Copernicus, it is the Sun which is at rest at the
center of the universe. The earth is then just another planet, orbiting around the Sun
in a more-or-less circular trajectory. The basic scheme is sketched in Figure 2.1.
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Figure 2.1: A famous depiction of Copernicus’ model of the universe, from a 1576 text by
Thomas Digges which included the first English translation of much of Copernicus’ De
Revolutionibus. The Sun lies at the center, surrounded in turn by the orbits of Mercury,
Venus, Earth (with its moon), Mars, Jupiter, and Saturn. Note that Digges (unlike
Copernicus) depicts the solar system as embedded in an expanse of stars, rather than
a fixed shell. This is a natural extension from what Copernicus proposed since, unlike
Ptolemy, Copernicus doesn’t require the fixed stars to move. There is hence no particular
reason they should be attached together (on a spherical shell) rather than spread out
through space.
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Let’s try to understand in detail how the apparent motion of the Sun and planets
is accounted for in Copernicus’ helio-centric theory. Figure 2.2 shows how the annual
eastward movement of the Sun around the ecliptic can be understood in terms of the
posited annual orbit of the Earth around a fixed Sun. For Copernicus, the ecliptic —
whose original definition is just the set of points that the Sun occupies on the map
of fixed stars — can be understood in terms of the Earth’s orbit. That orbit lies in a
plane which intersects the Sun, and so the set of possible apparent positions of the Sun
against the background of fixed stars is simply the circle on which the Earth’s orbit plane
intersects the sphere of fixed stars.

What about the progression of the seasons? The observational fact that the ecliptic
is tilted with respect to the celestial equator is explained by Copernicus as follows: the
axis about which the earth’s daily rotation occurs, is not perpindicular to the plane of its
yearly orbit around the Sun. The rotation axis does not point to the pole of the ecliptic,
but is instead tilted by 23.5° and hence points toward the celestial pole (currently near
the star Polaris, the “north star”). The earth’s rotation axis remains (more or less) fixed
in space (pointing to Polaris) as the earth orbits the Sun, as illustrated in Figure 2.3.

As already mentioned and sketched in Figure 2.1, the five planets (Mercury, Venus,
Mars, Jupiter, and Saturn) will — like Earth — make roughly circular orbits around the
Sun. For Mercury and Venus, whose orbits are interior to the Earth’s orbit, it is pretty
clear how their motion will be perceived, from Earth, as a kind of back-and-forth motion
along the ecliptic that is always centered at the Sun. In particular, the retrograde motion
of the two “inferior” planets will be explained, in Copernicus’ theory, by the motion of
the planets when they are on the near side of the Sun (as seen from Earth). But what
about the three “superior” planets: Mars, Jupiter, and Saturn? How is their occasional
retrograde motion accounted for by Copernicus?

In Ptolemy’s theory, the motion of these planets was analyzed in terms of two con-
joined circular motion: a “big” circular motion (of the deferent point around earth), and
a “small” circular motion (of the planet on an epicycle around the deferent point). The
key to understanding Copernicus’ explanation for the apparent motion of these plan-
ets is to grasp that, at the level of mathematical description, the account is precisely
the same! Here too the motion of (say) Mars with respect to Earth can be analyzed in
terms of the conjunction of two circular motions — namely, the motion of Mars around
the Sun (which corresponds in Ptolemy’s theory to the “big” circular motion), and the
motion of Earth around the Sun (which corresponds in Ptolemy’s theory to the “small”
circular motion, the epicycle). That is: Copernicus replaces the epicycle (which Ptolemy
introduced precisely to account for the retrograde motion) with the motion of the Earth
around the Sun. Figure 2.4 is an attempt to sketch the mathematical argument that the
two schemes must make the same observational predictions for the motion of Mars (and
Jupiter and Saturn) with respect to Earth.

Nevertheless, it is somehow harder to see intuitively how retrograde motion arises
in the Copernican system, than in the Ptolemaic system. Figure 2.5 sketches the way
to understand this, and the caption explains how the explanation can be understood to
apply to both the inferior and superior planets.

Now we can finally see the major sense in which Copernicus’ model of the solar
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Figure 2.2: Motion of the Earth around the stationary Sun results in an apparent motion
of the Sun with respect to the fixed stars. Note that in the Copernican system the ecliptic
is understood in terms of the plane in which the earth’s orbit lies. It is because we (on
earth) always view the Sun from some point on that orbit, that the Sun always appears
at some point on the ecliptic. That is, the ecliptic (thought of as a path along the sphere
of fixed stars) is the intersection of the plane of the earth’s orbit with the sphere of fixed
stars.
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Figure 2.3: The earth is shown at four points in its yearly orbit around the Sun. At the
summer solstice (SS) the 23.5° tilt of the earth’s rotation axis down from the pole of
the ecliptic is directly toward the Sun. On that day, the Sun will therefore be directly
overhead at noon for an observer on the Tropic of Cancer (23.5° North Latitude). For
observers in more northerly latitudes, the Sun will be higher in the sky at noon than
at any other day during the year. Six months later, on the winter solstice (WS), the
earth’s rotation axis is tilted away from the Sun. (That, at least, is how we describe
it in the Northern Hemisphere!) On that day, an observer on the Arctic Circle (66.5°
North Latitude) won’t see the Sun rise above the horizon at all. Observers in moderate
northern latitudes will see the Sun lower in the sky at noon than on any other day during
the year. Also pictured are the Autumn and Spring equinoxes (AE and SE), when the
plane defined by the Earth’s equator intersects the Sun. On these days all observers will
see the Sun rising and setting precisely to the east and west, respectively, and the time
between sunrise and sunset will be precisely half a day.
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Figure 2.4: The top and bottom parts show (respectively) how the position of a planet
(Mars) is analyzed in Ptolemy’s theory and Copernicus’ theory. For Ptolemy, the position
of Mars with respect to Earth is given by the sum of two vectors (each of which maintains
a constant magnitude but changes its direction uniformly in time): g s = 7r,p + 7D M-
It is the coincidence noted in the text that the vector representing the position of Mars
on its epicycle — 7p ar — is just the same as the vector representing the position of the
Sun relative to the Earth: 7g g. According to Ptolemy, the vector labeled 7s s is not
directly relevant to the motion of Mars — it is only by coincidence equal to his 7 p.
By instead referencing the position of Mars directly to the Sun, Copernicus removes the
coincidence and accounts for the position of Mars with respect to Earth as shown in
the bottom part of the figure: 7y = TE,5 + s a. Note that, in Ptolemy’s system,
the absolute sizes of the deferent and epicycle are not determined — only their ratio is
observationally meaningful. We have here depicted Mars’ epicycle as having the same
size as the Earth’s orbit around the Sun to emphasize the correspondence between the
two theories. It’s important, though, that according to Copernicus what Ptolemy would
have called the Sun’s orbit around the Earth and Mars’ epicycle have the same size. And
since one of these sizes has already been measured, the other is determined too, which in
turn fixes (what Ptolemy would have called) the size of Mars’ deferent circle. But that
corresponds, in Copernicus’ system, to the size of Mars’ orbit around the Sun. This is
why one can, in Copernicus’ system but not in Ptolemy’s, determine the absolute size of
the orbits of the planets.
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Mars

Figure 2.5: How retrograde motion arises in the Copernican system: the positions of
Earth and Mars are shown at seven times over the course of half a year, as are the
apparent positions of Mars against the backdrop of fixed stars. Between 1 and 2, Mars
appears to move relatively quickly (to the east) relative to the stars. Between 2 and
3 it continues to move eastward, but more slowly. At 3, though, it reverses its motion
and retrogresses (i.e., moves to the west) until 5, at which point it again reverses and
continues its normal (easterly) motion relative to the stars. The same process also
explains how the other two superior planets (Jupiter and Saturn) come to retrogress.
Note that the distance to the fixed stars is (contrary to the figure) really supposed to
be much larger than the size of Earth’s orbit. So really one can perceive the retrograde
motion merely from the way the angle of the “lines of sight” evolve over time: from 1 to
3 the line of sight rotates counter-clockwise, which corresponds to an apparent motion of
Mars to the east. Then from 3 to 5 the line of sight rotates clockwise, corresponding to
an apparent westerly Martian motion. Then from 5 to 7 the line of sight rotates again
counter-clockwise. This way of understanding the origin of retrograde motion is helpful,
because it allows one to immediately infer, for example, that if one lived on Mars and
was charting the apparent position of the Earth relative to the (unshown) fixed stars (to
the left), one would also observe retrograde motion during this same period. (Clockwise
rotation of the line of sight corresponds to westerly apparent motion, whether one thinks
of the line of sight extending to the right or to the left in the figure!) And one can then
re-label Mars in the figure as “Earth” and re-label Earth in the figure as (say) “Venus”
and hence understand (from the same figure) how the inferior planets come to retrogress.
The general rule for retrograde motion can be formulated this way: a given planet will
undergo retrograde motion as seen from earth when the relatively-inferior planet (which
is Earth if we’re talking about Mars, Jupiter, or Saturn, and is the planet itself if we're
talking about Mercury or Venus) overtakes or “passes under” the relatively-superior
planet.
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system is simpler than Ptolemy’s. Ptolemy’s theory required a completely independent
construction (deferent and epicycle) for each planet. But it turns out that the same
number — the angular velocity of the Sun — shows up again and again in these separate
constructions. Each planet is somehow or other “infected” with the motion of the Sun.
For the two inferior planets, their deferents rotate at the same rate as the Sun, while for
the three superior planets, their epicycles rotate at the same rate as the Sun. There is
no reason for this in Ptolemy’s system. It is just a coincidence that emerges when one
fits the model to real data.

Copernicus removes and explains the coincidence by letting the same one circle —
the Earth’s orbit around the Sun — do all the jobs that were done by the coincidentally-
identical circles in Ptolemy’s theory. Copernicus replaces five of Ptolemy’s circles (the
deferents of Mercury and Venus, and the epicycles of Mars, Jupiter, and Saturn) with
just one circle (the Earth’s orbit around the Sun).

But we have glossed over something important. So far we have only spoken of one
property of Ptolemy’s circles: their speeds or angular velocities. But circles have another
important property, too: size! And recall that, in Ptolemy’s system, only the relative
sizes of the deferent and epicycle was determined by the data — i.e., only the ratio R;/R.
could be fit to observation. But in Copernicus’ model, one or the other of these two
radii (depending on which planet one is talking about) actually refers to the size of the
Earth’s orbit around the Sun — which is known (albeit with a large uncertainty). And so
the other number — i.e., the absolute size of the different planet’s orbit around the Sun
— can be determined also, absolutely.

Copernicus quite properly advertises this aspect of his theory as one of its major
virtues. By in effect reducing the number of free parameters in the theory, the whole
system becomes much more tightly integrated, logically speaking, such that nothing can
be adjusted without affecting the rest — or saying the same thing backwards, there is an
unambiguous road from certain things that are already known (like the distance to the
Sun) to new facts such as the sizes of the planetary orbits:

“I found after much and long observation, that if the motions of the other
planets were added to the motions of the earth, ... not only did the apparent
behavior of the others follow from this, but the system so connects the orders
and sizes of the planets and their orbits, and of the whole heaven, that no
single feature can be altered without confusion among the other parts and in
all the Universe. For this reason, therefore, ... have I followed this system.”

As we will see later in the chapter, the fact that Copernicus’ theory allows the sizes of
the planetary orbits to be determined, yields great additional fruit in the hands of one
of Copernicus’ two great followers: Johannes Kepler.

Let us mention one more of the observational facts discovered by the Greeks and how
it is explained in Copernicus’ system: the precession of the equinoxes. Recall that in
Ptolemy’s theory, this was explained by attributing, in addition to the daily rotation, a
second (more subtle) motion to the sphere of fixed stars: a sort of “wobble” by which
the pole of the ecliptic moved (slowly) about the celestial pole such that, over the course
of thousands of years, the celestial pole would migrate around a circle (centered at the
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pole of the ecliptic). In Ptolemy’s theory this motion, just like the daily rotation, was
“inherited” by all of the other objects in the universe except the Earth which was, of
course, fixed at the center. So the same argument we began with is clearly going to
motivate Copernicus to instead attribute this motion to the Earth: the rotational axis of
the earth does not stay precisely fixed in direction as the earth orbits the Sun; rather it
turns by about a degree or so each century such that (refering again to Figure 2.3) after
some 13,000 orbits around the Sun, the rotation axis will be tilted 23.5° to the right.
The star Polaris will then be a whole 47° away from the north celestial pole, and it will
be the middle of winter when the Earth is in the part of its orbit (to the right in the
Figure) that now corresponds to summer.

We may thus summarize Copernicus’ basic theory as follows. Copernicus attributes
three motions to the earth: a daily rotation, a yearly orbit, and a slow precession of the
rotation axis (to account for the precession of the equinoxes). This allows him to get rid
of the daily rotation of the stars, planets, Sun, and moon; the motion of the Sun relative
to the stars; and the long-period wobble. He also gets rid of the planetary epicycles,
and, in so doing, determines the absolute sizes of all the planets’ orbits. At this level of
description, the theory is really elegant and extremely useful. But there are two serious
caveats.

First, what about all the objections to the heliocentric solar system (which remember
had been proposed in Ancient Greece by Aristarchus) that we reviewed at the end of
the previous chapter? Did Copernicus have any good answers to these? Not really. For
example, he recognized that his theory predicted either that the stars should display a
sizable annual parallax — or that the stars were much, much further away than had been
previously conceived. And, at the end of the day, he had nothing better to say than: I
guess they are very far away.

“...the dimensions of the world are so vast that though the distance from the
Sun to the earth appears very large compared with the size of the orbs of
some planets, yet compared with the dimensions of the sphere of fixed stars,
it is as nothing.”

That of course turns out to be true. But you can see why it didn’t go very far in
convincing many of his contemporaries. Copernicus also doesn’t have much useful to
say in response to the worry that a rotating earth would mean constant strong westerly
winds, birds that can’t catch worms, and rocks falling miles to the west of where they
were thrown from. Essentially his response is: evidently the air and birds and rocks
share in the same daily rotation that the Earth as a whole undergoes:

“what would we say about the clouds and the other things floating in the air
or falling or rising up, except that not only the Earth and the watery element
with which it is conjoined are moved in this way but also no small part of
the air and whatever other things have a similar kinship with the Earth? ....
Hence the air which is nearest to the Earth and the things floating in it will
appear tranquil...”

But as we discussed at the end of the previous chapter, this idea is really in conflict
with then-widely-accepted principles of physics (rest as natural, external force needed to
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explain motion, etc.). Copernicus’ ideas were thus not immediately accepted by many
others.

The second big problem is that the simple helio-centric theory as presented so far
fails to match the observational data. To be specific: it matches the data just as well as —
or probably one should say just as poorly as — a Ptolemaic theory which has just a single
deferent-epicycle construction for the planets, and simple uniform circular motion for
the Sun. But precisely because this theory didn’t account for the details of the observed
motion of the Sun, Moon, and stars, Copernicus — just like Ptolemy — had to introduce
a number of suspicious devices (such as eccentric circles and additional epicycles). For
Ptolemy, these devices seemed somehow marginal or minor: what’s the big deal about
making the orbit of Mars, for example, slightly eccentric, when it already has a big
epicycle? But precisely because the basic version of Copernicus’ theory is so elegant and
coherent compared to Ptolemy’s, the needed eccentrics and epicycles stand out rather
dramatically as ugly blemishes.

Let us see in more detail how and why these blemishes were introduced.

In the previous chapter, we discussed Ptolemy’s use of the eccentric in relation to the
Sun. Ptolemy introduced an eccentric orbit for the Sun because, as a brute matter of
observational fact, the equinoxes did not quite divide the year in half: the winter “half”
of the year (from the Autumn Equinox to the Spring Equinox) was several days shorter
than the summer “half” of the year, i.e., the Sun moves more rapidly along the ecliptic
during the winter than during the summer. To account for this, Ptolemy displaced the
center of the Sun’s orbit slightly from the Earth. Similar fixes were also required for the
Moon and other planets. Indeed, the planets other than the Sun required several such
fixes each. Thus, in addition to the deferent circles being displaced somewhat from the
Earth, the deferent points were made to rotate at fixed angular velocity with respect
to some point (the equant) different from both the earth and the center of the deferent
circle, and/or additional epicycles were added, and/or the epicycles themselves were
made to be slightly eccentric with respect to the deferent point, etc.

Let’s first understand how Copernicus dealt with the slightly irregular motion of the
Sun, and then sketch how he treated the other planets.

Copernicus, of course, has the Earth go around the Sun, rather than the Sun go
around the Earth. But Ptolemy’s method of fixing up the relative motion of these two
objects — making the orbit eccentric — works just as well in Copernicus’ theory: one
simply shifts the center of the Earth’s (circular) orbit a little ways away from the Sun,
as shown in Figure 2.6.

Rather curiously, Copernicus refers to the center of the Earth’s circular orbit as the
“Mean Sun”. (This really doesn’t make any sense, though there is a kind of half-sensible
justification for it. Can you figure out what that is?) And he seems to regard this point
as occupying the center of the universe — it is, for example, the “Mean Sun” (as opposed
to the actual position of the actual Sun) to which Copernicus refers the orbits of all the
other planets. This minor fix therefore has a rather major qualitative implication: it
makes Copernicus’ system not, in fact, helio-centric after all! It’s of course not exactly
geo-centric either, since the Earth orbits around the point Copernicus considers to be
the true center. Maybe one should call it geo-centric-centric, since the true center is
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Figure 2.6: The Earth’s eccentric orbit around the Sun. The horizontal and vertical lines
point to the apparent position of the Sun against the distant fixed stars, as seen from
earth on the solstices and equinoxes. The same symbol, SS, labels both the position of the
Earth at the Summer Solstice and the apparent position of the Sun against the fixed stars
at the Summer Solstice; likewise for the Autumn Equinox (AE), Winter Solstice (WS),
and Spring Equinox (SE). According to Ptolemy, the Earth-Sun distance is greatest when
the Sun is about 24.5° west of the Summer Solstice point. In Copernicus’ model, this
means the Earth reaches “aphelion” (the point in its eccentric orbit where it is farthest
from the Sun) when it is 24.5° shy (as measured from the Sun) of the point on its orbit
labelled SS. The center of the Earth’s circular orbit is labelled “Mean Sun” (which is
Copernicus’ somewhat odd terminology). The observational data requires an eccentricity
of about one part in twenty, meaning that the “Mean Sun” is displaced from the Actual
Sun by about 1/20 the radius of the Earth’s orbit. (Note that Copernicus refers to the
actual location of the Sun not, as I just have, as the “Actual Sun” but rather as the
“Apparent Sun” — because that is where it appears to be! You can see that it’s slightly
embarrassing for him that the Sun is displaced from the center of the Earth’s orbit —
i.e., that the system really isn’t heliocentric!) The dotted line connecting the Mean and
Actual (or “Apparent”) Suns, which hence also passes through the Earth’s aphelion and
perihelion points, is called the “apsis.”
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not the Sun, but the center of the Earth’s orbit. Or maybe, since Copernicus calls this
point the Mean Sun, one should call the theory mean-helio-centric? The terminology, of
course, doesn’t matter. But it is important that Copernicus’ helio-centric system really
did mot have the Sun at the center, and really did not refer the orbits of the planets to
the actual position of the Sun. For as we will see later in the chapter, major advances
were made by Kepler when he took helio-centrism more seriously than even Copernicus
had!

Actually, things are even a bit worse in Copernicus’ theory than I've indicated. The
previous discussion and Figure 2.6 describe how Copernicus would account for the ir-
regularity of the Sun’s apparent motion as those irreqularities were known to Ptolemy.
But in the many centuries between Ptolemy and Copernicus, additional irregularities
had appeared — in particular, the precise details of the eccentricity had changed. As
Copernicus puts it:

“the distance of the Sun from the centre of the orbital circle... has now
become approximately 1/31st [of the radius of the Earth’s orbital circle],
though to Ptolemy it seemed to be 1/24th. And [the aphelion, the Earth’s
farthest point from the Sun], which was at that time 24.5° to the west of the
summer solstice, is now 6 2/3° to the east of it.”

That is, both the magnitude and direction of the eccentricity of the Earth’s orbit had
changed.

How did Copernicus account for this? He let the center of the Earth’s orbit — the
Mean Sun — move around a small circle centered at the point labeled “Mean Sun”
in Figure 2.6. This is a really small irregularity which only manifests itself over long
periods of time. We will basically set this aside until we are ready to apprehend its
cause in Chapter 6. It is mentioned here only to provide a further sense of the ways
that Copernicus needed to mar the initial elegance of his theory, with a slew of Ptolemy-
style epicycles and other devices, in order to achieve the same sort of match to the
observational data that Ptolemy’s theory enjoyed.

But let us return to one of the virtues of Copernicus’ theory, at least as claimed
by Copernicus. Leaving aside the minor irregularity just discussed, the Sun’s apparent
motion around the ecliptic (i.e., the Earth’s orbit around the Sun) is sufficiently well-
described by an eccentric circle. We saw in the previous chapter that using an eccentric
is mathematically equivalent to using an epicycle (with w, = 0), and also that an equant
can account for the anomalous motion basically as well as an eccentric or epicycle (though
the equant is not quite mathematically equivalent to the other two). The point is, in
Copernicus’ way of thinking, the Earth’s orbit around the Sun had a single anomaly —
which could be fixed to the necessary precision by using an epicycle or an eccentric or
an equant.

As far as the Earth-Sun system is concerned, Ptolemy and Copernicus agree. But
what about the other planets? Ptolemy had found the motions of the planets to have
three anomalies (each). Thus, in Ptolemy’s system, a planet’s motion would involve a
deferent circle corresponding to the expected, proper, non-anomalous circular motion —
with the observational data then requiring the planet to move on an epicycle, and for
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the center of the deferent circle to be displaced somewhat from the earth (an eccentric),
and for the angular motion of the deferent to be uniform with respect to some other
point, not quite at the deferent’s center (an equant).

We mentioned at the beginning of the chapter that one of Copernicus’ central moti-
vations for proposing his theory was that it allowed him to do without the equant:

“the planetary theories of Ptolemy and most other astronomers, although
consistent with the numerical data, seemed ... to present no small difficulty.
For these theories were not adequate unless certain equants were also con-
ceived; it then appeared that a planet moved with uniform velocity neither
on its deferent nor about the center of its epicycle. Hence a system of this
sort seemed neither sufficiently absolute nor sufficiently pleasing to the mind.
Having become aware of these defects, I often considered whether there could
perhaps be found a more reasonable arrangement of circles, from which every
apparent inequality would be derived and in which everything would move
uniformly about its proper center, as the rule of absolute motion requires.”

What was Copernicus’ objection to the equant? He considered it to be an abhorrent
departure from the basic axiom of astronomy — that the heavenly motions should be
understood in terms of uniform circular motion:

“We must however confess that these movements are circular or are composed
of many circular movements, in that they maintain these irregularities in
accordance with a constant law and with fixed periodic returns: and that
could not take place, if they were not circular. For it is only the circle which
can bring back what is past and over with...”

We are finally in a position to see, at least in outline, how Copernicus managed without
the dreaded equant.

First consider the Ptolemaic construction for some planet, say Mars. The basic
scheme is as shown in the top half of Figure 2.4. The more detailed model (required to
achieve adequate agreement with observation), however, added two additional anomalies
(in addition to the big epicycle): the deferent circle was made to be eccentric, and the
epicycle was given an equant. We have seen in Chapter 1 that, qualitatively though not
precisely, the equant and eccentric are equivalent. Thus Ptolemy could have achieved
equally good agreement with observation by making the epicycle eccentric, instead of
using a deferent, had he so chosen. It would have been three total anomalies per planet
either way, so really it’s a matter of indifference. Probably Ptolemy’s rationale for choos-
ing the equant rather than a second eccentric for that third anomaly was predominantly
aesthetic: it somehow seemed nicer to use each of the three devices once per planet
rather than double up. In any case, Ptolemy freely used equants in his descriptions of
the planets, and Copernicus made a big deal of the fact that his system could achieve
the same accurate match to the observations without any equants.

To understand how Copernicus’ system allowed this, one need only think about
how a Ptolemaic doubly-eccentric epicycle construction (qualitatively equivalent to the
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eccentric-epicycle-equant construction Ptolemy actually used) translates into Coperni-
cus’ theory. The two eccentric circles remain — only, instead of one of them being an
(eccentric) epicycle, the second eccentric circle will be the Earth’s (eccentric) circular
motion around the Sun. That is, Copernicus achieves the same accuracy that Ptolemy
achieved by introducing three “anomalies” per planet, with only one anomaly per planet
— which Copernicus chose to be eccentrics. This is because one of Ptolemy’s three
anomalies — the epicycle — corresponded to something in Copernicus’ system which isn’t
anomalous at all: the Earth’s roughly circular orbit around the Sun.

Copernicus did have a point here, and his system is importantly better than Ptolemy’s
on this front. We’ll discuss that point shortly. But there is also a sense in which
Copernicus overstates, or maybe just misstates, the nature of this improvement. Namely:
Copernicus hangs too much on the equant. He makes it sound as if using equants was a
necessary feature of Ptolemy’s model, and was positively prohibited in his model. But
neither of these is the case. Ptolemy could have gotten along just as well by using
additional eccentrics or epicycles instead of equants, and Copernicus could easily and
naturally have used equants instead of the eccentrics or epicycles he did employ. So
the issue of equants is a bit of a red herring — especially when one remembers that
Copernicus’ reasons for despising the equant don’t actually hold water.

On the other hand, it is genuinely important that Copernicus’ system achieved the
same accuracy with one “anomaly” per planet (for which Copernicus chose eccentrics)
that Ptolemy required three anomalies per planet to achieve. This indicates a real
simplification (as opposed to a mere arbitrary preference for one sort of anomaly-fix over
another).

And note that this implies an additional, more subtle (and hence more impressive),
sense in which Copernicus’ theory explains some features of the planets’ motions which
were, according to Ptolemy, identical by sheer coincidence. We explained previously
how, despite getting its own individual deferent-epicycle construction, each planet was
somehow — inexplicably — “infected” with the motion of the Sun. In particular, the
angular velocity of the Sun showed up — as either the deferent or epicycle angular velocity
— in the construction for each of the other 5 planets. The point here is this: so did the
slightly anomalous behavior of the Sun. That is: not only could the same one circle
(the Earth’s orbit around the Sun) successfully replace five of Ptolemy’s circles — but
(much more impressively) a single “anomalous circle” (e.g., an eccentric circle) could
successfully replace five of Ptolemy’s anomalous circles. So it is more like trading 10
free parameters in for 2 — rather than trading 5 for 1, as we described it before. So the
simplification is something like twice as good as we advertised earlier: a reduction of
roughly 8 free parameters compared to Ptolemy’s theory.

So where does this leave us? No doubt Copernicus’ system is simpler than Ptolemy’s
when it comes to accounting for the observed motions of the planets. The central point
in its favor is that it replaces the major epicycle used by Ptolemy for each of the five
planets, with the same one circular motion: the motion of the Earth around the Sun.
And Copernicus’ theory is not just numerically simpler in the sense that it accounts
for the same observations with four fewer circular motions (or eight overall fewer free
parameters). For, as Copernicus puts it, “the mobility of the Earth binds together the
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order and magnitude of their orbital circles in a wonderful harmony and sure commen-
surability” which allows the absolute sizes of the planetary orbits to be unambiguously
determined.

On the other hand, we have also seen that the overall simplicity of Copernicus’ model
relative to Ptolemy’s is actually quite small, since both theorists require not just one or
two circles for each planet, but a variety of seemingly ad hoc fixes: eccentrics, minor
epicycles, etc. But, on the first hand again, if one shares Copernicus’ distaste for the
equant, his theory gains the clear upper hand even at the level of the detailed, fully
fixed models. But then — back to the other hand — we have also seen that when the need
arose, Copernicus didn’t hesitate to, for example, add an extra epicycle to fix some small
leftover irregularity — which makes it seem like Copernicus avoided using equants only
because, when anomalies proliferated, he opted to use something else (another epicycle,
say) instead of an equant. And anyway, it’s really not at all clear why the equant is
supposed to be worse — supposed to be more of a departure from the axiom of uniform
circularity — than an eccentric or epicycle.

In short: it is by no means clear that Copernicus’ theory represents a significant
improvement over Ptolemy’s, at least in so far as a scientific understanding of the motion
of the planets is concerned. It’s surely a reasonable hypothesis worth pursuing, but
the motion of the planets don’t exactly contain any knock-down conclusive proof that
Copernicus is right and the Greeks were wrong. Add to this the fact that Copernicus’
theory runs up against the various objections to putting the earth in motion that we
reviewed at the end of Chapter 1, and you can start to see why Copernicus’ ideas took
some additional time to gain wide acceptance.

2.2 Galileo

Let us then turn to the first of the two great (and roughly contemporary) followers of
Copernicus: Galileo Galilei (1564-1642). Some of Galileo’s important discoveries in the
field of kinematics are (hopefully) familiar from your previous physics courses. Here
we will just sketch those aspects of his work which helped strengthen the case for a
Copernican universe.

2.2.1 Inertia

Galileo’s first major contribution to the Copernican revolution had its origins in a perhaps
unlikely-seeming place: his careful experiments with familiar terrestrial objects such as
pendulums, balls rolling down ramps, and projectiles. His crucial discovery in this area
was that free vertical motion is motion with constant downward accleration and that free
horizontal motion is motion with constant speed. Furthermore, the motion of an object
like a thrown rock — which moves both horizontally and vertically — can be analyzed
into the separate non-interacting horizontal and vertical components. In particular,
the downward acceleration experienced by a ball after you throw it sideways in no way
influences or arises at the expense of the horizontal motion you imparted to it when you
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threw it. Rather, the horizontal motion just continues uniformly and indefinitely (to the
extent that air resistance can be neglected).

This is the origin of the concept “inertia” which represents a rejection of several of
the Ancient Greek ideas about motion. Inertia refers to the fact that, in the absense of a
resistive force like air resistance, an object will simply retain its velocity. As it would be
later clarified in the first and second laws of Newton, an applied force is needed to explain
changes in velocity, not velocity itself. That is: uniform motion at constant speed — such
as the horizontal component of the motion of a projectile — is just as “natural” as rest.

Galileo’s understanding of the principle of inertia was flawed in two important ways.
First, Galileo’s inertia really only applied to the horizontal aspect of motion, since he
conceptualized “gravity” not as an external force acting on things like balls, but as a kind
of inherent tendency for them to accelerate downward. (This is a last remnant of the
ancient Aristotelian notion of “proper place”.) Thus, for Galileo, the “natural” motion
of terrestrial objects like balls is (simultaneously) constant downward acceleration and
constant horizontal velocity. The second flaw in Galileo’s idea of inertia was a kind
of equivocation on the word “horizontal.” A horizontal line extended far enough will
increase in altitude and eventually stray far from the Earth. Does horizontal inertia
imply that a freely moving object will follow such a trajectory? No, said Galileo. For
example, if you imagine rolling a ball across the planar surface of a giant table, it
seems clear that it won’t just keep going forever. To do so, it would have to be going
increasingly uphill and would hence slow down and turn around. But if the table curved
so as to maintain a constant height with respect to the surface of the earth, then the ball
would just keep rolling forever (assuming again an absense of friction). Hence, concludes
Galileo, the “natural,” constant speed, horizontal aspect of motion is really circular, not
rectilinear. It’s just that, since the relevant circle is about as big as the circumference of
the Earth, we don’t notice it in the flight of thrown balls.

Despite these minor flaws, Galileo’s experimentally-rooted concept of inertia was a
profound advance. But what does it have to do with Copernicus? Recall from the end of
Chapter 1 the following argument against the possibility of a moving Earth, as phrased
here by Galileo:

“As the strongest reason of all is adduced that of heavy bodies, which, falling
down from on high, go by a straight and vertical line to the surface of the
earth. This is considered an irrefutable argument for the earth being motion-
less. For if it made the diurnal [i.e., daily] rotation, a tower from whose top
a rock was let fall, being carried by the whirling of the earth, would travel
many hundreds of yards to the east in the time the rock would consume in
its fall, and the rock ought to strike the earth that distance away from the
base of the tower. .... This argument is fortified with the experiment of a
projectile sent a very great distance upward; this might be a ball shot from
a cannon aimed perpindicular to the horizon. In its flight and return this
consumes so much time that in our latitude the cannon and we would be
carried together many miles eastward by the earth, so that the ball, falling,
could never come back near the gun, but would fall as far to the west as the
earth had run on ahead.”
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Galileo rebuts the argument by pointing out that the rocks and balls in these kinds
of situations would, during their flights, maintain whatever horizontal speed they had
initially by virtue of the earth’s eastward rotation — and would hence land right at the
base of the tower or cannon, just as is in fact observed in this kind of situation.

Of course, Copernicus had already claimed the same thing — that, somehow, projec-
tiles (and clouds, birds, etc.) partake of the uniform circular motion that (he argued)
was proper and natural for the Earth. So what has Galileo added? Only a rigorous
experimental proof that this is in fact how objects really move!

It is clarifying to understand how earlier thinkers had wrongly understood the visibly
curved trajectory of projectiles. They had the idea that the horizontal aspect of the
motion was “violent” and “unnatural” (i.e., something artifically and externally imposed
by your hand or whatever) and therefore fleeting. The idea was that after the ball left
your hand, the vertically downward motion (toward the ball’s natural or proper place)
increased, while the unnatural horizontal component of the motion died out, causing the
trajectory to curve downward. This had the implication that, should the ball stay in the
air long enough, it should eventually be found to be moving straight down. And so things
like birds or arrows shot from bows — things which do stay in the air for a reasonably
long period of time — should therefore, at least by the end of their motions, be moving
straight up and down. Which would mean they would be observed to race to the west
at a thousand feet per second if the earth were rotating!

Galileo gives a number of vivid examples which help explain how his concepts of
motion (to use an ironic turn of phrase) remove the ground from under this sort of
objection. For instance, Galileo mentions “another experiment, which is to drop a lead
ball from the top of the mast of a boat at rest, noting the place where it hits, which
is close to the foot of the mast.” But, according to his opponents, “if the same ball is
dropped from the same place when the boat is moving, it will strike at that distance
from the foot of the mast which the boat will have run during the time of fall of the
lead, and for no other reason than that the natural movement of the ball when set free
is in a straight line toward the center of the earth.” That is, an observer watching from
the shore will allegedly see the ball fall straight down, whether the boat is moving out
from underneath it or not. And so, if the boat is moving, the ball will hit the deck some
distance behind the base of the mast.

According to Galileo, however, this is just factually, observably wrong. According to
an observer watching from the shore, the stone will retain its horizontal speed as it falls,
and will hence trace out a curved (parabolic) trajectory. But since its horizontal speed
is maintained and just matches that of the ship, the stone still manages to strike the
ship’s deck just at the base of the mast — just exactly as it would do if the ship weren’t
moving:

“anyone who does it will find that the experiment shows exactly the opposite
of what is written; that is, it will show that the stone always falls in the same
place on the ship, whether the ship is standing still or moving with any speed
you please. Therefore, the same cause holding good on the earth as on the
ship, nothing can be inferred about the earth’s motion or rest from the stone
falling always perpindicularly to the foot of the tower.”
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More generally, if you are locked inside a windowless compartment (such as the hold of
a ship), there is no experiment you can do that would distinguish whether you are at
rest or moving with uniform velocity. In the 20th century, this principle has become
a cornerstone of Einstein’s Special Theory of Relativity. But it was formulated quite
beautifully three centuries earlier by Galileo:

“For a final indication of the nullity of the experiments brought forth, this
seems to me the place to show you a way to test them all very easily. Shut
yourself up with some friend in the main cabin below decks on some large
ship, and have with you there some flies, butterflies, and other small flying
animals. Have a large bowl of water with some fish in it; hang up a bottle
that empties drop by drop into a narrow-mouthed vessel beneath it. With
the ship standing still, observe carefully how the little animals fly with equal
speed to all sides of the cabin. The fish swim indifferently in all directions;
the drops fall into the vessel beneath; and, in throwing something to your
friend, you need throw it no more strongly in one direction than another,
the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully
(though there is no doubt that when the ship is standing still everything
must happen in this way), have the ship proceed with any speed you like, so
long as the motion is uniform and not fluctuating this way and that. You
will discover not the least change in all the effects named, nor could you tell
from any of them whether the ship was moving or standing still. In jumping,
you will pass on the floor the same spaces as before, nor will you make larger
jumps toward the stern than toward the prow even though the ship is moving
quite rapidly, despite the fact that during the time that you are in the air
the floor under you will be going in a direction opposite to your jump. In
throwing something to your companion, you will need no more force to get
it to him whether he is in the direction of the bow or the stern, with yourself
situated opposite. The droplets will fall as before into the vessel beneath
without dropping toward the stern, although while the drops are in the air
the ship runs many spans. The fish in their water will swim toward the front
of their bowl with no more effort than toward the back, and will go with
equal ease to bait placed anywhere around the edges of the bowl. Finally
the butterflies and flies will continue their flights indifferently toward every
side, nor will it ever happen that they are concentrated toward the stern, as
if tired out from keeping up with the course of the ship, from which they will
have been separated during long intervals by keeping themselves in the air.
And if smoke is made by burning some incense, it will be seen going up in the
form of a little cloud, remaining still and moving no more toward one side
than the other. The cause of all these correspondences of effects is the fact
that the ship’s motion is common to all the things contained in it, and to the
air also. That is why I said you should be below decks; for if this took place
above in the open air, which would not follow the course of the ship, more
or less noticeable differences would be seen in some of the effects noted...”
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The argument — as it bears on the Copernican revolution — is that one can replace the
hold of the ship with the whole Earth, and the still water outside the ship with space
surrounding the Sun, and everything would stay the same. That is, contrary to the
assumption of Copernicus’ (and Aristarchus’) opponents, we wouldn’t have noticed it if
the Earth were rotating on its axis once per day and also orbiting the Sun once per year.
Notice that this represents the complete rejection of the “cosmic graph paper” dynamics
sketched at the beginning of Chapter 1.

2.2.2 Telescope

In addition to his work involving the concept of inertia, Galileo contributed significantly
to the Copernican revolution with a series of observations of heavenly bodies. The first
such observation dates to 1604, when Galileo observed a “nova” (meaning: new star).
Such phenomena had been observed before, but were typically dismissed as atmospheric
(rather than celestial), on the grounds that the heavens were perfect and unchanging.
Galileo, however, collected careful observations of the apparent position of the nova over
the course of time and from several different locations in Europe. The constancy of the
apparent position relative to the stars — that is, the lack of parallax — proved that the nova
was significantly farther away even than the moon, which remember displays roughly a
full degree of parallax (due either to the rotation of the heavens or the rotation of the
earth, depending on whose theory you believe). So, contrary to the reveived dogma, the
heavens were not after all perfect and unchanging. And if the Greeks were wrong about
that, maybe they were wrong about the Earth being at the center of the universe, too?

That’s a nice argument, as far as it goes. But it doesn’t go very far. And anyway,
it’s small potatoes compared to what Galileo did five years later, in 1609:

“... A report reached my ears that a certain Fleming had constructed a spy-
glass by means of which visible objects, though very distant from the eye of
the observer, were distinctly seen as if nearby. Of this truly remarkable effect
several experiences were related, to which some persons gave credence while
others denied them. A few days later the report was confirmed to me ....
which caused me to apply myself wholeheartedly to inquire into the means
by which I might arrive at the invention of a similar instrument. This I did
shortly afterwards, my basis being the theory of refraction. First I prepared a
tube of lead, at the ends of which I fitted two glass lenses, both plane on one
side while on the other side one was spherically convex and the other concave.
Then placing my eye near the concave lens I perceived objects satisfactorily
large and near, for they appeared three times closer and nine times larger
than when seen with the naked eye. Next I constructed another one, more ac-
curate, which represented objects as enlarged more than sixty times. Finally,
sparing neither labor nor expense, I succeeded in constructing for myself so
excellent an instrument that objects seen by means of it appeared nearly one
thousand times larger and over thirty times closer than when regarded with
our natural vision.”
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Figure 2.7: The half-moon. Notice the sunlit peaks to the left of the lunar night/day
boundary (the “terminator”).

What did Galileo see when he became the first person to examine the heavens through
a telescope? Lots of things. And all of them supported, in one way or another, the
Copernican worldview:

e New stars. As soon as he pointed the telescope to the sky, Galileo was “over-
whelmed by the vast quantity of stars” — “...more than five hundred new stars
distributed among the old ones within limits of one or two degrees of arc.” The
Milky Way was revealed as a vast tract of individual stars, which blended and
blurred together when seen with the naked eye. And some stars were revealed
by the telescope to be double — two stars so close together that they could not
be individually discriminated with the naked eye. None of this provided any sort
of direct confirmation of the Copernican theory. But it was, like the nova, indi-
rect evidence — that the ancient dogmas were based on shamefully incomplete or
downright erroneous information, and were therefore to be doubted.

e The Moon. When Galileo turned his telescope toward the moon, he saw

“that the surface of the moon is not smooth, uniform, and precisely
spherical as a great number of philosophers believe it (and the other
heavenly bodies) to be, but is uneven, rough, and full of cavities and
prominences, being not unlike the face of the earth, relieved by chains of
mountains and deep valleys.”
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He went on to describe the lunar sunrise, as seen from afar:

“[N]Jot only are the boundaries of shadow and light in the moon seen to
be uneven and wavey, but still more astonishingly many bright points
appear within the darkened portion of the moon, completely divided and
separated from the illuminated part and at a considerable distance from
it. After a time these gradually increase in size and brightness, and an
hour or two later they become joined with the rest of the lighted part
which has now increased in size. Meanwhile more and more peaks shoot
up as if sprouting now here, now there, lighting up within the shadowed
portion; these become larger, and finally they too are united with that
same luminous surface which extends further. And on the earth, before
the rising of the Sun, are not the highest peaks of the mountains illumi-
nated by the Sun’s rays while the plains remain in shadow? Does not
the light go on spreading while the larger central parts of these mounts
are becoming illuminated? And when the Sun has finally risen, does not
the illumination of plains and hills finally become one? But on the moon
the variety of elevations and depressions appears to surpass in every way
the roughness of the terrestrial surface...”

See Figure 2.7 for a modern image of the beautiful lunar structure one can observe
with even a cheap telescope.

Sunspots. After designing a filter to reduce the intensity of the light, Galileo also
used his telescope to observe the Sun. He saw that it too, like the Moon, displayed
an imperfect, pock-marked surface. And the marks gradually drifted across the
surface, from west to east, over the course of about two weeks — implying that
the Sun rotated, just as Copernicus required the Earth to do. See Figure 2.8 for a
modern image of Sunspots.

Orthodox thinkers tried to insist that the Sunspots were some other celestial or
atmospheric phenomenon, merely passing in front of the Sun (as opposed to being
blemishes inherent to it). Galileo’s careful observations of the spots’ motion, how-
ever, revealed that their apparent motion slowed and increased and slowed again
as they crossed the visible face of the Sun, just as they should be expected to do
if they are surface features of a rotating body:

“I have finally concluded, and believe I can demonstrate necessarily, that
[the sunspots] are contiguous to the surface of the solar body, where
they are continually generated and dissolved, just like clouds around the
earth, and are carried around by the Sun itself, which turns on itself in
a lunar month with a revolution similar [in direction| to those others of
the planets, that is, from west to east around the poles of the ecliptic;
which news I think will be the funeral, or rather the extremity and Last
Judgment of pseudophilosophy, of which signs were already seen in the
stars, in the moon, and in the Sun.”
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Figure 2.8: A modern image of the Sun, displaying some spots like the ones Galileo
discovered.

o Jupiter’s moons.

“There remains the matter which in my opinion deserves to be considered
the most important of all — the disclosure of four planets never seen from
the creation of the world up to our own time, together with the occasion
of my having discovered and studied them, their arrangements, and the
observations made of their movements and alterations during the past
two months. I invite all astronomers to apply themselves to examine
them and determine their periodic times, something which has so far
been quite impossible to complete, owing to the shortness of the time.”

Subsequent observations revealed that the new planets followed Jupiter “in both
its retrograde and direct movements in a constant manner” and had periods of
revolution about Jupiter of, respectively: 1 day 18.5 hours; 3 days 13.3 hours; 7
days 4 hours; and 16 days 18 hours.

Here is Galileo’s description of the significance of this discovery:

“Here we have a fine and elegant argument for quieting the doubts of
those who, while accepting with tranquil mind the revolutions of the
planets about the Sun in the Copernican system, are mightily disturbed
to have the moon alone revolve about the earth and accompany it in an
annual rotation about the Sun. Some have believed that this structure of
the universe should be rejected as impossible. But now we have not just
one planet rotating about another while both run through a great orit
around the Sun; our own eyes show us four stars which wander around
Jupiter as does the moon around the earth, while all together trace out
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Figure 2.9: A modern image of Jupiter (the big bright spot) with the four “new planets”
(we now call them moons) much as Galileo would have seen them.

a grand revolution about the Sun in the space of twelve years.”

e Phases of Venus. Perhaps the most clear-cut and dramatic new evidence against
the Ptolemaic worldview was the observation that, over the course of several
months, the planet Venus displays a complete sequence of phases (just like the
Earth’s Moon), from “new” to slender crescent, to half, to gibbous, and finally
“full.” Recall that in the Ptolemaic system it was ambiguous whether Venus was
closer or further to Earth than the Sun. But whichever it was, it must occupy
that position for all time. Hence according to the Ptolemaic system, Venus should
either display phases (roughly) on the “full” side of “half”, or on the “new” side
of “half” — but certainly not both. Yet it does display both, which proves that it
must orbit

“around the Sun, as do also Mercury and all the other planets — some-
thing indeed believed by the Pythagoreans, Coeprnicus, Kepler, and my-
self, but not sensibly proved as it now is by Venus and Mercury.”

It is clear that Galileo’s telescopic observations shift the weight of evidence rather
dramatically in favor of Copernicus.

2.2.3 Summary

The Copernican model of the solar system shatters the ancient barrier between the ter-
restrial and celestial realms, implying as it does that the Earth is just another planet.
Galileo’s application of principles extracted from terrestrial experiments to celestial phe-
nomena represented a first step down a road that would lead Newton to a complete
unification of Heaven and Earth. Galileo was also one of the first consistent champi-
ons of the idea, the basis of all modern science and everything which rests on it, that
knowledge is to be gained by careful observation and experimentation, not by passive
contemplation of sacred texts.

For example, in his Dialogue Concerning the Two Chief World Systems, in the context
of the discussion (already quoted above) about the experiment with the ball falling from
the mast of a moving ship, Galileo has the naive Simplicio say that, although he has
never actually performed the experiment, “I certainly believe that the authorities who
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Figure 2.10: A collection of modern images of Venus, taken over the course of several
months in 2002.

adduced it had carefully observed it. Besides, the cause of the difference is so exactly
known that there is no room for doubt.” To which Salviati, Galileo’s own mouthpiece
in the dialogue, replies: “You yourself are sufficient evidence that those authorities may
have offered it without having performed it, for you take it as certain without having
done it, and commit yourself to the good faith of their dictum. Similarly it not only
may be, but must be that they did the same thing too — I mean, put their faith in
their predecessors, right on back without ever arriving at anyone who had performed
it.” (But then Salviati admits he hasn’t performed it either! Nevertheless, Galileo had
clearly done enough relevant experiments to generalize, and his assurance of what would
happen in this particular case turns out to have been entirely warranted.)

Given all of this, it is not surprising that Galileo was considered dangerous and
heretical — and hence severely restricted and persecuted — by the religious authorities of
his time. For doing so much to move knowledge forward in the face of such resistance,
Galileo deserves our profoundest respect and gratitude.
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2.3 Kepler

Johannes Kepler (1571-1630, roughly contemporary with Galileo) made significant con-
tributions to the growing understanding of the solar system which are in many ways
complementary to Galileo’s. In particular, where Galileo’s discoveries are largely obser-
vational in nature, Kepler’s are more technical and theoretical. But like any good theory,
Kepler’s ideas — at least the ones that play an important role in our story here — were
grounded in observational data.

Let us thus begin by mentioning Tycho Brahe (1546-1601), a Danish astronomer
who spent his life working heroically to improve the quantity and quality of observations
of the positions of the stars, Sun, Moon, and planets, largely through the invention of
new (and bigger and better) instruments. Characteristic of his care and ingenuity as an
observer (and as manager of a large research group) is the fact that he set up two separate
observatories so that independent measurements of the same positions could be carried
out and compared by him. This is obviously an effective way to identify and eliminate
systematic errors, and also an effective way to measure the uncertainty associated with
a given observation. It is hard to say which is more important: the fact that Brahe’s
methods resulted in observations which were accurate to approximately one arc minute
(1/60 of a degree, about a factor of ten better than any of his predecessors); or the fact
that he genuinely knew that the observations were this accurate.

Near the end of his life, Brahe hired the young Johannes Kepler as an assistant,
and Kepler succeeded Brahe in the post of Imperial Mathematician after Brahe’s death.
Kepler’s major innovation was the discovery of three mathematical laws describing the
precise nature of the planets’ motions around the Sun. We will mainly focus on these
three laws, after first discussing some preliminary points that played important roles in
Kepler’s thinking.

2.3.1 Preliminaries

Kepler was a supporter of the Copernican system before he discovered the three laws of
planetary motion for which he is now remembered. This is partly a result of a sort of
neo-Platonic mystical Sun-worship that represents another side of his personality than
the side we will focus on here. For example, Kepler claims that “the Sun is the first cause
of the movement of the planets and the first mover of the universe, even by reason of its
own body.” What is this claim for the causal primacy of the Sun based on? “[T]hese
arguments are drawn from the dignity of the Sun and that of the place, and from the
Sun’s office of vivification and illumination in the world.” Or as he put it more poetically
elsewhere:

“[The Sun] is a fountain of light, rich in fruitful heat, most fair, limpid, and
pure to the sight, the source of vision, portrayer of all colors, though himself
empty of color, called king of the planets for his motion, heart of the world for
his power, its eye for his beauty, and which alone we should judge worthy of
the Most High God, should he be pleased with a material domicile and choose
a place in which to dwell with the blessed angles.... For if the Germans elect
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him as Caesar who has most power in the whole empire, who would hesitate
to confer the votes of the celestial motions on him who already has been
administering all other movements and changes by the benefit of the light
which is entirely his possession? ... [Hence| by the highest right we return
to the Sun, who alone appears, by virtue of his dignity and power, suited for
this motive duty and worthy to become the home of God himself, not to say
the first mover.”

But he had more scientifically-respectable arguments, too. For example, early in his
career, he discovered that the orbital planes of the various planets (which remember are
all near, but not precisely in the plane of the ecliptic) intersect one another — not at
the center of the Earth’s orbit (Copernicus’ “Mean Sun”) but at the actual location of
the Sun. This was a strong early indication that the motions of the planets were really
relative to, and almost certainly caused by, the Sun:

“Accordingly because the Sun is the node common to all the systems: there-
fore.... For the planets the Sun is a fixed mark, which all their revolutions
regard.”

As to the nature of the Sun’s causal influence on the planets, Kepler convinced himself
(after reading the influential 1600 book of William Gilbert) that the Sun controlled the
planets through a magnetic influence:

“I am much occupied with the investigation of the physical causes. My aim
in this is to show that the celestial machine is to be likened not to a divine
organism but rather to a clockwork..., in so far as nearly all the manifold
movements are carried out by means of a single, quite simple magnetic force,
as in the case of a clockwork all motions [are caused| by a simple weight.”

Kepler’s idea was roughly that the Sun exerted a long-range magnetic force on the
planets, which pushed them around in their orbits.

This was more than a merely qualitative idea: he argued that, since the only job of
this force emanating from the Sun was to move the planets in their orbits, and since
the planets lie essentially in the plane of the ecliptic, the force would spread out in this
two-dimensional plane — its strength therefore decreasing in proportion to the inverse of

the distance from the Sun: 1

F~ o (2.1)
The argument here is that, as the force spreads out from the Sun in the plane of the
ecliptic, it distributes itself over circles of increasing circumference, C' = 2zr. The total
amount of force should be conserved, i.e., F' x C = constant.

Kepler also cited the rotation of the Sun (evidenced by the sunspots discovered
by Galileo, though Kepler claimed to have proved, prior to 1609, and through purely
theoretical arguments, that the Sun must rotate) as evidence for his idea of a magnetic
force emanating from the Sun that swept the planets around in their orbits.

The crucial upshot of this (essentially wrong) idea, was an early formulation of what

would later become Kepler’s second law of planetary motion. Kepler argued as follows:
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since the Solar force (allegedly) falls off with distance from the Sun as 1/r, and since
(according to the Ancient Greek view of Equation 1.1) the force exerted on a body is
proportional to its speed, the speed of a planet in its (eccentric) orbit around the Sun
should vary in inverse proportion to its distance from the Sun:

vt (2.2)

Note that this applies only to the v-r relation of a given planet as it orbits the Sun. Dif-
ferent planets will have different sizes and weights, hence different resistances to motion,
i.e., different proportionality constants in F' ~ v. The relation between the speeds of the
various planets and their respective (average) orbital radii becomes later the subject of
Kepler’s third law.

According to Equation 2.2 a planet should be moving fastest when it is closest to
the Sun (perihelion) and slowest when it is farthest away (aphelion), with the above
equation giving a precise description of the variation in the speed. Qualitatively, this
same behavior can be produced using a circular orbit with both an eccentric and equant
(and with the eccentric and equant points located on opposite sides of the circle’s center).
But the quantitative details of an eccentric circular orbit will be slightly different if
governed by Equation 2.2 than if it were governed by the eccentric-equant construction.

In any case, it was with a commitment to the dynamical centrality of the Sun —
and its alleged result, Equation 2.2 — already in hand, that Kepler began his systematic
attempt to fit the data he inherited from Tycho Brahe to a theoretical system. The
result of this quest was Kepler’s three laws of motion, to which we now turn.

2.3.2 Kepler’s Three Laws

Kepler began his careful study of the solar system by trying to understand the orbit of
Mars, a problem that had been assigned to him by Brahe. Adopting first the methods
of his predecessors, Kepler attempted to design an eccentric circular orbit for the planet
(with, of course, the Sun at the eccentric point) and with the planet’s orbital speed gov-
erned by Equation 2.2. This sounds straightforward, but is actually incredibly complex
because we have no data for the position of Mars with respect to the Sun. Instead, we
have data for the position of both Mars and the Sun with respect to Earth. Of course,
if we knew both the angular positions and distances of both of these bodies, it would
be a simple matter to compute their positions in space, and hence the position of one
relative to the other by (vector) subtraction. But while it is easy to measure the angular
position of the Sun or a planet (against the background of fixed stars), there was no
means available to Kepler to determine with any accuracy or absoluteness the distances
to these objects. Recall, for example, that the Greeks had been wrong by a factor of
about 20 in determining the distance from the Earth to the Sun; this error had not yet
been corrected in the 17th century!

Of course, the relative sizes of Earth’s and Mars’ orbits around the Sun were de-
terminable by Copernicus — but only approzimately, and Kepler’s goal was no mere
approximate treatment. He required extremely precise models in order to match the
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extreme precision of Brahe’s data. And so Kepler embarked on an almost unthinkable,
decade-long “battle with Mars” in which he explored, largely through trial and error,
various assumptions for the precise (relative) sizes for the circular orbits of Earth and
Mars, and for their eccentricities. At some point, through a combination of ingenious
methods and ferocious tenacity, he convinced himself that it could not be done: circular
orbits simply could not be made consistent with Brahe’s data.

It is important to appreciate that it was close. Kepler’s best circular models repro-
duced the observed positions of Mars with an accuracy of better than a tenth of a degree,
and would therefore have been considered perfectly adequate by any of his predecessors.
But Brahe’s data was accurate to a single arc minute, and so discrepancies of seven or
eight arc minutes simply could not be tolerated:

“Since the divine goodness has given to us in Tycho Brahe a most careful
observer, from whose observations the error of 8 is shown in this calculation...
it is right that we should with gratitude recognize and make use of this gift
of God .... For if I could have treated 8 of longitude as negligible I should
have already corrected sufficiently the hypothesis.... But as they could not be
neglected, these 8 alone have led the way toward the complete reformation
of astronomy, and have been made the subject-matter of a great part of this
work.”

The “complete reformation of astronomy” begins with Kepler’s first law of planetary
motion, stumbled upon finally toward the end of his battle with Mars:

e Planets move in elliptical orbits with the Sun at one focus.

There are two significant aspects to the first law. Most obviously, it asserts that the
trajectory of a planet is not a circle at all, but is rather an elongated shape, an ellipse.
With this identification, Kepler finally overthrows the ancient axiom that the motion of
heavenly bodies must be circular. But equally important in the first law is that a special,
defining point of the elliptical orbit — its “focus” — coincides with the location of the Sun.
For this mathematically embodies Kepler’s intuition that the Sun is somehow or other
dynamically responsible for the motion of the planets. Let us step back and discuss the
mathematics of ellipses before moving on to the other two laws.

An ellipse is most simply defined as the planar figure whose points have constant
summed distances from two fixed points (the focus points). That is, for each point on
the ellipse, its distance from one focus point plus its distance from the other focus point,
is a constant — the same sum one would get for any other point on the ellipse:

dy + dy = constant (2.3)

where d; and dy are as shown in Figure 2.11. Thus, one can draw an ellipse on paper
by pinning the two ends of a piece of string at two points (the foci), and then moving a
pencil such that the string is kept taut on both sides.

The equation satisfied by the points on the ellipse is

SR R (2.4)
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Figure 2.11: An example of an ellipse. We have here chosen the center of the ellipse as
the origin of the z,y coordinate system. The two focus points are labeled F} and F5.
The two dotted-line distances (from a point on the ellipse to the two foci, respectively)
add to the same constant value for any point on the ellipse. Here the “major axis” of
the ellipse coincides with the z-axis, and the ellipse’s semi-major-axis is labeled a. Its
semi-minor-axis is labeled b. We have also labeled s, the distance from the center out to
one of the foci along the major axis. The eccentricity is defined as ¢ = s/a = /1 — b? /a?.
Here, with a = 5, b = 3, and s = 4, we have ¢ = 4/5 — a much larger eccentricity than
the ellipses traced out by any of the planets.

which is like the equation for a circle (22 + 32 = R?) but with different “radii” along the
x and y directions.

The eccentricity of the ellipse is a quantitative measure of its departure from circu-
larity. The eccentricity can either be written as the ratio of the center-focus distance
(s) to the semi-major axis (a), or in terms of the ratio of semi-minor-axis (b) and semi-

major-axis (a):
s b?
=2 1-2. 2.5
€= - 3 (2.5)

Finally, by placing the origin of one’s coordinate system at one of the focus points
instead of at the center, it can be shown that the ellipse satisfies a simple equation in
polar coordinates:

a(l — €2
r(0) = al—e)
1 — ecos(0)

where r and 6 are as shown in the Figure. This expression still assumes that the major-

(2.6)
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Figure 2.12: Another ellipse, now with the origin of coordinates at one of the foci, and
with the major-axis rotated by 6y relative to the z-axis. r and 6 are then related, for
points on the ellipse, as in Equation 2.7

axis of the ellipse is along the z-axis, but polar coordinates make it easy to write the more
general expression for an ellipse of eccentricity € and semi-major-axis a whose major-axis
makes an angle 6y with the z-axis:

a(l — €
r(0) = a )

"~ 1—ecos(f —bp)’ 2.7)

We will postpone for the Projects the proofs of all of these mathematical relations.
Kepler’s second law, as it is accepted today, is a slightly modified version of his
v ~ 1/r rule for how a planet’s speed varies as its distance from the Sun varies. The
rule is formulated in a somewhat unfamiliar way: the planet is said to “sweep out equal
areas in equal times.” What this means is shown in Figure 2.13: as the planet moves
around the Sun, the areas swept out by its coordinate vector from the Sun (e.g., the three
distorted pizza-slice shapes shown) will be equal, for parts of the trajectory completed in
equal times. This implies that the planet moves faster when it is closer to the Sun, and
slower when it is farther from the Sun, as is evident in the Figure: the actual distance
covered by the planet during a fixed time interval increases as the planet’s distance from
the Sun decreases, as is clearly necessary to keep the areas swept out in equal times
equal. Qualitatively, then, Kepler’s second law is the same as his original idea that the
planet’s speed is inversely proportional to its distance from the Sun. But as we will
explore further in the Projects, the two formulations are not precisely equivalent.
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Figure 2.13: According to Kepler’s second law, the areas “swept out” by a planet in
equal times (e.g., the areas Aj, Ay, and A3 shown) will be equal. This requires that the
planet move a smaller distance in a given time when it is farther from the Sun, and to
move a greater distance in that same time as it gets closer to the Sun — i.e., the planet’s
orbital speed is large when its distance from the Sun is small, and vice versa.

It is important to appreciate that Kepler’s first two laws, which describe the motion
of planets around the Sun, both make central reference to the position of the actual
Sun: the orbits are ellipses with the Sun at one focus, and the speed varies such that
equal areas are swept out from the position of the Sun in equal times. The two laws
are therefore more than just descriptions of the planets’ motions. They are descriptions
of the planets’ motions about the Sun — i.e., they contain strong empirical evidence in
support of the Copernican concept of the Sun as the central orchestrator of the planets’
motions. If the Sun weren’t somehow controlling the planets from the center, but were
(as in Ptolemy’s theory) just another heavenly body orbiting around the Earth, it would
be a bizarre and unthinkable coincidence that the motions of the planets would take on
such a simple and elegant mathematical form when referenced to the position of the Sun.

Kepler’s first two laws characterize the orbits of individual planets, giving precise
rules for the shapes of their trajectories and the speeds with which the planets trace
them out. But so far there is nothing that relates the various planets together: each
planet’s elliptical trajectory will have a unique size, eccentricity, and orientation; and
each planet will “sweep out area” at a (uniform) rate that is different from all the other
planets.

But Kepler believed deeply that there must be some hidden unity behind the apparently-
unrelated orbits of the different planets. He had “discovered” early in his career that
the relative sizes of the planets orbits could be “explained” by what we now consider
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a bizarre numerological construction: if you nest the five perfect Platonic solids (tetra-
hedron, cube, octahedron, icosahedron, and dodecahedron) in a sequence of six spheres
(and do it in just the right order), the relative sizes of the six spheres (approximately)
match the relative sizes of the orbits of the six planets (Mercury, Venus, Earth, Mars,
Jupiter, and Saturn). Of course, for a variety of reasons, scientists now consider this
“explanation” to be mystical nonsense.

But much later in his career, about a decade after discovering that orbits obeying his
first two laws allowed for perfect matches with Brahe’s planetary data, Kepler discovered
what is now known as his third law. It states that the cube of a planet’s orbital radius,
divided by the square of its orbital period, is a constant — the same constant for all of
the planets. That is:

3
% = constant. (2.8)
It is hard to describe the motivation that led Kepler to this discovery, since, despite
arriving at a relation that would be crucial to Newton’s formulation of his theory of
gravitation, Kepler’s quest was tinged with a sort of mysticism that is now properly
regarded as unscientific. It is also difficult to overstate the kind of rapture this discovery
triggered in Kepler:

“...after I had by unceasing toil through a long period of time, using the
observations of Brahe, discovered the true distances of the orbits, at last,
at last, the true relation ... overcame by storm the shadows of my mind,
with such fullness of agreement between my seventeen years’ labor on the
observations of Brahe and this present study of mine that I at first believed
that I was dreaming...”

One question that may already have occured to you is: what is meant by the “orbital
radius” of a planet (in Equation 2.8) since the orbits of the planets are not (according
to Kepler’s first law) circles? In Kepler’s own formulation of the law, the R in Equation
2.8 stood for the average radius of the planet, though even that is not unambiguous:
does this mean the average distance from the Sun of all the points on the orbit, or the
distance from the Sun averaged over time? These will not be quite the same since (as
per Kepler’s second law) the planet moves faster through the points on its orbit that
have smaller radii, and vice versa.

This is not a huge concern, since the actual orbits of the planets are not very eccentric,
so the two different senses of “average” will produce almost the same R. We mention
it here mostly because it is an interesting feature of the historical development of these
ideas that Newton, after using Kepler’s laws to arrive at his theory of gravitation, realized
— by deduction from his theory — that the correct statement of Kepler’s third law would
have the R in Equation 2.8 being the semi-major-azxis, i.e., the simple average of the
distances of closest approach and farthest departure from the Sun.

We are finally in a position to understand how Isaac Newton arrived at his legendary
theory of gravitation, the topic of Chapter 3.
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Questions for Thought and Discussion:

1.
2.

Was Copernicus’ theory heliocentric?

What are the main virtues of Copernicus’ theory as against Ptolemy’s? What are
its weak points? If you lived in the time of Copernicus, do you think you would
have been convinced by his arguments?

. Write a short dialogue between a skeptic and a proponent of Copernicus’ theory,

focusing on the question of the moving Earth. Have the skeptic present the best
possible arguments in favor of the idea that, if the Earth was moving, we’d have
noticed it. And have the proponent give the best possible rebuttals of those argu-
ments.

. How might a skeptic have responded to Galileo’s telescopic observations? Would

reasonable disagreement with the Copernican worldview still have been possible
after Galileo’s work?

. What is the difference between the “cannon ball shot straight up” type example,

and the “ball dropped from the mast of a ship” type example, in the context of
the debate about the moving Earth? Which type of example is more important to
rebutting the claim that the Earth can’t be moving because we would have noticed
it? Why? What is the nature of the rebuttal?

. Suppose Kepler had found that the orbits of the planets were, after all, eccentric

circles. How might this have influenced the subsequent course of history? In
particular, how would the quest to understand the causes of the planetary motions
have been affected?

Kepler’s third law states that the cube of the orbital radius is proportional to the
square of the orbital period: R? ~ T2. But the speed of a planet in its orbit is
equal to the circumference of its orbit divided by the period: v ~ R/T. And so
Kepler’s third law can be rewritten as a statement about how the speed of the
planetary orbits varies with their increasing distance from the Sun: v? ~ 1/R,
i.e., v ~ 1/v/R. This is different from the v ~ 1/r speed-distance rule that Kepler
hypothesized based on his ideas about how the Sun influenced the planets’ motions
(and also different from the second law as we presented it). What gives? Is there
an inconsistency between the two laws?

. Would it have been possible to identify some equivalent of Kepler’s Third Law from

within the Ptolemaic worldview? Why or why not?

Projects:

2.1 Use the data developed by the class last week to calculate the sizes of the orbits of

all the planets (using the fact that, according to Copernicus, the radius of either
Ptolemy’s deferent or his epicycle should be 1 AU).



2.3. KEPLER 73

2.2

2.3

24

Use the Copernican model (with simple, non-eccentric circles) to derive a formula
for the synodic period of a planet (i.e., the amount of time between its subsequent
retrogradings) in terms of the orbital periods of the Earth and that planet. Look
again at the planetary data you were given last week and see if your formula
predicts the synodic period correctly.

Use the just-calculated sizes of the orbits, and also the data for the periodic times
of the planets, to check Kepler’s third law.

Get two lenses and try to make a telescope. Here is Galileo’s description of his
first attempts: “My reasoning was this. The device needs ... more than one
glass.... The shape would have to be convex, ... concave, ... or bounded by parallel
surfaces. But the last-named does not alter visible objects in any way; ... the
concave diminishes them, and the convex, though it enlarges them, shows them
indistinct and confused.... 1 was confined to considering what would be done by
a combination of the convex and the concave. You see how this gave me what I
sought.”

S ——
h

Figure 2.14: Diagram illustrating the method used by Galileo to measure the height of
mountains on the moon.

2.5

Figure 2.7 shows a photograph of the moon like what Galileo would have seen
through the telescope. Use it to estimate the height of the mountains on the
moon, using the ideas sketched in Figure 2.14. First find a lunar mountain whose
peak is lighted by the Sun, despite the mountain being on the dark side of the
moon. Estimate the distance d in the Figure by measuring the mountain’s apparent
distance from the terminator, and comparing that to the (known) diameter of the
moon. Then use the fact that ¢ &~ d/Ry00n. Finally, use trigonometry (or the
Pythagorean theorem) to determine the height of the mountain, h.
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Dot Product and Cross Product. You probably learned about the dot product
of two vectors in a previous physics course: A - B = |A||B|cos(f) where 6 is the
angle made by the vectors when they are drawn tail-to-tail. Argue, if you don’t
already know it, that the dot product can be understood as the product of the
magnitude of one vector with the component of the second vector that is parallel
to the first vector: A - B = |ff|BH = |B |Aj. There is another way of combining

two vectors called the cross product: A x B. Its result is another vector (unlike
the dot product, which gives a scalar). The direction of Ax B is perpindicular to
both A and B and is conventionally given by something called the right-hand-rule,
which your teacher will explain in class. The magnitude of Ax B is given by
|A||B|sin(f) where, again, 6 is the angle between A and B when they are drawn
tail-to-tail. This can also be written as the product of the magnitude of one of the
vectors timeg the component of the other vector that is perpindicular to the first:
A x Bl = |A|B. = |B|AL.

If the vectors A and B both lie in the x,y plane, then there are simple expressions
for the dot and cross products in terms of the x and y components of the original
vectors. For the dot product: A-B=A,B, + AyB,. And for the cross product:
Ax B = AyBy — ByA,. (Technically, this last expression gives the z-component
of the vector A x E, but this is the only non-zero component as long as the two
vectors lie in the x,y plane.) Show that the cross product formula(s) here can all

be interpreted graphically as giving the area of a parallelogram spanned by A and
B.

Your teacher will give you some data for the z and y coordinates of the Sun and
Mars, with respect to Earth, over several years. Make a graph of the trajec-
tory of Mars relative to Earth. Confusing and complicated, right? Now use the
data to construct the position of Mars with respect to the Sun (by vector addi-
tion/subtraction) and make a new graph — of Mars’ trajectory with respect to the
Sun. See how the orbit simplifies! Is it an ellipse? Prove it. (This is supposed to
give you an overall sense of what Kepler did — namely, by referring the motion of
the planets to the Sun instead of the Earth, he found that the orbit simplified con-
siderably and the elliptical shape of the orbit revealed itself. See the next Project
to get a sense of how Kepler converted the pure angular data that was available
into data for the z and y coordinates in the plane of the ecliptic.)

Kepler used an ingenious trick to convert the directly observable angular positions
of the Sun and Mars into fuller knowledge of those bodies’ positions in space, i.e.,
x and y coordinates. The trick involves recognizing that, whatever its shape, Mars’
orbit around the Sun is supposed to be periodic, with a period of 686.9 days. Thus,
every 686.9 days, Mars will be at exactly the same place. Since this is a little less
than two years, Earth will be at a different point in its orbit every 686.9 days. And
so one can observe, from Earth, the angular positions of the Sun and Mars every
686.9 days, and use this information to “triangulate” one’s exact position with
respect to each of the two bodies for each of these observations, and hence discover
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the structure of Earth’s orbit around the Sun by plotting its position at a number
of these different times. See Figure 2.15 for the idea involved in the triangulation.

Figure 2.15: Diagram illustrating the method used by Kepler to determine the x and y
coordinates of the Earth (relative to the Sun) using data for the ecliptic angles of the
Sun and Mars every 686.9 days. The two ecliptic angles, 05y, and 0745, are obtained
from observation. The Earth-Sun distance R can then be inferred, in units of D, from
trigonometry — as then can the x and y coordinates of the Earth’s position relative to
the Sun.

2.9

2.10

Your teacher will give you some data for the ecliptic angle of the Sun and Mars
for a number of these points. Use the (only sort of known) distance D between
the Sun and Mars as a distance unit. Then determine, for each data point, the
distance R shown in the Figure. (Use the law of sines!) Then, again for each data
point, use simple trigonometry to get the x and y coordinates of the Earth relative
to the Sun. Make a graph of these z, y positions and you can see the trajectory of
the Earth around the Sun emerge. You might try using the method you used in
Project 2.7 to verify that the Earth’s orbit is elliptical!

Project 2.8 showed how Kepler arrived at z, y coordinates for the Earth relative
to the Sun (and so, equivalently, the Sun relative to Earth) — half of the data you
were given in Project 2.7. Your assignment here is to think about how Kepler could
have arrived at x, y data for the position of Mars relative to Earth — the other half
of what you were given in Project 2.7. Here’s a hint: knowing (as you now do
after Project 2.8) the x and y coordinates of the Earth for all those different times,
could you infer from that the x and y coordinates of Mars for some of those same
times? What is it? How could you get positions for Mars for other times?

Continuing now with the data from Project 2.7, let’s explore the relation between
the distance of the planet from the Sun and its orbital speed. First, use Excel to
compute, for all the times for which you have position data, the x and y components
of Mars’ velocity (v, and vy), its speed (v), and also its distance from the Sun (r).
Is v ~ 1/r, as predicted by Kepler’s preliminary speed rule? (The easiest way to
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check this is just to multiply v and r for all the different times, and see if the value
is always the same.) You should find that it is close but not exact. Maybe there is
a more exact relation between (say) one of the velocity components and r? Check
first whether the component of ¥ that is parallel to 7 is inversely proportional to
r — ie., see if v |F] = constant. (Hint: use the expression for the dot product in
terms of rectangular components given in Project 2.6.) If that doesn’t work, see if
there is a simple relation between r and the perpindicular component of ¥ that is
more exact than the preliminary v ~ 1/r guess. What do you make of this? Of
which law is this apparently an alternative mathematical formulation?

Consider the area “swept out” by a planet during some very small amount of
time, dt. If the time is small, then the displacement of the planet, v dt is a good
approximation to its actual trajectory (i.e., the trajectory doesn’t curve much over
very short times). Hence, the area swept out is a triangle, whose area dA is half
of the parallelogram spanned by i and ¥dt. Use this to help you understand what
you noticed in Project 2.10.

Your teacher will give you some data for the angular coordinate of the Earth (as
seen from the Sun) over time. (This is the same as the angular coordinate of the
Sun as seen from Earth, plus 180° — so it’s not like you have to travel to the Sun to
get this data!) The idea here is to check in a relatively direct way that this data is
consistent with Kepler’s account of the Earth’s orbit around the Sun, as specified
in his first two laws of motion. To begin with, note that Kepler’s second law (as
re-formulated in Project 2.10) can be reformulated (again) in terms of the planet’s
angular velocity using w = v, /r. What relationship does this imply between the
planet’s angular velocity and its radius 7 Now combine this relation with the polar
coordinates equation for an ellipse to get a relation between the angular velocity
w and the angle 6. Use the given data to calculate and then graph w vs 6, and
then do a curve-fit with the formula you developed. What is the eccentricity € of
the Earth’s orbit? Could you achieve as good a fit to the data using an eccentric
circular orbit or a circular orbit with an equant (or both at the same time)? To
answer that, recall and/or reference the appropriate Projects from Chapter 1 — or
do a second curve fit right now!

Figure 2.16 shows some data for the apparent positions (relative to Jupiter itself)
of the four moons of Jupiter observed by Galileo, over the course of about a month.
Use the graph to determine the periods of the orbits of the four moons, and also the
relative sizes of their orbits. Can you find any mathematical relationship between
the sizes and periods of the orbits, like Kepler found for the sizes and periods of
the planets’ orbits around the Sun?

Work out all the math connecting the various equations from the text for ellipses.

Kepler’s 2nd law should apply as well to projectiles. Take the case of a ball dropped
from the top of a tower (attached to the rotating earth). The ball follows a curved
trajectory (as seen from an inertial frame in which the earth is rotating) to which
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Figure 2.16: A graph showing the apparent angular (ecliptic) positions of the four moons
of Jupiter (relative to Jupiter itself) over time.

one can apply Kepler’s equal areas rule. Question: is the perpindicular component
of the object’s velocity (what an observer on the tower would refer to as the “hor-
izontal velocity”) a constant as the ball falls? By how much does it change during
the fall? Approximate the distance away from the base of the tower that the ball
will land due to this discrepancy.
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Chapter 3

Newton’s Theory of Gravitation

Isaac Newton (1643-1727) presented his theory of universal gravitation in one master
stroke: his 1687 Mathematical Principles of Natural Philosophy or Principia for short.
The book develops side-by-side not only his theory of gravitation, but the whole edifice of
Newtonian mechanics that any reader of this book should already be reasonably familiar
with. This includes the first consistent statement of rectilinear inertia (the first law of
motion), F =md (the second law of motion), the principle of action and reaction (the
third law of motion), the concept of momentum and its conservation, etc.

Newton’s parallel discovery of the laws of mechanics and the theory of gravitation (not
to mention calculus, which he invented along the way to solve some technical problems
that arose!) is an almost unimaginable achievement, which alone ranks Newton as almost
certainly the greatest scientist of all time. Because of the sheer immensity of Newton’s
achievement, we here (and in subsequent chapters) depart from the largely historical
structure followed in the first two chapters. In particular, we are assuming that the
reader has already mastered Newtonian mechanics as it is covered in standard college
introductory physics courses. We will also postpone, until later chapters, discussion of
several difficult and technical pieces of evidence Newton put forward as part of his initial
case in support of his gravitation theory. We will cover these in time, but will treat them
(somewhat a-historically) as applications of an already-established theory.

That said, we will attempt here to give a historically sensitive (if not precisely accu-
rate) sketch of the origins, central content, and implications of Newton’s theory.

The theory, of course, says that the force holding the planets (and moons) in their
orbits is a gravitational force. Let us briefly elaborate what this means and in what ways
it was novel.

First, the idea of “gravity” was not new to Newton, though he did reconceive it
somewhat. Earlier thinkers had understood that many objects naturally fall when im-
pediments are removed, and had attributed this to “gravity.” But as we have seen they
tended to think of this as a kind of intrinsic “heaviness” that expressed the object’s
“desire” to reach its “natural place” at the center of the universe or earth. Newton was
the first to grasp fully that this “heaviness” is not innate to heavy objects, but is rather
the expression of an external force exerted on them by the earth. This clearly required a
rejection of the ancient doctrine of “natural place,” a clear formulation of the principle

79
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of rectilinear inertia, and its consistent application to both objects near the surface of
the earth and heavenly bodies.

But despite this important reconception of “gravity,” the main novelty of Newton’s
theory lies not in its advocacy of gravity-as-external-force (rather than gravity-as-innate-
tendency), but rather in the theory’s extension of the concept gravity from terrestrial
objects to all objects, on earth and in the heavens. There are actually two aspects to
this extension. First, Newton’s theory involves the extension of the Earth’s gravitational
influence far beyond the surface of the Earth — to the Moon and beyond. And likewise,
Newton attributes this same, long-range gravitational attraction to the heavenly bodies:
the Moon, the Sun, the planets, comets, etc.

To further illuminate what was novel about Newton’s proposal, let us see specifically
how Newton’s theory contrasts to the ideas of his immediate predecessors.

Copernicus for example, had speculated that gravity existed not just for the Earth,
but for other heavenly bodies as well, and believed that this could account for all these
bodies’ apparent sphericality:

“I myself think that gravity or heaviness is nothing except a certain natural
appetancy implanted in the parts by the divine providence of the universal
Artisan, in order that they should unite with one another in their oneness
and wholeness and come together in the form of a globe. It is believable
that this affect is present in the sun, moon, and the other bright planets and
that through its efficacy they remain in the spherical figure in which they
are visible, though they nevertheless accomplish their circular movements in
many different ways.”

But Copernicus had no concept of a “gravity” that extended over long distances and
allowed separate heavenly bodies to attract one another, and hence completely missed
the role of gravity in causing not only the (spherical) shape of the planets, but the
(roughly circular) shape of their orbits. Rather, he just accepted their (he thought)
circular motions as “natural” and hence in need of no causal explanation via external
forces applied by other bodies.

Some important steps towards Newton’s theory of gravity were taken by Kepler,
who remember believed strongly (too strongly, given the evidence he possessed) that the
motion of the planets was governed by forces exerted by the Sun. Kepler had specifically
posited (under the title anima motriz) that the rotating Sun sent “spokes” out into the
plane of the ecliptic, with the rotating spokes exerting the tangential force needed to
keep the planets moving in roughly circular orbits. He then speculated that the would-
be circular orbits were distorted into ellipses by an alternating magnetic attraction and
repulsion, as the magnetic Earth alternately presented its North and South poles toward
the Sun during its yearly orbit (and, presumably, similarly for the other planets). Despite
its errors, Kepler’s ideas were important because they represented the first suggestion
that the planets’ orbits were genuinely caused by some kind of force or influence exerted
on them by the Sun.

Another great pre-Newtonian thinker, the philosopher and armchair scientist Rene
Descartes, had influentially speculated that the motions of the planets could be explained
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by a great cosmic whirlpool (made of some unseen fluid ether) which carried the planets in
their orbits around the Sun. Newton devoted considerable space in the Principia (whose
title is essentially the same as Descartes’ own earlier book on similar topics) to proving
that the whirlpool theory is untenable, since it makes predictions which contradict one
another and also observational data about the motions of planets, moons, and comets.
In a summary statement, Newton writes:

“I have tried to investigate the properties of vortices in order to test whether
the celestial phenomena could be explained in any way by vortices. For
it is a phenomenon that the periodic times of the secondary planets that
revolve about Jupiter are as the 3/2 powers of the distances from the center
of Jupiter; and the same rule applies to the planets that revolve about the
sun. Moreover, these rules apply to both the primary and the secondary
planets [i.e., moons] very exactly, as far as astronomical observations have
shown up to now. And thus if those planets are carried along by vortices
revolving about Jupiter and the sun, the vortices will also have to revolve
according to the same law. But the periodic times of the parts of a vortex
turned out [in an earlier, fluid-mechanics analysis of vortex motion]| to be
in the squared ratio of the distances from the center of motion, and that
ratio cannot be decreased and reduced to the 3/2 power, unless either the
matter of the vortex is the more fluid the further it is form the center, or
the resistance arising from a deficiency in the slipperiness of the parts of the
fluid ... is increased in a greater ratio than the ratio in which the velocity
is increased. Yet neither of these seems reasonable. .... It is therefore up to
philosophers to see how that phenomenon of the 3/2 power can be explained
by vortices.”

One of the crucial similarities between Kepler’s and Descartes’ ideas is their failure to
grasp that the curved trajectories of the planets require and imply a centripetal force, as
opposed to a tangential force or an underlying tangential motion by which the planets
were swept along. This key idea from Newtonian mechanics — that uniform circular
motion involves a force directed not along the direction of motion, but toward the center
of the circle — represents the final renunciation of the old Greek ideas about motion,
e.g., “natural place” and the affiliated idea that forces produce velocity, rather than
acceleration.

With all of this as historical background, let us turn to the developments that served
as proximate causes for Newton’s full gravitational theory, as presented in the Principia.

3.1 Newton’s Theory of Gravitation

Kepler’s accurate descriptions of the trajectories of the planets around the Sun had raised
the obvious next question: what causes the planets to move this way? Kepler’s own
speculations about magnetic forces were arbitrary, qualitative, and unconvincing. But
by the 1660s, several thinkers were hot on the trail. In that decade, Newton and Christian
Huygens independently discovered the “law of circular motion” — now understood as the
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claim that uniform motion at speed v around a circle of radius R involves a centripetal
acceleration whose magnitude is given by

e =T (3.1)
In the 1660s, however, both Newton and Huygens suffered from some (perhaps familiar)
confusion between centripetal and centrifugal forces. Perhaps thinking about what one
experiences when one whirls a rock on a string in circles about one’s head, they conceptu-
alized v?/R not as describing the inward acceleration or force, but rather as quantifying
a circularly-moving object’s “endeavor” to recede from the center — something one can
feel directly in whirling a rock on a string.

Armed with this correct, but still misunderstood, formula, several thinkers hit on the
idea of using it to analyze the motions of the planets — in particular, how the different
planets’ centrifugal “endeavors” vary with their distance from the Sun. The computation
is readily made by combining the law of circular acceleration with Kepler’s third law.
This latter, recall, states that the planets’ orbital periods vary as the 3/2 power of their
orbital radii, i.e., the squared orbital periods of the planets are proportional to their
cubed orbital radii:

7% ~ R? (3.2)

where here we approximate the planetary orbits as circles and hence take R as the radius
of the orbits.

Since the speed of a planet in its orbit is proportional to its orbital radius divided
by the period

v~R/T (3.3)
Kepler’s third law can be re-written as
v? 1

But the left hand side is immediately recognizable as the “centrifugal force” of a given
planet. So Kepler’s third law implies that these forces fall off as the inverse square of
the planets’ distance from the Sun.

Some argument like this had convinced several thinkers that an “inverse square law”
force might be involved in the motion of the planets around the Sun. But, lacking New-
tonian mechanics (and in particular a correct concept of centripetal force/acceleration),
nobody had been able to really do anything with this pregnant hypothesis.

Newton had been working on just this problem when, in 1684, his friend the as-
tronomer Edmond Halley (of the comet) approached him with a challenge. Halley had
heard that Robert Hooke (of the spring force law) and some other scientists were trying
to work out the precise trajectory of a planet moving under a central inverse square force.
The idea was that, if it could be proved mathematically that the resulting trajectory was
an ellipse, this would provide strong support for the idea that the Sun exerted an inverse
square force on the planets. Newton claimed that he had solved this problem earlier,
but was (he claimed) unable to locate his notes. Whether Newton had actually solved
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the problem by 1684 is, however, immaterial. In either case, the news from Halley that
others were working on ideas similar to his own was perceived as a threat, and caused
Newton — prodded and supported by Halley — to redouble his efforts at producing and /or
writing up and publishing his work. The result, after several years of furious work, was
the Principia.

The proof that an inverse square force produces elliptical orbits (or, really, more
generally, conic sections — circles, ellipses, parabolae, or hyperbolae) is mathematically
quite difficult, requiring the solution of a complicated differential equation. We will
postpone the proof until Chapter 6, where we will use a computer to simulate the motion
of a planet in an inverse square force field, and then prove that the resulting trajectory
is elliptical.

But despite being a central piece of evidence for Newton’s theory, his proof that
an inverse square force produces trajectories that match those actually followed by the
planets is only one part of his theory. For this proof alone would only suggest that some
force with this character is operative in the solar system; it would in no way suggest
that the force is gravitational, i.e., the same sort of force that pulls heavy objects down
toward the earth. It would also not provide any direct evidence that the force in question
is exerted on the planets by and toward the Sun, rather than being centered on some
random mathematical point near the center of the solar system.

Let us thus focus the remainder of the present discussion of Newton’s theory on these
two points.

3.2 Newton and Kepler’s Area Law

One of the crucial arguments Newton developed in support of his theory was a proof
that the forces exerted on the planets are directed toward the Sun, and hence (like
the gravitational forces exerted by the Earth) are associated with a massive body and
not some mere mathematical point. Let us develop this argument using contemporary
concepts and notation.

Here is a simple theorem in Newtonian mechanics. Consider a particle of mass m
moving with velocity . Its momentum is then o = m¢. Let us define a new quantity,
its angular momentum, as follows:

—

L=rxp (3.5)

where 7 is the position vector for the particle and the “x” in the equation denotes the

vector cross product. Note that just as the “angular velocity” we defined and used in
previous chapters is a kind of rotational analog of (regular old) velocity, so the “angular
momentum” is a kind of rotational analog of (regular old) momentum. This is something
we will explore more systematically in subsequent chapters.

Let us also define the torque (a rotational analog of force) on the particle as follows:

F=FxF (3.6)

where F is a force acting on the particle.
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All this talk of “rotational analogs” suggests there might be some connection between
torque and angular momentum. In particular, from this formulation of Newton’s second

law i5
o P
F=— 3.7
7 (3.7)
(where here F represents the net force, the sum of all the individual forces that act) one

might guess the “analogous” rotational formula:

dL
7= —. 3.8
T=— (3.8)
(where T is the net torque on the particle, i.e., the sum of the torques produced by all
of the individual forces that act).
This turns out to be precisely right. It is not a new postulate, but a theorem based

on the earlier definitions of torque and angular momentum:

ar d ., df . _ dp
%—E(Txﬁ)—axp—l—rx—

7 FxF=7 (3.9)

where we have used the facts that di/dt = ¥ and ¥ x = 0 since the two vectors are
necessarily parallel.

We will actually need only one special case of the theorem, namely, that if the angular
momentum doesn’t change in time, i.e., if it is a constant in time, the net torque must
vanish.

You maybe already realized (in doing some of the Projects for Chapter 2) that Ke-
pler’s second law is mathematically equivalent to the statement that

7 X ¥ = constant. (3.10)

(See also the figure and adjoining caption.) Since the left hand side here differs from a
planet’s angular momentum only by a factor of the mass m of the planet, it should be
clear that Kepler’s second law is also equivalent to the statement that, for each planet,

L = constant. (3.11)

And this, according to the theorem, implies that the torque exerted on the planet (with
the origin taken as the Sun) must vanish. What could ensure this? In general, both
the position vector 7 and the force vector F will vary in some complicated way as the
planet orbits the Sun. What could ensure that the torque, their cross product, always
vanishes? Only that F is directed in precisely the opposite direction as 7 — i.e., only if
the force is directed precisely toward the Sun.

Newton noted that not only do the planets sweep out equal areas in equal times
with respect to the Sun, but the Earth’s moon sweeps out equal areas in equal times
with respect to the (center of the) Earth, as do Jupiter’s and Saturn’s several moons
with respect to those planets. Thus, wherever we have one body orbiting another in the
heavens, the orbiting body sweeps out area (relative to the central body) at a constant
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Figure 3.1: Illustrations of the vector relationships defined in Equations 3.5 and 3.6.
The angular momentum Lofa particle is the vector cross product of its position 7 and
momentum 5. The direction of L is found by the right hand rule: orient your right hand
so your (straightened) fingers point in the direction of 7, then rotate your hand so your
fingers can (non-painfully) bend to point in the direction of p. Your thumb will then
point in the direction of L. Note that the cross product of two vectors is orthogonal to
each of the two vectors — so the right hand rule is really just a “rule of thumb” to decide
between the two possible directions that are orthogonal to the plane defined by the two
original vectors. In the example shown, the idea is that 7 and p are in the x-y plane, so
their cross product is in the z-direction. The second picture just shows an example of
the relationship expressed by Equation 3.6: the torque 7 produced by a force F exerted
on a particle at position 7 is given by the cross product. The direction of the torque is
orthogonal to the plane spanned by 7 and F , as picked out by the right hand rule. It
is also useful to use a right hand rule to think qualitatively about the meaning of the
vectors L and 7 which can admittedly be a bit puzzling. If you point the thumb of your
right hand in the direction of the vector [_:, your fingers will naturally “curl” in a certain
direction in the plane perpindicular to the vector. This direction (in which your fingers
curl) is a good way to think about the meaning of angular momentum. For example, in
the first figure, the angular momentum vector L is in the positive z-direction; if you point
your right thumb parallel to this vector, your fingers indicate a counter-clockwise orbital
motion in the x-y plane, which is precisely what the particle is doing. The meaning of
the direction of the torque vector 7 can be understood in the same way. In the example
shown, if you orient your right thumb parallel to 7, your fingers naturally curl to indicate
(again) a counter-clockwise motion in the x-y plane. This is precisely what a torque in
the z-direction means: the force that is operating is so-as to tend to turn the particle
clockwise in the x-y plane.




86 CHAPTER 3. NEWTON’S THEORY OF GRAVITATION

Figure 3.2: The vector 7 represents the position of a planet, with the Sun taken as the
origin. A7 represents its displacement during a short time period At. For sufficiently
small At, the average velocity during the time interval is close to the instantaneous
velocity at the moment shown, so A7 = ##/At. The cross-product 7 x A7 is a vector
pointing, by the right hand rule, out of the page. Its magnitude is the area of the
parallelogram spanned by 7 and A7, whose area is just twice the shaded area A. Thus,
|7 x ¥ = 2A/At. And so the magnitude of the planet’s angular momentum is |L| =
|7 x p] = m|F x ¢] = 2mA/At. Hence, the area swept out by the planet per unit time —
A/At — is just a constant (|L|/2m) involving the mass of the planet and the magnitude
of the planet’s angular momentum. And since the mass of the planet doesn’t change
in time, the constancy in time of the planet’s angular momentum is revealed to be
mathematically equivalent to Kepler’s second law, that the planet “sweeps out area” at
a constant rate.



3.3. THE APPLE AND THE MOON 87

rate. And so, according to the above argument, in all of these cases, the force causing
the orbit is directed precisely toward the central body that is being orbited around. It
then seems irresistable to conclude that the orbits are produced by forces exerted by that
central body.

Kepler had been right that the Sun controlled the motions of the planets (though
wrong about the nature of the force). But where Kepler had argued for this claim on
circumstantial evidence, Newton had produced a rigorous mathematical and mechanical
proof. This convinced him he was on the right track — that the planetary motions were
the result of a force exerted on the planets by the Sun.

Now: what suggested to Newton that the force exerted by the Sun was a gravitational
force, i.e., the same sort of force that the Earth exerts on familiar, heavy terrestrial
objects?

3.3 The Apple and the Moon

The story of “Newton’s apple” is legendary. He was sitting under an apple tree when a
falling apple (which by some accounts hit him in the head) inspired him to conceive of
Universal Gravitation. What was going on in his mind that allowed him to make this
connection?

First of all, he wasn’t thinking about apples but about the moon. The moon orbits
the earth in a roughly circular orbit whose radius is about 60 earth radii, and with a
period of some 27.3 days. The centripetal acceleration of an object moving in uniform
circular motion is given by

=L 12
=5 (3.12)

where v is its speed and R the radius of its orbit. Since the speed is related to the period
through v = 2w R/T, this can be re-written

B 472 R

Qe T2

(3.13)
Plugging in the known values for the radius and period of the moon’s orbit gives an
acceleration for the moon

Umoon = 20,340km/day? = 0.0027 m/s? (3.14)

which by this time Newton clearly understood was directed toward the Earth.
The moon’s acceleration is very small compared to the gravitational acceleration of
heavy objects near the surface of the earth, the familiar

g=9.8m/s% (3.15)

Yet still, small or not, according to Newton’s second law, F= md, this acceleration must
be caused by some force exerted on the moon, and it must be a force directed toward
the center of the moon’s orbit, i.e., toward the Earth. But what kind of force could this
be?
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The falling of the apple must have triggered in Newton’s mind the thought: maybe the
force exerted on the Moon is the same type of force that explains the apple’s acceleration
toward the Earth. Maybe it’s a gravitational force.

Since it had already been speculated by some that a force which decreased in strength
as the inverse square of the distance from the Sun could account for the orbits of the
planets, it immediately occured to Newton to check how the Earth’s gravitational force
would have to decrease with distance, if it really were the cause of both the apple’s
and moon’s accelerations. The simplest thing is just to compute the ratio of the two

accelerations:

Umoon  -0027 m /s? 1 1
= =.000275 ~ —— = —— 3.16
g 9.81 m/s? 3600  (60)2 (3.16)

which Newton would immediately have recognized as significant, because 60 is precisely
the ratio of the distances of the moon and apple, respectively, from the center of the
earth — the moon being at a distance of 60 Earth radii, and the apple being at one Earth
radius! So the acceleration of the moon toward Earth is less than the acceleration of
the apple toward Earth by precisely the inverse square of their respective distances from
Earth’s center.

This simple numerical computation suggests several connections. First, it supports
the idea that the earth’s gravitational influence stretches far beyond the surface of the
earth, to at least the orbit of the moon:

“Therefore, since both forces ... are directed toward the center of the earth
and are similar to each other ... they will ... have the same cause. And
therefore that force by which the moon is kept in its orbit is the very one
that we generally call gravity.”

Accepting that involves accepting that the earth’s gravitational influence falls off as the
inverse square of the distance. And that means the Earth’s gravitational influence falls
off with distance in precisely the same mathematical fashion as the (as-yet-unidentified)
force that the Sun exerts on the planets. It is then practically irresistable to conclude
that the two forces (and in addition the forces exerted by Jupiter and Saturn on their
moons) are one and the same: gravity.

Of course, all of this would require more careful and rigorous analysis. But you can
see how the simple comparison of the moon’s and apple’s accelerations suggests the idea
of a long-range, universal, inverse-square-law gravitational force.

3.4 Further Evidence for the Theory of Universal Gravita-
tion

So far we have covered Newton’s arguments that: (a) orbiting bodies are acted on by
forces directed toward the central body the orbit is around, in accordance with Kepler’s
second law; (b) these forces (in the case of the planets and the moons of Jupiter and
Saturn) must fall off in strength as the inverse square of the distance from the central
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body, in accordance with Kepler’s third law; (c¢) the Earth’s gravitational influence ex-
tends (at least) to the Moon and reduces its strength in proportion to the inverse square
of the distance; and therefore, probably, (d) the forces responsible for the orbits of the
planets and Jupiter’s and Saturn’s moons are gravitational.

We have also mentioned, but not yet really discussed, Newton’s mathematical proof
that a central inverse square law force — and only a central inverse square law force —
will produce elliptical trajectories for orbiting bodies, in accordance with Kepler’s first
law.

Strictly speaking, the conclusion Newton was leaning toward was not merely that
the forces on the planets and moons were gravitational in nature, but that gravitation
was a universal phenomenon: all bodies exert inverse-square gravitational forces on all
other bodies. In order to move this claim from a probability to a certainty, Newton
carefully worked out the mathematical implications of this idea and compared them to
observational data. He found stunning confirmations everywhere he looked.

For example, according to the hypothesis of universal gravitation, not only should
the Moon be attracted to the Earth by a gravitational force, but the Earth should be in
turn gravitated toward the Moon. Indeed, according to Newtonian mechanics, the Moon
does not exactly orbit around the Earth, so much as the Earth and Moon jointly orbit
around their mutual center of mass. This should produce small monthly deviations of
the Earth’s orbit from its Keplerian ellipse. Such deviations were in fact confirmed by
detailed astronomical observation.

More interestingly, the Moon’s gravitational tug on the Earth falls off with distance,
so the material on the side of the Earth facing the Moon is pulled toward the Moon
slightly more than average, while the material on the far side of the Earth is pulled
toward the Moon slightly less than average. This causes the waters to rise up in altitude
on these opposite sides of the Earth. And since the Earth rotates on its axis daily, a
given observer will notice the seas rising and falling twice per day. Newton’s theory
of universal gravitation thus produced the first correct explanation of the tides! (We’ll
discuss the tides in more detail in Chapter 5.)

Newton’s theory also predicted that the planets should exert gravitational influences
on one another. Since Jupiter and Saturn are the heaviest planets and their orbits are
adjacent to one another, Newton suggested that astronomers of his time look for small
perturbations in the orbits of these two planets around the time Jupiter passes “under”
Saturn. (The inverse square force will be greatest around this time.) Such perturbations
were eventually observed, as were similar perturbations on the other planets, including
Earth. You can explore some of these effects in more detail in Chapter 6.

Newton’s theory also predicted that objects could move in parabola- or hyperbola-
shaped trajectories about the Sun. Careful analysis of the motion of certain comets
eventually revealed that they moved in precisely these ways, with other comets moving
in elliptical but extremely eccentric orbits. Halley’s comet, for example, has an elliptical
orbit which brings it into the inner solar system with a period of approximately 75 years.
Its orbit is very eccentric, coming all the way in past the orbit of Earth to a distance from
the Sun of about half an AU, and then returning again to about 35 AU, far beyond the
orbit of Saturn. Notably, the comet’s small deviations from a perfectly elliptical orbit
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and a perfectly periodic motion can be precisely explained by the gravitational forces
exerted on the comet by the planets. Careful analysis of the comet’s previous trajectories
including calculations of the perturbing effects of Jupiter and Saturn (based on Newton’s
theory) allowed scientists to predict — within a matter of weeks — the subsequent returns
of Halley’s comet. The accuracy of these predictions was hailed as a major piece of
evidence in support of Newton’s ideas.

There are several other pieces of evidence as well, some of which we will cover in
subsequent chapters. To summarize, though, not only does Newton’s theory account,
in precise mathematical detail, for the motions of the moons and planets as these were
described by Kepler; it also predicts and explains a number of small deviations from
Keplerian orbits which are produced by the relatively small gravitational forces exerted
by the moons and planets on each other, as well as accounting naturally for certain
previously unexplained processes such as the tides. As Newton summarizes:

“All the planets are heavy toward one another.... And hence Jupiter and
Saturn near conjunction, by attracting each other, sensibly perturb each
other’s motions, the sun perturbs the lunar motions, and the sun and moon
perturb our sea...”

Gravity, according to Newton’s theory, is a universal phenomenon in which every massive
body attracts — is heavy toward — every other massive body. His theory predicts and
explains these effects with precise, mathematical rigor. One could not reasonably ask
for a more conclusive array of evidence in support of a theory.

3.5 The precise form of the gravitational force

Having surveyed the evidence for Newton’s theory and discussed one quantitative feature
of the force law (that the force varies as the inverse square of the distance between
the two gravitating bodies), let us here develop a more precise statement of the basic
equation describing the gravitational force. We will here consider the gravitational force
between two point masses, and postpone until the following chapter a discussion of the
gravitational forces produced by an extended object (composed of many individually-
gravitating point masses).

To begin with, recall the crucial fact identified by Galileo: in the absense of appre-
ciable air resistance (i.e., when the gravitational force is the only one acting), projectiles
move with a constant downward acceleration independent of their mass. For example, a
dropped baseball and a dropped bowling ball will both, despite their different masses,
accelerate toward the ground at

g=98m/s% (3.17)

This implies, according to Newton’s second law F = md, that the gravitational force
exerted on an object is proportional to its mass — i.e., different objects with the same
mass should also have the same weight.

Newton undertook his own precise experimental test of this principle, by comparing
the periods of pendulums made of different substances:
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“Others have long since observed that the falling of all heavy bodies toward
the earth ... takes place in equal times, and it is possible to discern that
equality of the times, to a very high degree of accuracy, by using pendulums.
I have tested this with gold, silver, lead, glass, sand, common salt, wood,
water, and wheat. I got two wooden boxes, round and equal. I filled one of
them with wood, and I suspended the same weight of gold (as exactly as I
could) in the center of oscillation of the other. The boxes, hanging by equal
eleven-foot cords, made pendulums exactly like each other with respect to
their weight, shape, and air resistance. Then, when placed close to each other
[and set into vibration], they kept swiging back and forth together with equal
oscillations for a very long time. Accordingly, the amount of matter in the
gold ... was to the amount of matter in the wood as the action of the motive
force upon all the gold to the action of the motive force upon all the wood —
that is, as the weight of one to the weight of the other.”

In other words, the quantity of matter (the mass) is proportional to the weight (the
gravitational force).

Newton also cites the identical rates at which Jupiter and its moons are accelerated
toward the Sun by its gravitational attraction:

“Further, that the weights of Jupiter and its satellites toward the sun are
proportional to the quantities of their matter is evident from the extremely
regular motion of the satellites...”

i.e., the fact that the moons (whose masses are very different from that of the planet
Jupiter) manage to stay with Jupiter as they all orbit (and in so doing accelerate toward)
the Sun.

So there is very strong evidence that gravitational forces are proportional to the
masses (what Newton called the “quantities of matter”) of the objects those forces are
exerted on.

But Newton’s third law implies that the gravitational force exerted by (say) the Earth
on a ball, must be equal (in magnitude, though of course opposite in direction) to the
gravitational force exerted by the ball on the Earth. So if the first force is proportional
to the mass of the ball, so must be the numerically equal second force. Hence, in general,
the gravitational force between two objects must also be proportional to the mass of the
object exerting the force.

And, of course, we have already discussed the evidence that the gravitational force
between two bodies varies with the distance between those bodies as the inverse square
of their separation.

The most general expression consistent with all of this is the following:

Gmim
F= % (3.18)
where F' is the strength (magnitude) of the gravitational force exerted by an object of
mass m1 on an object of mass mo located a distance r away from it. The proportionality
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=

M

Figure 3.3: An object of mass M (shown here as the Sun) is located at the origin of a
coordinate system. Another object, of mass m (here a planet), is located at position 7.
The magnitude of the gravitational force exerted by M on m is GMm/|F|?>. One can
write a full vector equation for the force this way: F = —GMmi/|7>.

constant G is then not dependent on the masses of the two objects involved, nor the
distance between them —i.e., it is independent of all the properties the force itself depends
on. In short, G is a universal constant that shall be called Newton’s constant.

It is helpful also to write an expression for the force in full vector form. Since we
will be so often concerned with the motion of the planets around the Sun, let us pick a
coordinate system with origin at the Sun, and write an expression for the force exerted
by the Sun on a planet of mass m located at position 7.

The magnitude of the force is just GMm/|7]?. Its direction is the direction from m
back toward M, i.e., just opposite the direction of the coordinate vector 7. A unit vector
in this direction can be constructed by dividing 7 by its magnitude, |7, and then putting
in a minus sign. That is, the force exerted by M on m is in the direction —7/|7]. And
so the (full vector) force exerted by M on m is given by

GMm

This will be a particularly useful expression for some computations we’ll tackle in Chapter
6.

3.6 The Cavendish Experiment

Suppose an object of mass m; gravitationally orbits around another object of (much
larger) mass My, with an approximately circular orbit of radius Ry and period T;. The
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centripetal acceleration of the orbiting object will then be given by

v AT Ry
al = R_ = )
1 T1

(3.20)

The gravitational force between the objects will, according to the results of the previous

section, have magnitude
o GM1m1

—-
Ry
Relating the acceleration and force using Newton’s second law (F' = ma), we arrive at a

relation between the orbital radius and period and the mass of the central body:

F (3.21)

GM, 4n’R;
- — 3.22
or equivalently
47? R3
M, = ——L 3.23

which you probably recognize as a statement containing Kepler’s third law.

Now suppose there is another such orbital system, with an object of mass ms orbiting
around a (much heavier) object of mass My with orbital radius Ry and period 7. Then,
by the same argument as above, we should have

4% R3
My=——2. 3.24
TG T2 (3:24)
Now let’s divide the last two equations. The proportionality constants (involving New-

ton’s constant G) cancel out, leaving
M, R}/T?

My  R3/TS

(3.25)

Thus, if one can empirically determine the orbital characteristics (radius and period) of
two orbiting bodies, one can work out the relative masses of the two bodies the orbiting
bodies are orbiting around. For example, suppose the first system is the Earth orbiting
around the Sun, and the second is the Moon orbiting around the Earth. Then Ry = 1 AU,
T = lyear, Ry = 60 Regyrn, and Ty = 27.3 days. Plugging in numbers and reducing the
units gives

% . Msun

M2 Mearth
i.e., the Sun is about three hundred and thirty thousand times more massive than the
Earth.

Using the same methods, one can also relate the Earth’s mass to that of Jupiter and
Saturn, which also have moons that were known to Newton. Based on just this line of
reasoning, Newton reports that the mass of Jupiter is about 1/1,000 that of the Sun (or
about 330 times that of Earth), with Saturn being about a third that heavy.

= 330,000 (3.26)
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It is remarkable that the relative masses of the planets can be so determined. But
— perhaps you are already wondering — why not just compute the masses? If it is
remarkable to know that the Sun is 330,000 times as massive as the Earth, how much
more remarkable to know the mass of the Sun in kilograms? This would clearly be
possible if the mass of the Earth (in kilograms) were known. And one can see from
Equation 3.23 that (e.g.) the Sun’s mass could also be calculated from the orbital
characteristics of (e.g.) the Earth, if only the value of Newton’s constant G were known.

But — perhaps surprisingly — neither of these quantities was known to Newton at
the time the Principia was written. It is perhaps worth reflecting on the reasons for
this. The value of G was first measured — by directly measuring the strength of the
gravitational force between lead balls in a laboratory — about a century after the Principia
was published, by the amateur physicist Henry Cavendish, in 1798, using an apparatus
called the “torsional pendulum” which had been invented by Coulomb to measure small
electrostatic forces.

Because of the equivalence, noted above, of knowing the value of G and knowing the
mass of the Earth, the Cavendish experiment is sometimes referred to as “weighing the
Earth.” We will describe the experiment in some detail here, with the hope that you
will have the opportunity to reproduce it in your class.

To begin with, here is Cavendish’s description of the experiment:

“The apparatus is very simple; it consists of a wooden arm, 6 feet long, made
So as to unite great strength with little weight. This arm is suspended in an
horizontal position, by a slender wire 40 inches long, and to each extremity
is hung a leaden ball, about 2 inches in diameter; and the whole is inclosed
in a narrow wooden case, to defend it from the wind. As no more force is
required to make this arm turn round on its center, than what is necessary to
twist the suspending wire, it is plain, that if the wire is sufficiently slender,
the most minute force, such as the attraction of a leaden weight a few inches
in diameter, will be sufficient to draw the arm sensibly aside. .... One of
these [weights] was to be placed on one side of the case, opposite to one of
the balls, and as near it as could conveniently be done, and the other on the
other side, opposite to the other ball, so that the attraction of both these
weights would conspire in drawing the arm aside; and, when its position, as
affected by these weights, was ascertained, the weights were to be removed
to the other side of the case, so as to draw the arm the contrary way, and
the position of the arm was to be again determined; and, consequently, half
the difference of these positions would show how much the arm was drawn
aside by the attraction of the weights. .... I resolved to place the apparatus
in a room which should remain constantly shut, and to observe the motion
of the arm from without, by means of a telescope; and to suspend the leaden
weights in such manner, that I could move them without entering into the
room.”

A sketch of the torsional pendulum apparatus is shown in Figure 3.4.
Analyzing the experiment in more detail will allow us to apply and concretize some
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Figure 3.4: Schematic diagram of the Cavendish torsional pendulum apparatus. A “bar-
ball” (made of two masses m connected by a thin rod of length 2R) hangs from a thin
fiber. The barbell is thus free to rotate in the horizontal plane. In the absense of external
forces, the barbell will orient itself along some equilibrium position (represented by the
dashed line). In the Cavendish experiment, two additional balls of mass M are brought
in, to a distance b from the respective ends of the barbell. The larger masses then exert
(tiny!) gravitational forces on the smaller masses, which cause the barbell to rotate by
a (tiny!) angle 6 relative to the equilibrium position. Knowing the torsional character
of the fiber (represented by the “torsion constant” k) allows one to infer the absolute
magnitude of the gravitational force between the balls, and hence, knowing their masses
and separations, the value of Newton’s constant G.

of the concepts — in particular “torque” and “angular momentum” — introduced earlier
in this chapter. To begin with, note that the motion of the two masses constituting the
hanging barbell is in a horizontal plane. Let us pick the center of the barbell (which
should never move) as the origin of our coordinate system, and the x — y-plane to
be horizontal. Then, because of the vector cross products in the definitions of these
quantities, all the relevant quantities (torques and angular momenta) will be purely in
the z-direction. So we can represent the vector character of these quantities with a
simple plus or minus sign, indicating that the quantity is either “up” or “down” along
the z-axis.

Let us first consider the hanging barbell in the absense of the larger masses. If the
barbell is rotated slightly with respect to its equilibrium orientation, the twist in the
fiber will produce a very tiny torque that will tend to turn the barbell back toward
its equilibrium configuration. (This is really the definition of “equilibrium.”) For small



96 CHAPTER 3. NEWTON’S THEORY OF GRAVITATION

angular displacements, the resulting torque will be proportional to the displacement, i.e.,
T=—-k0 (3.27)

where the angle 6 is measured from the equilibrium position. Note that a positive angular
displacement 6 (counterclockwise as seen from above, as shown in the figure) produces a
torque that tends to turn the barbell back toward 8 = 0 —i.e., a negative torque. We thus
put an explicit minus sign in the above equation so that the torsional constant of the
fiber, k, is a positive quantity. One should think of k as characterizing the “rotational
stiffness” of the fiber: for example, a thicker fiber will produce a larger restoring torque
given the same angular displacement, i.e., will have a larger k.

So, if the barbell is displaced from its equilibrium orientation, the fiber twists and
produces a restoring torque, whose qualitative effect is to turn the barbell back toward
its equilibrium configuration. Let us now be more precise. We proved above that the
net torque on an object should equal the rate of change of its angular momentum:

F=— (3.28)

where the angular momentum of a particle is given by

—

where P is its linear momentum p' = md.

Ignoring the negligibly light rod that connects the two masses, we can think of the
barbell as consisting of two particles of mass m. As long as the torsional pendulum is
just rotating (and not swinging, i.e., as long as the center of the barbell remains at the
origin), each mass m is always located at a distance R from the origin and its velocity ¥
will always be perpindicular to its position vector 7. Each mass’s angular momentum is
thus given by

L =+muvR (3.30)

where v is the speed, with the + or — on the right applying if the motion of the mass is
(respectively) counterclockwise or clockwise (as seen from above). Note that, since the
two masses are connected rigidly, they will always have the same speed and will always
be moving in the same direction (clockwise or counterclockwise).

It is convenient here to introduce the angular velocity to characterize the motion of
the barbell as a whole. This is just the velocity of one of the balls divided by R. The
total angular momentum of the entire barbell can hence be written

L = 2mR%*w (3.31)

where now we let the angular velocity w carry the direction information: w will be positive
(negative) for counterclockwise (clockwise) rotation. Note also that “clockwise” and
“counterclockwise” here refer to aspects of the motion of the barbell, not its orientation
—i.e., they are directions, not places. The barbell can be, say, turned counter-clockwise
(0 > 0) and still be turning clockwise (w < 0).
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Putting this expression for the barbell’s angular momentum together with the basic
dynamical equation for rotation, we have

d
-kl = 7 (2mR*w) = 2mR%a (3.32)
where a = dw/dt = d*6/dt? is the angular acceleration of the barbell. This equation can
be re-written as )
d-0 K
— =——10 3.33
dt? 2mR2 (3:33)
which hopefully is recognized as mathematically equivalent to the equation one gets by
applying F' = ma to a mass m on a spring of spring constant k:
d’x k
— = ——2. 3.34
dt? m” (3:34)
Such a mass on a spring will undergo simple harmonic motion (meaning that = is a
sinusoidal function of time) with period

T zﬂ\/%. (3.35)

But, to quote Feynman, “the same equations have the same solutions”. So the torsional
pendulum must also undergo (angularly) simple harmonic motion with period

omR?2
T =2my/ ”; . (3.36)

The point of all this is that it allows a way to actually measure the torsional constant x
of the fiber. Rearranging, we have

8m2mR?2
K= ——.

= (3.37)

So, given the mass of the balls m and the length of the barbell R, the torsional constant
of the fiber can be determined by simply setting the torsional pendulum in (rotational)
oscillation, and measuring the period.

And that is actually the hard part. The rest of the analysis of the Cavendish experi-
ment will be relatively straightforward. The basic idea is now to bring in two additional
balls (mass M) at distances b from the smaller balls, as shown in the Figure. Each of
the large balls will exert, on the nearby smaller ball, a force F' and hence a torque

GMmR

T=+RF ="

(3.38)

with a plus or minus depending on whether the gravitational force F' tends to pull the
barbell counterclockwise or clockwise.
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Since there are two such torques on the barbell, the total torque produced by the
gravitational influence between the balls is

T = i2GJ\b472mR. (3.39)
When the heavy balls are put in place, this gravitational torque will cause the barbell
to turn slightly and subsequently oscillate about a new equilibrium orientation for which
the gravitational torque is just cancelled by the restoring torque produced by the (now
slightly twisted) fiber. Using Equation 3.27 for the latter, we get an expression for the
angle 6 of the new equilibrium orientation

_ 2GMmR

K0 72

(3.40)

which shows that, by measuring the angle 8, one can compute Newton’s constant G:

KOb? 4720 Rb*

G = MmR~ M

(3.41)

where now the final right hand side is purely in terms of directly measurable quantities.

There are a number of subtle issues that arise when one actually performs the ex-
periment. Here we will mention only one, which is that typically one measures not the
angle 6 between the “original” and “new” equilibrium orientations of the barbell, but
rather the angle (26) between the two “new” equilibrium positions one gets by placing
the heavy masses in the two possible ways (where they pull the barbell counterclockwise
and clockwise). It is also common in modern versions of the experiment for a small mir-
ror to be mounted near the center of the barbell. The small angular re-orientations of
the barbell can then be measured by reflecting a laser beam off the mirror onto a distant
wall, and measuring the deflection of the spot on the wall. Since reflection off a mirror
rotated by angle 6 causes the angle of the light beam to be rotated by 26, this means
the angle of the laser spot on the wall will move by four times the angle we originally
defined as 6. Calling this angle ¢, we then have that

kdb?  TERbORH?

C=SMmR - MT?

(3.42)

We include this here just to make life simpler should you be asked to perform this
experiment yourself in class and analyze the results.

For what it is worth, Cavendish’s own 1798 implied a final result for G that was
within 1% of the best contemporary value:

N 2
G =6.67x 107" —. (3.43)
kg

As mentioned, though, Cavendish himself wasn’t really interested in measuring what we
now call Newton’s constant, but was instead interested in “weighing the earth.” What
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he actually reports as his final conclusion is that the average density of the Earth is 5.48

times that of water, i.e.,

M,
p= MTth = 5.48g/cm®. (3.44)
§7T

Plugging in the known radius of the Earth

earth

Rearth = 6.37 x 10m (3.45)
and solving for the Earth’s mass gives
Mearin = 6 x 10* kg (3.46)

from which one can, if desired, compute the mass of the Sun (and other planets) explicitly,
by using the relations that began this section.

3.7 Gravitational Energy

As is familiar to physics students, the gravitational force near the surface of the earth
gives rise to an associated concept of gravitational potential energy. As always, potential
energy is defined as the amount of mechanical work an external agent would have to do
to arrange things a certain way (by moving them slowly into that arrangement from
some initial “reference” arrangement). For objects near the surface of the earth, we took
“the ground” as the reference position. In order to lift an object of mass m to a height
h off the ground, an external agent has to apply a force equal to the object’s weight mg
through a distance h. And so the work done — and hence the gravitational potential
energy — is the familiar formula: U = mgh.

We want to generalize this result now that we know how the gravitational force
varies over large distances. We will be particularly interested in finding the gravitational
potential energy between two massive objects (masses M and m, say) a distance r apart.
As usual, this is simply the amount of work an external agent would have to do to bring
about this arrangement. But the first question is: what should we take as the reference
arrangement? For two point masses, if we pick some particular finite separation rg as the
reference, then the gravitational potential energy will be positive or negative depending
on whether r is greater or less than rg. That’s a little bit weird. And it’d also be weird
to so arbitrarily pick some particular rg.

It is thus conventional to pick r = oo as the reference arrangement. That is, we will
define the potential energy between two massive objects to be zero when the two objects
are infinitely far apart. This actually makes some sense, since this is the only separation
for which the force between them vanishes. And anyway it is just a convention. So the
question becomes: how much work does an external agent have to do to slowly “lower
in” one of the masses (say m) to a distance r away from the other (fixed) mass M,
starting from infinite separation? The force exerted by the external agent here will be
equal and opposite to the force the masses exert on each other, i.e., it will be opposite
the direction m is moving. So the work (and hence the potential energy) will come out
to be negative.
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And since the force varies continuously with r, we’ll have to break the “lowering”
process up into a sequence of short steps, and then integrate to find the work done. It

is:
Ulr) = —/ GMmdr

r2

M
_ _GMm (3.47)

T

Since the formula for the gravitational potential energy looks alot like the formula for the
gravitational force, I'll just call your attention explicitly to the fact that the denominator
in the PE formula has r to the first power, while in the force formula it is of course the
inverse square of r which appears. And there is another perhaps-misleading similarity:
the minus sign that appears in the formula for the gravitational force tells us about the
direction of the force — that it is attractive rather than repulsive. The minus sign in
the potential energy formula, on the other hand, really means minus: the gravitational
potential energy between two massive objects is a scalar and it is always negative.

Let’s consider the case of a circular orbit (of, say, a planet of mass m around the sun,
mass M). The total energy of the planet will be the sum of its kinetic energy (KE) and
gravitational potential energy (PE):

E = KE+PE
1 v2_GMm

2 r

1GMm
= 5 (3.48)

where, to get to the last line, we have used the fact that, for a circular orbit, the
centripetal acceleration a = v?/r is equal to F'/m = GM /r%. Notice in particular that
the total energy is negative (and that it is precisely half of the gravitational PE, which is
of course also negative). This shouldn’t bother you. The gravitational potential energy
will always be negative, and for a circular orbit the kinetic energy just isn’t enough to
make the total energy come out positive.

Actually, a negative total E turns out to be a feature of any closed orbit, whether
it is a circle or a very eccentric ellipse. An “orbit” with total energy £ = 0 turns out
to be shaped like a parabola. An object undergoing such an orbit would start infinitely
far away from the sun, slowly fall in toward it (but with a little angular momentum so
it doesn’t just crash straight into the sun!), get slingshot around and out the other way,
escaping eventually back to infinity (in a different direction) where it will be left with no
kinetic energy and hence be (again) at rest. The orbits (and life histories) of some comets
approximate this behavior. Orbits with £/ > 0 are also possible. They are qualitatively
similar and have the shape of hyperbolae. Notice the curious fact that the shapes of the
different possible orbits (in an inverse-square-law gravitational force field) are all of the
different conic sections — the shapes (circle, ellipse, parabola, and hyperbola) that one
can get by slicing a cone with a plane.

This is something we’ll take up and prove in Chapter 6. For now, you should just
accept it as a conjecture to be proved rigorously later.
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Figure 3.5: Several possible orbits for a mass at the point shown in the influence of
the sun’s (or whatever’s) gravitational field. One may think of these as illustrating the
family of trajectories possible for an object passing through the point to the right of the
Sun where all the orbits cross, with a velocity directed exactly upward, but with various
speeds at that point — or equivalently, with various total energies. The circular orbit
corresponds to the (negative) total energy E calculated in the text. A slightly lower
energy will result in the small elliptical orbit shown. A slightly higher (but still overall
negative) energy will result in the larger elliptical orbit shown. A total energy of zero will
produce the parabolic trajectory, while £ > 0 corresponds to a hyperbolic trajectory.
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We noted above that, for a circular orbit, the total energy £ can be written in terms
of the radius r as

- == (3.49)

We just note here in passing that this same equation applies also to elliptical orbits if
the “radius” r on the right hand side is interpreted as the semi-major axis of the ellipse.

Something similar is also true of the periods of the orbits. For a circular orbit, the
centripetal acceleration v?/r must equal F/m = GM/r?. Re-writing the orbital speed v
in terms of the period T', one gets

2 An? g

= TR (3.50)
which is just Kepler’s third law, with the proportionality constant expanded using New-
ton’s theory. The point is that this relation between the period and radius of a circular
orbit remains true in the case of non-circular, elliptical, orbits, if one interprets R as the
semi-major axis of the ellipse. This was proved rigorously by Newton and represented
a minor correction to Kepler’s third law as formulated by Kepler. We point it out here
just because it is historically interesting that Newton was actually able, using his theory,
to correct one of the things that had allowed him to formulate the theory in the first
place. Of course, there is no logical circularity since what he used in arriving at the
theory was the approximate truth of Kepler’s third law for the approximately-circular
planetary orbits; what he later corrected using the theory was a detail. In any case, the
detail is interesting — implying, for example, that the orbital period of a comet with an
extremely eccentric elliptical orbit and a planet with a near-circular orbit will be the
same, if the semi-major axis of the former matches the radius of the latter. We will
have the opportunity to check that this relation really does follow from Newton’s inverse
square force law in Chapter 6.

Let us mention one last important application of the gravitational potential energy
implied by Newton’s theory: its use in calculating escape velocity. This is the velocity
you’d need to give to an object to get it to escape completely from the gravitational
attraction that binds it — e.g., to get a rocket to escape from the gravitational pull of
the earth, or to get a deep space probe to escape from the gravitational pull of the sun.
The way to calculate the escape velocity is simply to ask: what velocity would we need
to give the thing in order that it’s total energy be zero, such that, instead of taking an
elliptical orbit and returning back to its current location, it instead follows a parabolic
trajectory and escapes to infinity?

1 5 GMm

E = MV = —— = 0 (3.51)
can be easily enough solved for v, giving
2GM
Vese = pant (3.52)

For M = Megmn, and 1 = Regrn, we find vese &= 11km/s. So if you could launch a
projectile with this initial speed near the surface of the earth, it would escape to infinity
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(though, strictly speaking, not beyond). Of course, that ignores air resistance, which
would in fact be pretty important. If a projectile were actually launched with this speed,
it would probably burn up before even making it out of the earth’s atmosphere, much as
asteroids falling into the atmosphere burn up before they hit the ground. Actually, the
cases are quite parallel: an asteroid which starts out pretty far away from earth and not
moving too fast, but which then gets captured by the earth’s gravitational attraction,
has total energy zero and hence will be (or would be, if it didn’t burn up first) moving
at precisely the escape velocity when it hits the earth’s surface.

I’ll let you work out in the Projects what the escape velocity is for some other
situations.

Questions for Thought and Discussion:

1. What is “centripetal acceleration”? How is the formula a = v?/R derived?

2. If universal gravitation implies that all massive objects attract one another, why
don’t we observe pairs of familiar household objects (cats and toasters and such)
attracting each other gravitationally? According to Newton’s theory, how strong
is the gravitational force between a cat and a nearby toaster?

3. If you didn’t have the data from the Cavendish experiment, how might you estimate
the mass of the Earth? (Such rough estimates were indeed known to Newton, but
they involved extrapolation and guessing.)

4. We have discussed how Kepler’s second law (“equal areas in equal times”) is equiv-
alent to the statement that each planet’s angular momentum is constant in time.
But suppose the angular momentum of a planet were measured relative to an origin
not at the Sun, but, say, far outside the planet’s orbit. Would its angular momen-
tum still be a constant of its motion? Is there any problem here? For example, does
this contradict the law of angular momentum conservation? Does it contradict the
claimed connection between angular momentum conservation and Kepler’s second
law?

5. Imagine a flat, frictionless table top with a fixed peg sticking up in the center. One
end of a spring is attached to the peg, and the other end of the spring is attached
to a ball. Would it be possible to make the ball “orbit” the peg with a circular
trajectory? What would be the analog of Kepler’s third law for this system? Would
Kepler’s second law still apply?

6. Imagine a child standing near the edge of a merry-go-round, which is spinning
clockwise (as seen from above). Treat the child as a particle. Using the center
of the merry-go-round as an origin, what is the direction of the child’s angular
momentum vector? How should one think about what this direction means? If the
angular velocity of the merry-go-round is decreasing (say, due to some friction),
what is the direction of the torque acting on the child? What sort of force produces
this torque? Are there any other forces acting that don’t produce any torque?
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7. How do you think the mass of the Earth’s moon was determined?

8. Newton argued, more or less, as follows: the Sun exerts an inverse-square-law force
on the planets which controls their orbits; the Earth’s gravitational influence falls
off with distance as the inverse square; therefore the force exerted by the Sun on
the planets is gravitational. What kind of argument is this? Is it reasonable?
It might help to compare Newton’s argument to other arguments that share this
one’s structure, e.g.: there are two animals that are both brown, this one is a cow,
therefore so is the other one.

9. In the Cavendish experiment, what is the main advantage of having all of the
involved objects and forces lying in a horizontal plane? For example, why not
simplify the experiment by putting one ball on a scale, then holding another ball a
known distance above the first one, and seeing how much the scale reading decreases
because of the additional upward inter-ball gravitational force on the first ball?

10. By what factor would the speed of the Earth (in its orbit around the Sun) have to
be increased, in order for the Earth to escape the solar system?

11. When Newton claimed that the inverse square law for gravitational forces was
“universal”, what exactly did this mean? It turns out that certain small anomalies
in the orbit of (for example) Mercury are best explained by positing that the
true gravitational force law departs somewhat from Newton’s law (particularly
for heavy bodies and short distances). Einstein’s theory of General Relativity, as
far as we know today, correctly describes these deviations from Newton’s theory.
The question is, do these later observations and theories constitute a refutation of
Newton’s claims? Or did Newton only mean to claim, from the beginning, that the
inverse square law gives a (then) adequate description of gravitational forces over
a certain finite domain of situations? To answer this, it might be helpful to think
of other episodes from the history of science. For example, did Copernicus refute
Ptolemy, or supplement him? Did Kepler refute Copernicus, or supplement him?
What other examples can you think of 7 The real issue here is to ponder the overall
progression of scientific knowledge: is it a sequence of wrong ideas each of which is
refuted by the subsequent ones, or a sequence of better and better approximations
to the truth, or a sequence of true claims whose generality and scope progressively
increase, or what?

Projects:

3.1 Consider a particle moving inertially (i.e., in a straight line with constant speed).
Draw its trajectory and pick a (random) origin point that is not on the trajec-
tory. Draw several A7 vectors representing the displacement of the particle during
(equal) finite durations At at several different points along the trajectory. Now
consider the (triangular) areas “swept out” during each of these At period. Does
the inertially moving particle sweep out equal areas in equal times? Relate this to
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the angular momentum and torque concepts introduced in the text, and explain
the overall connection to Kepler’s second law.

C/
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Figure 3.6: A planet receives intermittent regular impulsive forces from a central Sun.
Its trajectory is thus not a smooth curve, but a polygon. The positions A, B, and C
are occupied by the planet at three successive times separated by the same constant
At. Tt is helpful also to consider the position C’ that the planet would occupy if no
force acted at point B. The displacement vector A7pg¢r is then equal to A7r,p, and so
the displacement vector pointing from C’ to C' is proportional to the velocity change
at B: AFCIC = AFBC — AFBC” = AFBC — AFAB = (UBC’ — 77AB) At ~ 63 where ap is
the acceleration of the particle at or around point B. (We simply avoid the question
of whether ap represents an average or instantaneous acceleration by claiming only a
proportionality at the end of that string of equalities.) The point is that this acceleration
at point B is toward the Sun. Hence, the line connecting C and C’ is parallel to the line
connecting the Sun to point B. This is the key insight that then allows a relatively simple
geometric argument for the claim that the triangular areas Sun-A-B and Sun-B-C are
equal.

3.2 Consider a particle that is intermittently moving inertially, but which receives reg-
ular, discrete, impulsive forces directed toward a fixed center. Think, for example,
of a planet orbiting the Sun, but in a universe where the Sun, instead of exerting a
continuous force on the planet, delivers regular, instantaneous bursts of attractive
force. The resulting trajectory of the planet would be something like a normal
orbital curve, but a polygon built out of a number of discrete line segments instead
of a smooth curve. Figure 3.6 shows two of the straight-line segments of such a
trajectory. Use techniques similar those you used in Project 3.1 to (a) show that
and (b) understand why the area swept out by the planet (in each time duration
between subsequent bursts) is constant. Then do (a) and (b) again using the con-
cepts of angular momentum and torque. Finally, think about how this relates to
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the continuous-in-time version of angular momentum conservation and its relation
to Kepler’s 2nd law that was discussed in the text. (The geometrical part of this
is essentially how Newton himself proved that Kepler’s second law follows as a
logical consequence of his theory of gravitation. Discussing it in terms of torque
and angular momentum involves a more modern perspective.)

Here is an interesting way to derive the important formula for the centripetal
acceleration of uniform circular motion: a. = v?/R. Consider a particle bouncing
around on the inside of a circle, such that its trajectory is a regular polygon (an
equilateral triangle, a square, a pentagon, etc.). Suppose the particle has mass
m and moves with speed v and that the circle (which circumscribes the particle’s
trajectory) has radius R. Find an expression for the amount by which the particle’s
velocity changes during one of its collisions with the circle (i.e., where its trajectory
makes a corner) and, dividing this by the time between such collisions, find an
expression for the average centripetal acceleration of the particle. Work this out
first for the case of a square orbit, then see if you can generalize to a regular
polygon with N sides. You should expect that, in the limit N — oo, this average
centripetal acceleration for a polygonal orbit goes into the exact expression for the
instantaneous centripetal acceleration of a circular orbit. Do you indeed reproduce
the familiar formula this way?

Two moons orbiting Mars — Phobos and Diemos — were discovered in 1877 by
the astronomer Asaph Hall. Subsequent observations revealed Phobos to have an
orbital radius of 9,380 km and an orbital period of 7 hours, 39 minutes. Diemos
was found to have an orbital radius of 23,460 km and an orbital period of 1.26
days. What is the mass of Mars (a) in Earth masses and (b) in kilograms?

Reproduce the Cavendish experiment in your classroom and come up with a range
of values for Newton’s constant, (G. List some of the possible systematic errors
that you think influence your results.

Use your value for G from the Cavendish experiment to “weigh the earth” using
the fact that, according to Newton’s theory, the gravitational acceleration for an
object of mass m near the surface of the Earth should be ¢ = GM/R? where M
and R are the mass and radius of Earth, respectively.

The Earth’s moon has mass 7.35 x 1022 kg and radius 1, 737 km. What is the local
gravitational acceleration g at the surface of the Moon? How long would it take a
golf ball to drop from head height to the ground if you were on the Moon? How
high could you jump?

What is the escape velocity from the surface of the Moon? Could you throw or hit
a golf ball fast enough to make it escape the Moon’s gravitational pull? If a meteor
(which was long ago more or less at rest far from the Moon) gets captured by the
Moon’s gravitation and eventually strikes the surface of the Moon, roughly how
fast will it be moving on impact? If the meteor’s mass is, say, a thousand kilograms,
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3.9

3.9

3.10

3.11

3.12

how much kinetic energy will it have? Compare this to the energy released by the
explosion of a ton of TNT: 4 x 10 Joules. How do you think the Moon’s craters
(visible already to Galileo) were formed?

Estimate the size of the biggest asteroid (i.e., a rocky planet-like object that is
smaller than our Moon) from which you could throw a golf ball and have it escape
from the asteroid’s gravity.

One theory of the cause of the extinction of the dinosaurs is that a large meteor
struck the Earth and radically altered the temperature and other environmental
parameters. Suppose a chunk of rocky material about 10 km across were captured
by the Earth’s gravitation and struck the surface. What would be its kinetic energy
on impact? Compare this to the energy released by the currently most powerful
nuclear weapons, which release roughly the equivalent of a million tons of exploding
TNT (a “megaton”): 4 x 10' Joules.

A geo-synchronous orbit is one in which the orbiting satellite moves with the ro-
tating Earth such that, for example, it is always in exactly the same place on the
sky as seen from Earth. What must be the radius (both in km and Earth radii)
of such a satellite? Are all circular orbits with that radius geo-synchronous? Can
Santa Claus get satellite TV during his less busy spring and summer months?

Compute and compare the densities of the Earth, Sun, Jupiter, and Saturn. When
retrograding, Jupiter subtends an angular diameter of 0.00023 radians, or 0.013
degrees. Similarly, when retrograding, Saturn (not including the rings) subtends
an angular diameter of 0.000093 radians, or 0.0053 degrees.

Calculate the magnitudes of the forces of gravitational attraction of the earth
toward (a) the Sun, (b) the Moon, (c) Jupiter, and (d) Mars. For the planets, use
the force that obtains when the earth-planet distance is at its minimum, i.e., find
the maximum force.
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Chapter 4

Putting it All Together

In the first three chapters, we traced the historical origins of Newton’s theory of gravi-
tation. In the final two chapters on this broad topic (Chapters 5 and 6) we trace some
of the interesting and important applications of Newton’s theory, giving a small taste
of the role the theory has played in physics and astronomy between Newton’s time and
ours. The present chapter is a kind of bridge between Chapter 3 and Chapters 5 and 6.
Our goal here will be to develop some important results pertaining to extended bodies
(as opposed to point masses). As we’ll see, these results will fill in several loopholes from
the discussion in Chapter 3, and put us in a position to apply the full set of Newtonian
concepts to extended objects like planets, stars, and galaxies.

The perspective that gives rise to the need for this chapter is an early “atomic” or
“corpuscularian” view. (A much fuller treatment of this view is the subject of the second
half of the book.) According to this view, matter basically consists of small massive
particles, and the motion and dynamics of extended objects can and should ultimately
be understood by analyzing them into their component corpuscles. Part of the idea here is
that the fundamental dynamical laws (such as Newton’s three laws of motion) are posited
for the elementary massive corpuscles. Their applicability for extended objects (which
are composed of many such corpuscles) must then be established with the appropriate
mathematical theorems.

That this is so for the three laws of motion is relatively straightforward to establish,
and is maybe something the reader has thought about in a previous physics course.
In Section 4.1 we will reproduce the relevant derivations as a kind of warm-up to the
subsequent discussions of the rotation and gravitation of extended bodies.

But one word of warning before jumping in. This chapter may feel very awkward
after what has come before, since no attempt is made here to display the relevance of the
ideas being discussed to astronomy or the physics of the heavens. Indeed, this chapter
will feel much more like a standard physics text, with lots of boring discussion of balls
rolling down inclined planes, and things like this. The reason for this is not that the
ideas developed here aren’t applicable to the interesting astrophysics topics we’ve been
discussing. Instead, the point is to develop your understanding of these topics first using
more mundane examples (like the balls on the ramps), just as you did last semester with
F' = ma. The many interesting astrophysical applications of all this stuff will then follow

109
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pext
F2

Figure 4.1: A simple example extended body, composed of two massive corpuscles labeled
mq and mg. (Never mind what the “rod” connecting them is made of! It is treated here
as massless.) This diagram is also double-tasking as a free-body-diagram, so the forces
acting on each corpuscle are also shown. These are classified as internal or external
forces depending on whether or not they are exerted by other corpuscles are are part of
the extended body in question. For the internal forces, our labeling convention is that
ﬁf denotes the force exerted on mass 1 by mass 2.

in the next chapter. You’ll just have to be patient!

4.1 Newton’s Three Laws for Extended Bodies

Suppose we have an extended object composed of several elementary massive corpuscles.
For simplicity, let’s assume first that the object is composed of only two such particles
—e.g., a barbell as shown in Figure 4.1. We’ll then cycle back at the end and show how
everything we’ve said about the barbell applies also to any arbitrary extended object.

The Figure shows the two mass points that compose the barbell, and also the forces
acting on each of them. The forces can be classified as either “internal” or “external”
depending on whether the force in question is exerted by an object that is part of,
or outside of, the extended object in question. Specifically the Figure shows, for each
particle, the net “external” force (i.e., the sum of all the forces exerted on that object by
other particles in the universe, not pictured) and then also the “internal” force exerted
by the other pictured mass.

Let’s assume we’re using an inertial reference frame, so that Newton’s first law holds.
Then, we are positing that Newton’s second law applies to each of the two masses, and
also that Newton’s third law correctly describes the relationship between the forces the
two masses exert on each other. In equations, these assumptions read

Ff”—l—ﬁfzmﬁl (41)
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and
F$®™ 1 Fy = mads (4.2)

where d; and dy are the accelerations of the two corpuscles, and
F? = —F}. (4.3)

Let us now introduce the concept of the “center of mass” of this extended object. This
is simply a point in space that in some way represents the position of the object as a
whole. To be precise, it represents the average position of all the component corpuscles,
with the masses of the corpuscles used as a weighting for the average. Mathematically,
the definition is

mlﬁ + mgfg

Row = (4.4)

mp + ms

where 7 and 75 are the position vectors for the individual corpuscles. Since the masses
mq and mgy are just constants independent of time, it is easy to derive (by taking deriva-
tives with respect to time) expressions for the center of mass velocity

miU1 + mats

Voy = ——=+ 22 4.5
oM mi + meo ( )

and acceleration ~ ~
Loy = MG Mol (46)

mi +ma
where 77 is the velocity of particle 1, ds is the accleration of particle 2, etc.
Now let us put all of this together. The idea is to simply add together Equations 4.1
and 4.2:
midy + mady = F{™ + F? + F5* + F). (4.7)
But now we can use Equation 4.3 to cancel the two (equal and opposite) internal forces
which appear added on the right hand side. The result is:

midy + mady = ﬁfxt + ﬁfxt. (4.8)

Finally, we can recognize the left hand side as the numerator from the right hand side
of Equation 4.6. This allows us to write

Fert — M Aoy (4.9)

where Fe"* without any subscripts refers to the total external force F& + F§™ and we
define the total mass M = mqy + ms.

The final result here looks just like Newton’s second law (F' = ma) but is a description
of the two-particle-system treated, in some sense, as a whole, as a single object. In words,
what we proved is that if the constituent particles of this barbell object obey Newton’s
laws of motion individually, then the object as a whole will, too — with (not surprisingly)
the total mass functioning as “the mass of the whole,” the total external force acting
as “the net force acting on the whole,” and the acceleration of the center of mass point
functioning as “the acceleration of the whole.”
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It shouldn’t be surprising that this works out. After all, it was empirical observation
of big extended objects that led Newton to posit his laws of motion in the first place. So
there would be a pretty serious problem if positing those laws for the small constituent
particles resulted in anything else for the motion of the whole. Still, it’s nice to see that
— and how — it works out.

Before going on, we should check explicitly that the same method works for a more
general extended object, composed of some arbitrary number of elementary massive
particles. The logic will be exactly the same, so let’s just breeze through this quickly
for the record. (If you understood the discussion of the barbell, there’s really nothing
new here except bigger numbers, and we won’t even see those since we’ll write things
more abstractly, as sums.) Thus, suppose an extended object is composed of N massive
particles with masses m; and positions 7;. We can then define the total mass and center
of mass position by

M=) m (4.10)

and

Zz’]\il mit
i .

The C'M point’s velocity and acceleration are then defined by differentiation. For exam-

ple,

Roy = (4.11)

N S
1 Mm,d;
@' (4.12)
M
We are assuming that the motion of each individual particle is governed by Newton’s
laws, i.e.,

Acm =

mid; = F’vinet _ Fwiemt + ZF’ZJ (413)
J#i
and that Newton’s third law holds:

—

F/ =—F". (4.14)

(2

Now, just following what we did for the case N = 2 above, we may simply sum Equation
4.13 for all the particles:

N

N

Soma =y (F SR, (a1
i=1 i=1 i

The internal forces will cancel pairwise, leaving, on the right hand side, only the total

external force:
N

F’emt — Zﬁviext' (416)
i=1

Equation 4.15 can then be re-written, using Equation 4.12, as

Fert = M Aoy (4.17)
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as expected. So what we found above for the barbell is really general. In the following
sections, we’ll follow more or less this same procedure to discuss the rotational behavior
(including torque, angular momentum, and energy) and the gravitational influence of
extended bodies.

4.2 Kinetic Energy of an Extended Object

Let us then turn to the following question: what is the total kinetic energy of an extended
object? In one sense, the answer is trivial. The total kinetic energy is just the sum of
the kinetic energies of all of the constituent particles:

N
I
KEjota1 = Y Emivf. (4.18)
i=1

And for a completely general extended object, that is about all we can say. But for
the special case of a rigid body — an extended object whose constituent particles are
somehow or other “glued” together — it can be shown that the above formula simplifies
in a particularly nice way, that will help clarify several concepts before they show up
again later in the more complicated context of examining torque and angular momentum.

As before, let’s start by exploring this for the simplest possible multi-particle rigid
body, the barbell. We’ll then cycle back around at the end and show that everything we
found for the barbell actually applies in general.

So consider the situation pictured in Figure 4.2. The main point is that the overall
motion of the barbell (assuming, for simplicity, that the motion is confined to the plane)
can be characterized by specifying (i) the translational velocity of the center of mass
point, and (ii) the angular velocity of the (remember, rigid) object as a whole about the
center of mass point. Since the object is rigid, we can express the translational velocity of
each individual particle in terms of Vs and w. Doing this, and then using the resulting
expressions for the individual particle velocities to work out the total kinetic energy,
allows us to rewrite the total kinetic energy in terms of Vo and w in a particularly
illuminating way.

Let’s go through this in detail. To begin with, suppose the center of mass velocity
Voum has ¢ and y components V5, , and VCZ{ 1y Tespectively. (We assume, only for simplic-
ity, that all the motion is in the x — y plane.) Now, what are the x and y components of
the velocity of particle 1 with respect to the center of mass point, which it has by virtue
of the object’s rotation? Suppose the distance from the center of mass point to particle
11is 1. Then the speed of particle 1 relative to the center of mass will be v; = riw. The
direction of its relative velocity will be perpindicular to the axis of the barbell, to the
upper-left in the figure. Since the barbell is oriented at an angle # with respect to the
x-axis, we can see that the components of its relative velocity will be

z,rel

v " = —v; sin(f) = —rqwsin(0) (4.19)

and
v?f’rel = vy cos(f) = riwcos(h). (4.20)
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Figure 4.2: The moving barbell object. We assume ms > my such that the center of
mass point (represented by the solid dot in the Figure) will be nearer mg, as shown. The
object as a whole, as represented by VC M, moves to the upper right. The barbell is also
rotating counterclockwise with angular velocity w. The translational velocity of each
particle can be understood as the velocity the particle has with respect to the center of
mass point (by virtue of the rotational motion) plus the velocity of the center of mass.

That, remember, is just the velocity of particle 1 relative to the center of mass. Its actual
velocity ¢ will be the (vector) sum of this with the velocity of the center of mass point
itself. Hence:

vf = —rwsin(0) + Vi, (4.21)
and

v = rwcos(d) + V. (4.22)

The story for particle 2 is exactly the same, with the exception that its velocity
relative to the center of mass is in the opposite direction (down and to the right in the
figure), so the signs of vy el and v2’rel are opposite those given above for particle 1. The
results for particle 2’s overall velocity components are:

vy = rowsin(0) + Vi, (4.23)

and
vY = —rowcos(0) + VI, (4.24)
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where 79 is the distance between the center of mass and particle 2. Note also that, by
virtue of the definition of the center of mass, the distances r; and ro are related to the
masses my; and ms as follows:

miry = mory. (4.25)

Let’s now finally put all this together. The game is to plug the expressions for the
velocities of the two particles into the general expression, Equation 4.18, for the total
kinetic energy. Doing this yields

KEota = %mﬁ% + %mﬁ% (4.26)
= S [0 + W)7] + gma [(08)” + ()7 (4.27)
= %ml [(—rwsin(0) + VEy)? + (vf — riweos(0) + VE,,)?]  (4.28)

—l—%mg [(rowsin(0) + V&y)? + (—raw cos(8) + V)] (4.29)

Expanding out all the squared binomials and organizing and simplifying, we get three
groups of terms:

1
KBiotar = 5(m1 +ma) (V&) + (V&)%) (4.30)
1
+3 (marg + mar3) w? (4.31)
+(mary — mara) [weos(9)VE,, — wsin(0) V] - (4.32)

The first thing to notice is that, by virtue of the definition of the center of mass, the
whole third group of terms (which, notice, were the cross terms in expanding out the
binomials) vanishes: myry — mare = 0. This leaves only the first and second terms,
which correspond respectively to the purely translational and purely rotational aspects
of the motion. Thus, the total kinetic energy of the moving barbell can be written

1. - 1
KEppa1 = 5MVC2 u+ 51& (4.33)

where M = mq 4+ my is just the total mass of the object, and I — the moment of inertia
— is defined mathematically as
I = myr? + mori (4.34)

and should be understood as the rotational analog of mass. It is, like the actual mass,
an intrinsic property of the object, which depends on how it is configured, but doesn’t
depend on how (or whether) it is moving. The purely rotational part of the total kinetic
energy — %I w? — then depends on this intrinsic property and the angular velocity, in
just the same way that the translational part of the total kinetic energy depends on the
(total) mass and (overall) translational velocity.

There is one caveat that should be put on the table right away. We have spoken of the
distances r; and ro as the distances of the particles from the center of mass point. That
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characterization is appropriate for what we just did, but is not fully general. Really, the
relevant distances are the distances between the particles and the axis about which the
rotation is occurring. So, for example, the same physical object — the barbell — could be
rotating about an axis that coincides with the line connecting the two particles. In that
case, both of the particles are right on the axis, i.e., their distances from the axis are zero,
and so the moment of inertia will also be zero. For this reason, calling the moment of
inertia (as it was defined above) an intrinsic property of the object is a little misleading.
It is an intrinsic property of the object, but only relative to a particular axis about
which that object might rotate. Relative to different such axes, the same one unchanged
object can have different moments of inertia. There is, not surprisingly, mathematical
technology that allows one to compile the moments of inertia of a given object relative
to three particularly important axes, in something like a “vector” from which one can
deduce what the moment of inertia will be about any axis. Such information so compiled
definitely captures an intrinsic property of a rigid body. We won’t develop any of this
further here, for the simple reason that we won’t ever need to use it. But we will be
talking about the moment of inertia of non-planar objects (such as spheres), so it is
important to know how to properly generalize what we did above.

Back to the big picture: at least for this particular rigid object (the barbell), the total
kinetic energy can be written as the sum of a “translational” piece and a “rotational”
piece. This came about because, as noted, all the cross terms cancelled out above —
which in turn happened because we had referred the positions of all the particles to the
center of mass point. Let us now show that this central result is completely general.
Hence, imagine some arbitrary body composed of N elementary particles with masses
m; and being located at position 77 ¢l relative to the center of mass point. The position
of the ith particle can then be written

7= ECM + f;-rel. (4.35)

Notice that, by plugging this expression into the definition of the center of mass,

N . _’.
Roy = 7Zi:j4mm (4.36)
we can show that
N
> me = 0. (4.37)
i=1

This is the analog of the mir; — mare = 0 condition we had for the barbell.

Let us also write the wvelocities of the particles as the velocity of the center of mass
point plus whatever velocity a given particle has relative to the center of mass point.
(This latter contribution will be due exclusively to the rotational motion.) A clever trick,
explained in Figure 4.3, is then to write these relative velocities as follows:
el = g x 7 (4.38)

K3 3

where the vector & represents the angular velocity of the rigid body: its magnitude is
just the familiar angular velocity df/dt, and its direction coincides with the axis about
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Figure 4.3: A rotating rigid body. The ith particle, marked by a black circle, moves in
a circle of radius r;- about the rotation axis. Its position relative to the center of mass
point (the X marked “CM?”) is given by 7} €l The angular velocity vector is @. The
instantaneous velocity of the particle has a direction that is tangential to the dotted-
line circle (out of the page) and a magnitude |&|r;-. Both of these features of @7¢ are

—rel

correctly captured by the formula: 97¢ = & x 77¢.

which the body is rotating. (The ambiguity in sign is resolved by the right hand rule:
curl the fingers of your right hand in the direction of the rotation, and your thumb points
in the direction that should be assigned to &J.)

We can then write the overall velocity of the i’th particle as follows:

;= Vo + & x fzel (4.39)
and immediately plug into the beginning expression for the total kinetic energy:
N
1 I - I -
KPEpta = Z M <w X T 4 VCM) . (w X Ty 4 VCM) (4.40)
i=1

where we have written the square of the vector using the dot product. It is now relatively
straightforward to get the desired result. The only tricky thing is evaluating the dot
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product of a cross product with a cross product. The mathematical identity needed is:

oL I, NG
(A x B) : <A X B> — A28 (A : B> . (4.41)
We then find that the expression for the total kinetic energy can be simplified to
1 1
K Bpotal = 5 MVEns + 5 2;m (W7 = (@ 7)) (4.42)
1=

plus another term, again arising from the “cross terms,” which is proportional to >, m;7;
and is hence zero as shown above.
The second term simplifies, as expected, to %I w?, where

N
I=> m(ri)? (4.43)
i=1
where here rl-l is (as advertised) the perpindicular distance between particle i and the
rotation axis passing through the center of mass point. One can see from the Pythagorean
theorem that this distance (squared) should be given by |7;|?> minus the square of the
component of 7; that is parallel to that rotation axis. This component is precisely what
is picked off by taking the dot product of 7 with &, so one can see how this comes out
of the complicated looking Equation 4.42. Note that, for the special case of an object
that lives in the plane, rotating about an axis perpindicular to that plane, & and 7; are
perpindicular for all 4, and so their dot product vanishes, and so |7;| = r;. That’s why
we could get away with ignoring this distinction at first when we were talking about the
barbell moving and rotating in the plane.

The important point, of course, is just the result that for any arbitrary object com-
posed of many point masses, the total kinetic energy (the sum of 1/2mw? for all the
individual particles) can indeed be written as the sum of a purely translational part and
a purely rotational part:

KEiotal = %MVC%M + %Iw2 (444)
with the moment of inertia I defined as in Equation 4.43.

To see, right away, at least one important application of this idea, let’s see how we
can use it to analyze a standard physics textbook sort of problem: a ball rolling down a
ramp.

We'll tackle this same problem later using forces and torques, but for now we can
use the short-cut of using energy to calculate the acceleration. First, at the beginning
of the experiment, the ball is at rest on the top of the ramp, and hence has total energy
E = Mgh. Then it rolls down the ramp. When it reaches the bottom of the ramp, it will
have some translational velocity v and also (since it is rolling) some angular velocity w.
Note that, if it is really rolling (and not slipping) these two quantities have to be related
by v = wR. This is sometimes called the “rolling without slipping” condition. In any
case, the total energy of the ball as it reaches the bottom of the ramp can be written

1 1 1 I
E=-Mv+-Iw?>==(M+ = )% 4.4
5 MV + Slw 2< —|—R2>v (4.45)
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Figure 4.4: A ball of mass M and radius R rolling down an angle 6 ramp.

The total energy should be conserved since (let’s assume) no outside forces (such as
friction) do any work. (It is worth pausing briefly to contemplate this. Friction, despite
doing no mechanical work, is certainly present — else the ball would slide down the ramp,
not roll!) We can therefore set the above expression equal to Mgh, and solve for v?:

9 2Mgh
v

= —— 4.46
T (4.46)

It is a standard one-dimensional kinematics result that, for motion with constant ac-
celeration starting from rest, the final velocity squared is equal to 2aAx where a is the
acceleration and Az is the distance traversed. Our Az is just the length of the ramp:
h/sin(f). So we may solve for the acceleration of the ball:

v?  gsin(f)

a= = )
2Azx 1-|-MLR2

(4.47)

For an object that slides frictionlessly down the same ramp, the acceleration will be just
a = gsin(#). So what we've found is that the acceleration is a little bit smaller for an
object that rolls, by an amount that depends on the ratio I/M R%. Qualitatively, the
reason for this is that, for a rolling object, some of the initial gravitational kinetic energy
gets “wasted” — going into the purely rotational kinetic energy that doesn’t make the
object move fast, but only turn fast.

To get a more quantitative understanding of this, we need to learn how to calculate
and think about moments of inertia for some simple shapes. The simplest case is a hoop
or hollow cylinder (like a piece of pipe) rotating about its symmetry axis. For such an
object, all of the individual particles are the same distance R away from the center. And
so the moment of inertia is trivial to compute:

Ihoop = Zmz'r'? = R2 Z m; = MR2 (448)
7 7

where M is the total mass of the hoop or pipe.

We may plug this result into the above formula for the acceleration. We find that, for
a hoop or pipe rolling down a ramp, the acceleration is precisely half that of an object
that slides down frictionlessly, because the I/M R? in the denominator is just 1.
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Figure 4.5: Calculating the moment of inertia of a disc of radius R and total mass M.
The shaded hoop has radius r and thickness dr, hence total area dA = 2wrdr. The whole
disc has area A = mR?, so the shaded ring is a fraction dA/A = 2rdr/R? of the total
area. Hence the mass of the shaded ring is given by dm = 2Mrdr/R>.

One can then hopefully begin to see that, for some other object like a sphere, since
some of the mass is closer to the rotation axis than the object’s radius R, the quantity
I/MR? will be somewhat less than 1, and the acceleration will be accordingly greater.
So, for example, in a downhill rolling race, a solid sphere should beat a hoop. It might be
worth pausing at this point and actually performing some races with household objects,
and thinking about the results!

Let’s calculate the moment of inertia for one more object. (We’ll then just quote
the result for a ball, and leave the proof for the Projects.) Consider a solid disc, like
a pancake, rolling down the ramp. (Nevermind that a pancake wouldn’t roll too well.
A solid cylindrical candle is maybe a more realistic equivalent example.) The idea is to
imagine chopping the object up into a whole bunch of small-ish “pieces” each of whose
moment of inertia is known. The moment of inertia for the whole object can then be
calculated by adding (or more precisely, integrating) up the contributions from all the
pieces.

It is convenient to divide the disc up into a number of small hoops, since we just
calculated the moment of inertia for a hoop. Taking the whole disc to have mass M
and radius R, we focus our attention on a small hoop of radius r and thickness dr. Its
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area is then dA = 27rdr, which is 2rdr/R? of the total area A = 7R%. Hence, assuming
the mass of the disc is uniformly distributed over its area, the shaded hoop should have
mass dm = 2Mrdr/R?. The idea is to treat each of these small hoops as a “particle”
composing the full disc. We can thus calculate the disc’s moment of inertia by using

R oMrdr
I= Zmﬂ’? = /dmr2 :/0 2 2. (4.49)

Performing the integral gives

1
[disc = §MR2 (450)

which certainly seems plausible given the qualitative discussion above. Hence, a solid
disc or cylinder (e.g., a candle or a can of tomato paste) should roll down a ramp at 2/3
the rate of the intrepid frictionlessly sliding object.

What about a solid sphere (e.g., an orange)? Imagine what you’d have to do to
“morph” a solid cylinder like a candle into the shape of a sphere. Basically, you have
to move some of the mass from the edges of the cylinder, down toward the axis. Thus,
on average, the mass of a solid sphere is a little closer to the axis than for a cylinder, so
we’d expect, for a solid sphere, the moment of inertia to be a little less than for a disc
of the same mass and radius. It turns out the exact formula is

2
[sphere = 5MR2 (451)

which seems reasonable and can be proven with just a little work. (See the Projects.)

4.3 Rotational Dynamics of a Rigid Body

Let’s now follow this same pattern of discussion, and work out some important results
for the rotational dynamics of rigid bodies. The starting point here will be the concepts
of torque and angular momentum which we introduced, in Chapter 3, for point particles.
Recall that the angular momentum Lofa particle located at position ¥ and moving with
momentum p was defined as

L=Fxp (4.52)
with the multiplication on the right being the vector cross product. Also, the torque 7
produced by a force F acting on a particle at position 7 is

—

F=iFxF. (4.53)

We showed in the last chapter that, with these definitions and Newton’s second law, the
net torque on a particle (i.e., the sum of the torques produced by all the forces acting
on it) was equal to the rate of change of its angular momentum:

drl

= (4.54)

Tnet =
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Our goal here will be to see what these basic facts about individual point particles imply
about the behavior of an extended, rigid object composed of many such particles “glued”
together.

We'll first show that the total angular momentum of a rigid object can be written
as the sum of two terms — just as with the total kinetic energy — one of which pertains
to the motion of the object as a whole (as captured by the velocity of the center of
mass point), with the other pertaining to the rotational motion of the object about the
center of mass. We’ll then work out how the net torque on a rigid body relates to its
total angular momentum. And finally we’ll show how to apply all of this to a couple of
examples.

Let’s begin by working out the simple case of the barbell. Refer back again to Figure
4.2. We want to calculate the total angular momentum of the barbell by adding up the
angular momentum of the two constituent particles:

I_: = El + EQ = M7 X Uy + MoTy X Us. (455)

The “trick” will be to write the positions 7 and velocities ¥ of the two particles in terms
of the position Rcps and velocity Vs of the center of mass point. From the Figure, it
is apparent that

r{ = R&yy + 11 cos(0) (4.56)
and

r{ = R\, + r1sin(0) (4.57)
and likewise for particle 2:

r5 = Ry — r2cos(0) (4.58)
and

r§ = R, — r2sin(6). (4.59)

We already worked out how the x and y components of the velocities of particles 1 and
2 relate to Vo in Equations 4.21 - 4.24. We may use the fact that ¥ x ¢ will be in the
z direction if 7 and ¢ both lie in the x — y plane, and will have magnitude

’F X U‘ = TzUy — TyVUg (460)

and then plug all of the above expressions for the vector components into Equation 4.55.
When the dust settles (using the fact that mir; — mare = 0 to eliminate several terms)
the result is

L] = (m1 +ma) (REn Vi — Ry Vi) + (mar] + mard)w (4.61)
which can be understood as a special case of
E = Eorbiml + Espin (462)

where the “orbital” and “spin” contributions to the total angular momentum are, as
advertised, associated with the motion of the object as a whole and the purely rotational
motion respectively:

Loritat = RBen X Poyy = MRey x Vour (4.63)
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where M is the total mass, and

Lapin = 18 (4.64)
where [ is the moment of inertia as defined previously.
We can prove that this is indeed the correct general formula by working through a
parallel calculation for an arbitrary rigid body composed of N point particles. Using
again the trick from the previous section of writing

7 = Roa + 77 (4.65)
and
;= Veu + & x i (4.66)
we can plug into
N
L = > mx i (4.67)
i=1
N
= Ym (RCM + f‘{@l) X (VCM T E r{el> (4.68)
i=1
N N
= S miBow x Vear + > mif x (& X f;.”d) (4.69)
i=1 i=1
plus two other terms which vanish because Y, m;77¢ = 0. The first non-vanishing term

in the last line is just the “orbital” angular momentum defined above. It is the angular
momentum that a point particle would have if it had the same mass, position, and
velocity as our rigid body. The second term is the “spin” angular momentum, which is
nonzero when the body as a whole is rotating about its center of mass.

Note the analogy here between angular momentum and kinetic energy. Of course
the former is a vector and the latter is a scalar. But the two quantities are similar in
that the total amount of both, for a rigid body, can be written as a sum of two terms,
one depending on the translational motion of the object as a whole (as described by the
velocity of the center of mass point) and the other depending on the rotational motion
(as described by the angular velocity).

Now let’s figure out how forces affect the angular momentum of a rigid body. The
intermediate concept here is “torque.” For a single point particle at position 7, we defined
the torque exerted by a force F as

F=FxF. (4.70)
It was then simple to prove that
dL  d dr dp q
EZE(FXm:d_ZXﬁ—’_FXd_]t):FXF:F (4.71)

where we have used the fact that dr/dt = ¥ is parallel to p’ = m#, and so their cross
product vanishes. Note that the F' here represents the net force acting on the particle,
and so the T at the end represents the net torque.
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We can follow a similar derivation to get the corresponding law for a rigid body
composed of many elementary particles. The total angular momentum is just

N
L= #xp (4.72)
=1

Taking the derivative with respect to time and following the steps taken for the single
particle, we arrive at

dE d N N N
=T fixpi=) fixF=) fi=7 (4.73)
i=1 i=1 1=1

where now the 7 at the end means the (doubly) net torque — i.e., the net torque on each
particle (produced by the sum of all the individual forces acting on that particle), added
up for all the particles.

We may simplify the expression for the net torque 7 somewhat by doing what we did
in the very first section above — distinguishing between “external” and “internal” forces,
and showing that the effects of the internal forces cancel out so that only the external
force needs to be considered. To see how this goes here, we can write the net force acting
on a given particle as

l

F= R SO, (a)
J#i
where the first term on the right represents the total external force acting on particle
i (that is, the sum of any forces acting on that particle which aren’t exerted by other
particles in the body), and the second term adds up the forces exerted on particle i by
other particles in the body.
When we plug this into the expression for the total torque on the body, we get two

terms
N N
T=Y FHxET YN R« Fy (4.75)
i=1 i=1 j#i
representing, respectively, the total torque produced by external and internal forces.
Now let us show that (or really, under what conditions) the second term vanishes.
Note that it is a double sum — first we are summing over each of the particles, but then,
for each particle, we sum over all of the other particles in the body. So for any given
pair of particles (say, the 19th and 47th particles) there are two terms in the double sum
(one when ¢ = 19 and j = 47 and then another when ¢ = 47 and j = 19). We can thus
rewrite the double sum as a sum over all the possible pairs of particles, with two terms
for each pair:
Fint _ Z <'r_'; X F:i,j + f’] X F’jﬂ) . (476)
pairs
That was the hard part. Now we can appeal to Newton’s third law — F’” = —Fj;; —to
rewrite this as
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It is then easy to see that — if the forces exerted by a pair of particles on one another are
along the line connecting the two particles — the thing being summed is a cross product
of two vectors that are parallel, so that each term in the sum (and hence the sum) is
zero, and the internal forces won’t contribute anything to the net torque on the body.

What is the status of this extra requirement? It is satisfied by the Newtonian gravi-
tational force as discussed in the last chapter, and also by the electrostatic forces which
play a central role in holding together the actual atomic and sub-atomic constituents
of matter. And the upshot of this assumption about the microscopic forces — that in-
ternal forces won’t contribute any net torque to a body — is certainly consistent with
our macroscopic experience with everyday objects. For example, consider our friend the
barbell sitting on a (frictionless) table. Suppose the two masses exerted (gravitational or
electrical or whatever) forces on each other that were consistent with Newton’s third law,
but not along the line joining the two particles. Then there would be a net torque on
the barbell, and it would “spontaneously” (without any intervention from the outside)
start rotating! Since we never see something like this happen, it is good evidence that
such internal forces don’t in fact exist. Nevertheless, it is worth appreciating that this
is an extra assumption and that exceptions can and do exist.

Let us summarize and put together the main points developed so far in this section.
First, as with kinetic energy, the total angular momentum of a rigid body can be written
as the sum of two terms — one pertaining to its translational motion (the “orbital” angular
momentum) and one pertaining to the purely rotational motion (the “spin” angular
momentum). Second, the net torque on an object — which under typical conditions will
only get contributions from external forces — is equal to the rate of change of its total
angular momentum. We may summarize all of this with the following equation:

pewt _ i (Eorbital + Espin) (4 78)
dt ’
where LOtal and [P were defined in Equations 4.63 and 4.64.

Let us now see how we can apply all of this to gain further insight into the example
considered before: a ball (or other round object) rolling down a ramp. One of the
important points is that a lot of the quantities defined above, for example the torque
and the orbital angular momentum, are relative to the chosen coordinate system. For
example a given force might exert no torque relative to one coordinate system, but
nevertheless exert a large torque relative to some other coordinate system. So we will
have to be very careful — very explicit — about how we are choosing our coordinates.
This is not a bad thing, though; it’s a good thing. For we can take advantage of the fact
that all of the above is true for any coordinate system, to choose coordinate systems
that make certain calculations easier.

Thus, consider first the situation shown in Figure 4.6. Notice that this Figure is
doing two separate jobs: first, it’s a picture of the situation (the ball on the ramp), and
second, it’s a free body diagram cataloging the forces which act on the ball (which is of
course our object of interest). There are three relevant forces: the weight force W whose
magnitude is Mg and which can be treated as acting at the center of mass of the ball, a
normal force N which is directed perpindicular to the ramp and acts on the point of the
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Figure 4.6: A ball rolling down a ramp, with forces shown as in a free body diagram.

ball which touches the ramp, and finally a friction force ﬁf whose direction is parallel to
the ramp and which, like the normal force, acts on the point of the ball that contacts the
ramp. Why should we include the friction force? Because we are interested in the case
of a ball rolling down a ramp. If there were no friction, the ball wouldn’t roll; it would
simply slide. (You might be worried that this contradicts what we said above when we
did this using energy conservation. The point is that the friction force exists, but, since
the ball is rolling but not sliding, does no work. So the friction force must be included
to understand the dynamics of the ball, yet it can be ignored when treating the same
system using energy conservation.)

To begin with, let’s use the coordinate system indicated by the x and y axes shown
in the Figure. (We'll use the ones labeled z’ and y’ shortly.) The z axis is parallel to
the ramp, so we can already say that the translational acceleration of the ball should be
in the positive z-direction.

Let’s first apply Newton’s second law and see what we can say about the translational
motion of the ball. We can read off from the free body diagram that the net force in the
a-direction is the z-component of the weight force minus the (magnitude of the) friction
force:

FP°" = Mgsin6 — Fy. (4.79)

According to Newton’s second law, this should equal the ball’s mass times the x-
component of its acceleration. Thus

Mgsin0 — Fy = Ma. (4.80)

Note that, since we don’t actually know anything about the size of the friction force, we
can’t yet solve for the acceleration a, which is our ultimate goal. And bringing in the
y-components of the forces won’t help either. This will only tell us that the normal force
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must just cancel the y-component of the weight force — interesting enough if we want to
know how big the normal force is, but not helpful for our present goal.

Of course, the resolution is going to be that we need to consider the rotational motion
of the ball. So let’s do that. To begin with, notice that, for our choice of coordinate
system, as the ball rolls down the ramp its center of mass coordinate Rc m and its overall
velocity 170 a will be parallel. Hence, during the entire process, the ball has no orbital
angular momentum:

Eorbital = MECM X VCM =0. (4.81)

Its total angular momentum will therefore be equal to its spin angular momentum:

L=1I3. (4.82)
It is also worth noting that, since all of the motion is in the  — y plane, the rotational
quantities such as the angular momentum, angular velocity, and torque will be purely
in the z-direction — which we can handle by treating them as scalars and using the sign
(positive or negative) to indicate (respectively) a clockwise or counter-clockwise “sense.”
We may thus re-write the previous vector equation more simply as

L=1Iw (4.83)

where now a positive L and w will indicate what we expect on physical grounds: the ball
will be rotating clockwise as it rolls.

Let’s finally analyze the torque. To find the total torque on the ball, we need to add
up the torques produced by all three of the forces. Actually, despite initial appearances,
it will be simpler to break the weight force up into its x and y components, and hence
calculate the torques due to four forces. To begin with, the z-component of the weight
force produces no torque, because it acts at the center of mass point, which is itself purely
in the x-direction relative to our chosen origin. The y-component of the weight force does
exert a (positive, clockwise) torque. But the normal force (whose magnitude remember is
just equal to the y-component of the weight force) exerts a precisely-cancelling (negative,
counter-clockwise) torque. The easiest way to see this is to remember that the magnitude
of the cross product 7x F can be thought of as the magnitude of F times the component
of 7 that is perpindicular to F — here this component is just the z-coordinate of the point
on the ball where the normal force acts, which is of course just equal to the lever arm
for the y-component of the weight force.

So at the end of the day, the net torque on the ball is just the torque produced by
the friction force:

T = RFy (4.84)

where R is the radius of the ball (i.e., the component of 7 for the contact point that is
perpindicular to the friction force). Notice that the torque is positive because it tends
to rotate the ball in the clockwise direction.

We can finally put all of this together. The net torque should equal the time rate of
change of the total angular momentum:

RFj = %Iw = Ia (4.85)
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where « is the angular acceleration of the ball. If the ball is really rolling (without
slipping), we must have o« = a/R. This is just the “rolling without slipping” condition
that we discussed when we did this same problem using energy in the previous section
— or technically, it is the time derivative of that earlier condition (which related the
translational and angular velocities). So we have that RFy = Ia/R, or

Ia

(4.86)

This is precisely the extra information about the friction force that we needed, in order
to solve Equation 4.80 for the acceleration. Plugging this last expression into that earlier
equation, we get

Mgsin(0) — % = Ma (4.87)

which can be solved for the acceleration:
Mgsin(0)  gsin(0)
a = =
M+ 1+ 5/m

(4.88)

which is, happily, just what we found before using energy.

It is worth analyzing the same problem once again, in essentially the same way, but
using a different coordinate system. This will show how, although lots of things change
in the intermediate analysis, the final result turns out the same. So, consider now the
same situation but using the 2’ and 1y’ axes shown on the earlier Figure. The ball will
now have both orbital and spin angular momentum:

L =MRVey + lw. (4.89)

And we’ll have to rethink the torques produced by the “4” forces, too. With the original
coordinate system, only the friction force produced torque. But now the friction force
is directed right back toward the origin and hence produces no torque! The torques
produced by the normal force and the 1’-component of the weight force still cancel. So
the net torque is just that produced by the y’-component of the weight force:

T = RMgsin(6). (4.90)

Note that this torque is definitely bigger than what we said the net torque was (RFY)
when we were using the other coordinate system, because M gsin(f) is definitely bigger
than Fy — if it weren’t, the ball certainly couldn’t be acclerating down the ramp! So the
different coordinate system really does result in all these quantities being different.

Yet still, as if by magic, everything still works out. For, even with this new coordinate
system, we should have that the net torque equals the time derivative of the angular
momentum:

RMgsin(f) = % (MRVopy + Iw) = MRa+ I (4.91)

which becomes “
RMgsin(6) = M Ra + IE (4.92)
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when we bring in the “rolling without slipping” condition. This can be easily solved for
a with the by-now expected result:
- fﬁif). (4.93)
T ¥R
It works out the same way despite the torque being bigger because that bigger torque
now has to produce not only an increasing Lgpip, but also an increasing Loypitq; (which,
remember, was zero for the earlier coordinate system).

4.4 The Top

So far we have only considered examples of rotating bodies for which the rotation axis
is constant. But the general formalism we have developed applies in the more general
case, t0o. Let us therefore briefly explore the motion of the familiar toy, the top, to
illustrate the power and generality of the results developed above. The amazing thing
about a top, of course, is that once it is set spinning, it — as if by magic — refuses to tip
over, but instead rotates around with a motion called “precession.” To understand how
this comes about, let’s start by thinking about what happens to a non-spinning object
(a ruler, say) if it is placed at an angle and then released.

Figure 4.7 shows the initial situation (in solid lines) and then the situation at some
later moment (in dotted lines). We can understand the down-and-to-the-left acceleration
of the center of mass point just by considering the down-and-to-the-left net force which
is produced jointly by the weight, normal, and friction forces (shown in the figure). But
in addition to translating, the ruler also rotates. This can be understood by considering
the torque acting on the ruler, and how this causes its angular momentum to change.
If we pick an origin at the point of contact between the ruler and the table, the two
contact forces which act at that point will produce no torque. The net torque is then
just the torque produced by the weight force. This torque is nonzero in magnitude, and
out-of-the-page (counter-clockwise) in direction.

Equation 4.3 tells us that the net torque equals the rate of change of the total angular
momentum. Hence, during some short period of time At, the angular momentum L will
change by TAt. Since the ruler is initially at rest, it has zero initial angular momentum,
and so its total angular momentum after At will be just 7At — which of course points out-
of-the-page. Since the ruler is pivoting about a fixed point, it will have both some orbital
and spin angular momentum. The pivoting ruler is similar to the rolling ball, and there
is some equation similar to the earlier “rolling without slipping” condition that relates
the orbital and spin motions. All that matters here, though, is that the orbital and spin
contributions to the total angular momentum will both be in the same direction, hence
both of them are out-of-the-page. This means a counter-clockwise orbital motion of the
center of mass about the pivot point, and also a counter-clockwise rotational motion of
the ruler about its center of mass. Which is just a fancy way of describing the motion
we already know will happen as the ruler begins to fall.

The point of discussing the ruler in that way is just to set up a contrast for the
following discussion of a top. What is the difference between a (spinning) top and a
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Figure 4.7: A ruler resting on a table, released from rest at an angle, begins to fall.
The motion of the center of mass point can be understood on the basis of the three
forces shown: a weight force, a normal force, and a friction force. These produce a
net force in the “bottom-left” direction. But we can understand this — plus the purely
rotational aspect of the falling motion — on the basis of torque and angular momentum,
too. Taking the contact point between the ruler and the table as the origin, the normal
and friction forces will produce no torque. There is therefore a net torque equal to the
torque produced by the weight force. This torque is counter-clockwise or, as a vector,
out-of-the-page. The initially stationary ruler has zero angular momentum, and so, at
the end of some short period of time At, Equation 4.3 requires that the ruler have new
total angular momentum L= TAt, which will (like 7) point out-of-the-page. Since the
ruler is pivoting about the fixed point of contact with the table, its total angular mo-
mentum will have both an orbital and a spin contribution, and these will be related by
something like the “rolling without slipping” condition we’ve used in previous examples.
The details aren’t important. What matters is just that the basic dynamical equation
for rotational motion requires that the ruler have, after At, both some out-of-the-page
(counter-clockwise) orbital motion and some out-of-the-page (counter-clockwise) rota-
tional motion — precisely as shown in the Figure and expected from common experience.
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Figure 4.8: A spinning top, released in the same way as the ruler considered previously.
Unlike the ruler, the top has some initial (spin) angular momentum. So although the
forces and torques acting on the top are the same as the corresponding ones acting on
the ruler, the new angular momentum after some short time At is quite different. It is,
instead of zero plus AL = TAtL, the large spin angular momentum vector — Eo in the
Figure — plus AL. The new angular momentum vector — L ¢ in the Figure — is therefore
(remember, At is small) of the same magnitude as the original one; it just points in
a slightly different direction. The angular momentum vector will be again rotated in
the next short time interval At, and the next, and the next — the net result being that
the angular momentum vector (hence also the spin axis of the top) sweeps out a cone
as suggested by the dotted-line circle in the figure. This motion — which you should
demand to see in real life in class — is called “precession.”

ruler? Only that the top is spinning — and so already has considerable angular momentum
when it is let go. Let us run through the same sort of analysis, and see how this changes
things.

To begin with, the forces and torques acting on the top are the same as they were with
the ruler. With the origin of the coordinate system taken at the contact point between
the top and the floor, only the weight force contributes to the net torque, and this is
out-of-the-page. The key thing is that, where the ruler had zero angular momentum
initially, the (spinning) top has a lot of (spin) angular momentum — as shown by the
vector Eo in Figure 4.8. It is then required by the basic dynamical equation for rotation,
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that the angular momentum vector after some short period of time At be
Li=Lo+AL (4.94)

where, just as for the ruler, AL = 7At is small and in the out-of-the-page direction.

It is then clear from the properties of vector addition that the new angular momentum
vector L s will have (in the limit of small At) the same magnitude as Lo, but will point
in a slightly different direction (a little bit toward us, out of the page). How is this
possible, i.e., what does such a final angular momentum vector tell us about the new
state of motion of the top?

Here is the first answer that should occur to you: the top should start tipping over,
just like the ruler did. But this isn’t right. Here’s why. Suppose it did tip over like
the top. The falling motion would have associated with it some little bit of angular
momentum out-of-the-page, just as it did for the ruler. But in order to have fallen,
the spin axis of the spinning top would have to have changed, i.e., the spin angular
momentum vector would have to now point slightly more toward the horizontal than
it did initially. This would imply a (contribution to) AL in the down-and-to-the-left
direction. But such a change in the angular momentum would require a torque in that
same direction. And, simply put, there is no torque in that direction! So (in a perhaps
not fully satisfying way!) that is the proof that the top, unlike the ruler, cannot tip over.

We can now start to see what it must actually do. The final angular momentum vector
has the same magnitude as the initial one, and is just turned a little bit in direction.
This will be achieved if the top doesn’t fall at all, but instead just turns its orientation,
as shown in the Figure. And then the situation is the same as it was initially (but just
now oriented in a slightly different direction) so the same thing happens again in the
next short period of time At. And so on. The result is a continuous re-orientation of the
spin axis around a cone, as suggested by the dotted line path in the figure. This motion
is called precession.

As already mentioned, the fact that a spinning top doesn’t fall, but instead pre-
cesses, seems somehow magical (or at least very counterintuitive), and the above sort
of formal analysis somehow leaves one not fully satisfied. There should be no shame in
acknowledging this. Actually, what the above “formal analysis” shows is really just that
the precessional motion described is a consistent steady state solution. The non-obvious
aspect that is so counter-intuitive is: how does the top get into this precessional steady
state in the first place?

The answer to this is subtle and complicated, but gesturing vaguely in the direction
of some of the subtleties can at least give one a sense that there is nothing magical
happening. To begin with, when the top is first released, it does actually fall just a tiny
bit, at least for a split second. We argued above that this is impossible, but actually it
isn’t. We neglected to mention it before, but the precessional motion of the top actually
implies that the top posseses not only spin angular momentum, but also some orbital
angular momentum. For the orientation of the top shown in the figure, the center of mass
velocity associated with the precessional motion will be out-of-the-page, which implies
(by the right hand rule) an orbital angular momentum that is up-and-to-the-right. So
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actually there is no question of finding some torque to account for the down-and-to-
the-left AL associated with a tiny bit of initial falling. What actually happens is that,
while falling just a bit, the top converts a little bit of its spin angular momentum into
orbital angular momentum. The total angular momentum is actually constant, so no
external torques are required to explain a change in L. There is only some relatively
complicated story about internal forces (exerted on and by, for example, the ball bearings
that connect the spinning part of the top to its axis) rearranging the overall distribution
of total angular momentum.

But that isn’t precisely true either! It’s true that, when first released, the top falls
just a bit, trading some of its spin angular momentum for orbital angular momentum
associated with the precessional motion. But the top actually falls a little bit too far
and overshoots the orientation at which it could stably precess. Something like the same
story then happens in reverse. The result is that the spin axis of the top exhibits another,
secondary sort of precession — it precesses in a (smaller) cone centered on the (moving!)
precession axis already discussed. This secondary wobbling motion is called “nutation”
and can easily be observed with a real top. Of course, for a real top there will always be
a little bit of friction associated with the contact “point” — this works to damp out the
nutational motion, helping the top achieve the smooth, steady state precessional motion
we discussed at the beginning.

Of course, in time, the same sorts of frictional effects will reduce the magnitude of the
spin angular momentum and change the character of the orbital (precessional) angular
momentum — until, for example, the spinning part of the top hits the table, substantial
new forces are introduced, and the magical motion turns more mundane. It is definitely
worth spending some time with a top or gyroscope to observe — and contemplate — some
of these effects.

Let us finally calculate the rate of the precessional motion (assuming it has reached
a constant, steady-state rate). We have already argued that in a short time period At,
the angular momentum of the top will change by an amount

AL =7 At. (4.95)
The component of its (spin) angular momentum that is in the horizontal plane will be
Lhorizontal = Jwsin (]5 (496)

where ¢ is the angle the top’s spin axis makes with the vertical. The precessing top thus
sweeps through an angle

AL At
Af = S (4.97)
Lhorizontal Twsin qb
in time At. Which means that its precessional angular velocity Q = Af8/At is
T
= 4.98
Iwsin ¢ ( )

This implies a precessional period

2 2mlwsin(¢)
Tprec = 7 = ———22. (4.99)
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For a top, the magnitude of the torque 7 is given by
T = MgRsin(¢) (4.100)

where R is the distance from the pivot point to the center of mass. This gives

MgR
Q=—. 4.101
Tw ( )
or a precessional period of
2w
Tp?“ec = M—gR (4102)

Note that for a given w, the precession rate (or period) is independent of the tilt angle ¢.
And — more interestingly — the precession rate is inversely proportional to the spin rate
w. So, for example, as friction works to steadily decrease the spin rate w, the precession
rate 2 will increase. Or in terms of the period, as w decreases (due to friction, say), the
top will take less and less time to precess. This feature too is readily observable with a
real top.

4.5 Newton’s Spherical Shell Theorem

So far in this chapter we’ve been exploring the implications of some basic postulates
about point particles — Newton’s laws of motion, and definitions of kinetic energy, torque,
and angular momentum — when we consider extended (especially rigid) bodies that are
composed of many such point particles.

In this section, we address a similar question about Newton’s other law — the law of
universal gravitation that we discussed in the previous chapter.

What exactly is the issue or question here? We can begin by formulating it this way:
if we take the gravitational inverse-square force law — Equation 3.18 or if you prefer
Equation 3.19 — as a statement of the gravitational force between two point particles,
what will be the gravitational force exerted by (and/or on) an extended collection of
point particles, such as a planet?

You should perhaps be a little puzzled about how this question could be coming up
at this point. Didn’t Newton get the inverse-square-law in the first place by examining
(among other things) the behavior of the planets? So how could there be any question
about whether it should apply to them?

It’s a good question! In a way, there should be no question about whether an inverse-
square-law force toward the Sun is responsible for the motions of the planets. But
remember that a crucial part of Newton’s theory was that this force was gravitational —
i.e., the same sort of force that the Earth exerts on apples and (he argued) the Moon.
And a big part of the argument for that aspect of the theory was the claim that the
Farth’s gravitational influence falls off as the inverse-square of the distance from its
center — a point he argued for by, you'll recall, comparing the accelerations of the apple
and the Moon, and noticing that they are in the ratio 1:3600, i.e., the inverse square of
their respective distances from the center of the Earth.
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But in what sense exactly is the apple one Earth radius away from the Earth? The
Earth is composed (presumably) of many tiny massive particles, distributed (presum-
ably) more or less uniformly throughout its whole spherical volume. And the whole idea
of the gravitational force is supposed to be that each one of these constituent particles
exerts its own gravitational force on the apple — the net gravitational force on the apple
then being the vector sum of all of these little forces, which have all sorts of different
magnitudes and directions. So it is not at all obvious that the net gravitational force
on the apple (assuming gravitation works the way Newton hypothesized, for the Earth’s
and apple’s constituent particles) can be written as

GMearthma le
F= RQ—“’ (4.103)

earth

where M4, is the total mass of the Earth (i.e., the sum of the masses of all of the
Earth’s little constituent particles) and Regpp, is the Earth’s radius (i.e., the distance
between the apple and the center of the Earth).

This requires proof. And that proof requires calculus. Interestingly, there is some
historical evidence that Newton had hit on the basic idea of his theory of gravitation one
or even two decades prior to the publication of the Principia, but delayed the publication
of his ideas precisely because he lacked the mathematical tools needed to complete this
proof, i.e., to fill in this one logical gap in the argument as it was presented in the
previous chapter. (So kudos to you if you noticed the gap last week!) Of course, during
that time (and among other things!) Newton invented integral calculus to solve precisely
this problem. This should no doubt add to your assessment of the grandeur of Newton’s
achievements as a scientist. He set the bar for himself extremely high when it came to
producing really rigorous, conclusive arguments, with all the i’s dotted and t’s crossed,
for his proposed conclusions. And then he worked tremendously hard to live up to his
own high expectations.

Back to the actual proof. What we want to establish is that a spherical blob of total
mass M (such as the Earth) acts, gravitationally, the same as a point mass of mass M,
located at the center of the sphere, would. We can make this slightly simpler by noting
that a spherical blob of mass can be thought of as a collection of a bunch of concentric
spherical shells. So if we can prove that a single spherical shell of mass M exerts the
same gravitational force (at least on objects outside the shell) as would a point mass M
located at the center of the shell, the corresponding point for spherical blobs will follow.
So this is what we will prove.

Let’s warm up to it, though, by considering first a simpler problem, for the sake of
laying out the overall approach: what is the nature of the gravitational force exerted
by a line segment of length L and mass M, on a mass m located some distance d away
from the segment’s center (and, for simplicity, along a line perpindicular to the segment
itself)? See Figure 4.9.

As shown in the Figure, we’ll pick a coordinate system with the xz-axis along the line
segment and with its origin at the center of the segment. Our goal is to then calculate
the force exerted by the line segment on a point of mass m located some distance d away
along the y-axis. Pay careful attention to the way this is set up, because that is the real
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dF)
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Figure 4.9: How to calculate the gravitational force exerted on a point mass m by a line
segment of length L and total mass M.

point of going through this (intrinsically uninteresting) example first. Now let’s focus
our attention on one little (and non-special) piece of the line segment — say, the piece of
width dz located at position x. Note that, since we are treating dx as infinitessimally
small, we can treat this piece as a point mass. Assuming the total mass M is uniformly
distributed between x = —L/2 and = = L/2, the mass of this little piece will be the
same fraction of M as dx is of L: dM = dx M/L. Since this little piece can be treated
as a point, the gravitational force dF it exerts on the mass m will have magnitude

~ GdMm

r2

dF (4.104)

where r, the distance between the two point masses, is given by r = v/d? + z2. and
direction as shown in the figure, along the line from m to dM.

A little thought should convince you that, when we add up the forces on m due to all
of the different pieces of the line segment, the z-components will add up to zero and only
a y-component will remain. (For each piece on the right side that gives a positive dFy,
there is a corresponding piece on the left that contributes an exactly-cancelling negative
dF;.) So to find the net force on m, we need only consider the y-component of the force
dF. This is given by

d

dF, = dF~ (4.105)

which, plugging everything in, reduces to

_Gdeg_GMmd dx
o2 L (22 +d2)3/2.

dF, (4.106)



4.5. NEWTON’S SPHERICAL SHELL THEOREM 137

Arguably there should be a minus sign on the right hand side since the y-component
of the force is in the negative y direction. But it is already obvious from the attractive
character of the gravitational force that the net force is going to be toward the line
segment. We should be able to remember that without needing to confuse the equations
with explicit minus signs.

What remains is now only to add up — by integrating — all of the little contributions
dF), from all of the little pieces of the line segment, to find the total gravitational force
exerted on the mass m by the segment. Note, though, that what we’ve done so far is the
hard part, and the part that actually takes some understanding of and careful application
of ideas from physics. This is not the kind of problem that we’ll focus on much in this
course, but calculations very similar to this will show up all the time if you continue
taking more advanced courses in physics. So it is worth formulating a very important
principle here: once you get the idea of this sort of calculation, it becomes second-nature
to recognize, right away, that you are going to have to perform an integral to get the
answer. The crucial lesson is: don’t try to write down an integral right away. Instead,
do what we did here: focus on one little piece of whatever is (eventually) going to be
integrated over, and develop slowly and carefully an expression for its contribution to
the thing you (eventually) want to know the total of. Only after getting this expression,
and being absolutely certain that you’ve gotten it correctly, should you perform the now
purely mathematical and (assuming you can do calculus) relatively trivial step of adding
up — integrating — all of the tiny contributions to find the total.

Since we’ve done the hard part, we can follow our own advice and now, finally,
integrate to find the total force on m:

L/2
F,= [ dF, = GMmd __dv___ (4.107)
2 L @2+ a?)*?

The constants can be taken outside the integral, and we are left with

by

L Jup@say?  ajE < (4.108)
where the integral can be done by looking it up in a table or making a trig substitution.

It is always worth pausing at the end of a calculation like this and asking: does the
result make sense? First of all, does it have the right units? We know that Newton’s
constant G times a mass times another mass, divided by a distance squared, will give a
force — because that is the form of the basic gravitational force law postulated for point
particles. And that is indeed what we have in the above expression.

So far so good. What about various physical limits in which we can intuitively
reason out what the answer should be? For example, suppose the line segment is really
really long: L — oo. Thinking about that physically, the same total mass M is being
distributed ever more “thinly” across a longer and longer line segment. Since the force
between m and one of the tiny pieces of the segment falls off as 1/r2, only the part
of the segment near x = 0 should contribute appreciably. But this region contains
a vanishing fraction of the total mass M as we let L. — oco. Plus, the parts of the

_ GMmd /L/2 da GMm
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Figure 4.10: How to calculate the gravitational force exerted on a point mass m by a
spherical shell of total mass M and radius R.

segment off on the two sides tend increasingly to pull m in opposite directions, resulting
in increasingly cancelling contributions to the total force. So it seems that the total force
should probably go to zero in this limit. And that is precisely what happens if we take
the L — oo limit of Equation 4.108.

What if we consider being very very far away from the line segment, i.e., d — 00?
Intuitively, if we are very very far from the line segment (much farther than it is long),
the fact that it is a line segment instead of a point should stop mattering, and we should
get back the inverse-square-law expression for the force between two points. And again,
that is precisely what we get: for d > L, we can neglect the L?/4 inside the square root
sign compared to the d?, and we get back that the force is GMm/d?.

So it seems reasonable to believe that we calculated the force correctly.

Of course, we didn’t actually care about the force due to a line segment. We want
to know the force produced by a uniform spherical shell. So let’s set that up and work
through it, following much the same procedure.

Consider the setup as shown in Figure 4.10. The spherical shell has total mass M
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and radius R, and we assume it is symmetrical — i.e., the mass is distributed uniformly
over the surface. We want to calculate the total gravitational force exerted by the shell
on a point mass m located a distance r away from the shell’s center. We'll start by
picking out a small piece of the shell to focus our attention on. To begin with, we might
pick any old point on the surface, a distance d from the point mass m. If the mass of
that piece is dM, then the magnitude of the (attractive) force between the piece and the
point mass will of course just be

GdMm
P2

dF| = (4.109)

the z-component of which is

_ GdMmr — Rcos(¢)
I d '

One recognizes, however, that there will be a whole ring of similar pieces with the
same distance d from the point mass. Each small part of the ring will contribute the
same amount to the z-component of the force on m. And all of the other components
will cancel out — for each little piece of the ring that contributes some force in the x-
direction, for example, there is some corresponding piece on the opposite side of the
ring that contributes a precisely-cancelling component. So, conveniently, the total force
exerted by the ring on the point mass m will be given by Equation 4.110 with dM now
the mass of the entire ring.

That’s a good start. Let’s now work out an expression for dM in terms of the angle
¢. The ring is supposed to have angular width d¢, which means its actual width (in
inches) is Rd¢. The ring is essentially a long skinny rectangle (wrapped around the
surface of the sphere), so its total area dA will be its width times the “circumference”
21 Rsin(¢):

dF, (4.110)

dA = 27 R? sin(¢)de. (4.111)

The mass dM should then be the same fraction of the total mass M, as the area dA is
a fraction of the sphere’s total surface area A = 4w R?:

dA 2nR?sin(g)dg _ M

M=M—=M———— = —5i . 4.112
We can then plug this expression for dM into Equation 4.110:
M _
ar, — ¢ . n sin(qﬁ)qu%;w. (4.113)

Finally, we can use the law of cosines to write the distance d in terms of R, r, and ¢:
d?> = R* + 1% — 2Rr cos(¢). (4.114)

The resulting expression for the force is:

GMm r — Rcos(¢) .
dF, = do. 4.115
2 (R2+ 12— 2Rrcos(¢))*/? sin(g)d¢ ( )
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That’s the hard part. Now we just remember that we were interested in the force
produced by the whole spherical shell, not just this ring. So we want to now add up the
contributions to the force produced by all the rings between ¢ = 0 and ¢ = 7 which
compose the shell. That is easily accomplished by integrating:

= _ [T GMm r — Reos(¢) .
FZ B /dFZ a /0 2 (R2 + 7"2 —2Rr COS(¢))3 /2 Sln(¢)d¢- (4116)

The integral is tricky, so it’s worth spending a moment talking about how to do it.
The easiest way is probably to first make a substitution: uw = r — Rcos(¢). Then
du = Rsin(¢)d¢ and the expression from the denominator can be rewritten

R% 412 — 2Rrcos(¢) = R? — r? 4 2ru. (4.117)

Finally, when ¢ = 0, u = r — R and when ¢ = 7w, u = r + R. So the force produced by
the shell can be re-written

~ GMm r+h udu
’ 2R Jr R (R2—1r2—2ru)*?

(4.118)

This integral is now a little more manageable. It can be found in standard integral tables
(or done using more clever substitutions). The result is:

F, =

GMm 1< r+ R r—R > (4.119)

7 Ao R VTR

It may look like the mess in parentheses is just 2, which would cancel the 1/2 and give
us exactly the result we were hoping for. But it’s a little more subtle — and a little more
interesting — than that. Remember that the square root function always gives back a
positive answer. Since r and R are both positive, when we add them, we necessarily
get something positive. And the square root of the square of this positive number will
therefore be the same as the number itself. So the first term in parentheses is just 1.
But, for the second term, r — R can be either positive or negative: it is positive if r > R
(i.e., if the point mass m is outside the spherical shell, as it was originally shown in the
figure) — but negative if r < R (i.e., if the point mass m is inside the spherical shell). In
the first case, the same argument as before tells us that the second term in parentheses
is also 1, and so the stuff in parentheses will total 2. But in the latter case, r < R, the
second term in parentheses will be —1, and the stuff in parentheses will total zero.

So we may write the final result, for the force exerted by a spherical shell of mass M
and radius R on a point mass m located a distance r away from the center of the shell,

this way:
0 r<R
F= {_GMm . (4.120)

r2

where the minus sign reminds us that the force is attractive, i.e., back toward the sphere.
This is a really remarkable result. The first wonderful feature of this result is that, for
points inside a symmetric spherical shell of mass, the net gravitational force is zero. This
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isn’t as important as the other half of the result, just because we are usually interested in
the gravitational effect of (say) planets on things outside, rather than inside, the planet.
But still, this half of the result is interesting if only because it is surprising. One probably
would have guessed that, since the gravitational force gets weak fast as one gets farther
from the mass exerting it, one would be attracted to whichever part of the shell one was
closest to. That reasoning is right, but leaves out something important: when one is
close to a given part of the shell, there is only a little bit of it that is pulling one toward
it. On the other hand, practically the whole other side is pulling one toward it. Granted,
it’s further away, so each little piece of it isn’t pulling as hard — but there are, evidently,
just enough more such little pieces that their net effect is precisely as big as the effect
of the (fewer but stronger-pulling) nearby pieces. Thought of this way, the result has
a certain intuitive plausibility to it. But still, what we learn from doing the rigorous
calculation — that the cancellation is exact and the force exactly zero — is amazing.

Second, and more importantly: for points outside the spherical shell, the spherical
shell acts just like a point mass with the same total mass as the shell and located at
the center of the shell. And, as discussed a while back, this implies that a symmetrical
spherical blob of mass (such as the Earth) will do the same. We will close this chapter
by quoting Newton’s summary of this point:

“After I had found that the gravity toward a whole planet arises from and
is compounded of the gravities toward the parts and that toward each of the
individual parts it is inverse[ly] proportional to the squares of the distances
from the parts, I was still not certain whether that proportion of the inverse
square obtained exactly in a total force compounded of a number of forces,
or only nearly so. For it could happen that a proportion which holds exactly
enough at very great distances might be markedly in error near the surface
of the planet, because there the distances of the particles may be unequal
and their situations dissimilar. But at length ... I discerned the truth of the
proposition dealt with here.”

To summarize and close this section and this chapter, we’ve shown for the gravitational
inverse-square law just what we started out by showing for the laws of motion (in partic-
ular F' = ma): it is possible and consistent to postulate these laws as applying primarily
to the ultimate, “atomic” particles of which ordinary macroscopic objects (like apples
and planets) are composed. The applicability of the laws to these larger objects can then
be established by means of mathematical theorems.

But there is one difference between the two cases which is worth mentioning. The
laws of mechanics (such as F' = ma) will apply to any aggregate body. There were
essentially no extra assumptions in the derivation which would qualify the result. On
the other hand, the proof that extended objects obey a gravitational inverse-square force
law (if their constituent particles do) relied on the assumption of spherical symmetry.
What we technically proved is that a spherically symmetric body acts (on other bodies
outside it) just as would a point mass (with the same total mass and located at the real
body’s center). But — as we saw explicitly with the “warm-up” example of the massive
line segment — a non-spherically-symmetric body will not produce simple inverse-square
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forces on objects outside it, nor will it respond exactly as an equivalent point mass would
to gravitational forces exerted on it. This turns out to have interesting implications and
applications in the context of astrophysics, some of which we will take up in the following
chapter.

Questions for Thought and Discussion:

1.

10.

Why is the “orbital angular momentum” called “orbital”? Consider the motion of
the Earth using the Sun as the origin of a coordinate system. Does the Earth have
any orbital angular momentum? Does it have any spin angular momentum? Are
these in the same direction? How do their magnitudes compare?

. Can you think of a situation in which an object’s spin angular momentum is (at

least partially) converted into orbital angular momentum? How about vice versa?

. A man on a motorcycle is riding a “wheelie.” Can the wheelie be maintained if he

moves with constant velocity? Explain why or why not.

. When you slam on the brakes in your car, the front end dips down a bit toward

the ground and the back end rises up. (A more extreme example of the same
phenomenon is braking while riding a bike — if you brake too fast, you can spill
forward right over the handlebars.) Relatedly, when you step hard on the gas,
the opposite happens: the front end lifts up a little and the back end dips down.
Explain this effect using the concepts of torque and angular momentum.

. Why do many sports cars (and all serious drag racers) have their engines mounted

in the back of the car rather than the front?

. A rocket ship in outer space accelerates from rest along a straight line. Take

a coordinate system whose origin is not along the ship’s trajectory. Does the
ship develop any angular momentum as it accelerates? What force produces the
necessary torque?

. A car accelerates from rest. Take a coordinate system with its origin on the ground.

Does the car develop any angular momentum as it accelerates? What force or forces
produce the necessary torque? (This is subtle and probably surprising.)

. Are the angular momentum and the angular velocity of a rigid body necessarily

parallel? Give an example where they are not.

. Are the orbital and spin angular momenta of a rigid body necessarily parallel?

Give an example where they point in precisely opposite directions.

Consider a single planet orbiting a star. Technically, unless the star is infinitely
more massive than the planet, the star is not quite stationary, but itself orbits
around the (stationary) center of mass point of the star-planet system. Now sup-
pose that the gravitational influence of the star on the planet propagates through
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11.

12.

13.

the intervening space at some finite speed, such that the gravitational force on the
planet now is not toward the position of the star now, but rather toward where the
star was a little while ago. And vice versa for the force exerted on the star by the
planet. What is the qualitative effect on the motion of the two bodies? Is the total
angular momentum of the two-body system constant in time? (Actually, there
exist gravitational analogues of magnetic forces which almost exactly cancel out
this anomalous, total-angular-momentum-changing component of the gravitational
force. So don’t take this question too seriously as a hint at what actually happens.
It is rather only an opportunity to think about a plausible situation where forces
exerted by two objets on each other may not be exactly co-linear.)

Consider two tops that are identical in shape, but different in size. They are
set spinning with the same spin angular velocity w. Which will have the higher
precessional angular velocity €2, the bigger one or the smaller one?

We proved that the gravitational force exerted by a spherical shell of mass, on a
point mass in its interior, is zero. Does this mean you can build an anti-gravity
shield by crawling inside a large ball or balloon?

We proved that the gravitational force exerted on a point mass by a uniform
spherical shell of mass, is the same as would be exerted by a point mass, located
at the center of the shell, and with the same total mass of the shell. In short,
we showed that spherical shells of mass act just like point masses in so far as
their production of gravitation is concerned. But what about their response to
gravitation? Can anything be said about the force exerted, say, by a point mass
on a spherical shell?

Projects:

4.1

4.2

4.3
4.4

4.5

Consider an extended body made of many point masses glued together. Show
that, in a wuniform gravitational field (like that near the surface of the earth), the
total gravitational force on the body can be treated as acting at the body’s center
of mass even though, in fact, there is some small gravitational force on each of
the body’s constituent particles. Use this to explain why dropped objects do not
spontaneously start rotating as they fall.

Could an extended body experience a net torque (about its center of mass) from a
non-uniform gravitational field? Sketch and discuss an example.

Calculate the moment of inertia of a spherical shell of mass M and radius R.
Calculate the moment of inertia of a solid sphere of mass M and radius R.

A painter is standing on a piece of scaffolding near the side of a building. The
platform is a long board, attached to the scaffolding at each end. Suppose the man
weighs 200 pounds and that the weight of the board is negligible compared to this.
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How big are the forces exerted on the board by the scaffolding (on both ends) if
the man stands right in the center of the board? What if he stands 3/4 of the way
toward one side?

4.6 A ladder is propped up against the side of a house. It makes a 30° angle with the
vertical. The top end of the ladder is slippery, so the side of the house exerts a
(horizontal) normal force on it, but no (vertical) friction force. The ground exerts
both a (vertical) normal and a (horizontal) friction force on the bottom end of the
ladder. What must be the coefficient of friction between the ladder and the ground
in order for this to be a stable situation? Now qualitatively, what happens when
somebody gets on the ladder? Is the ladder more likely to slip out with a person
near the bottom or near the top?

4.7 A big spool of wire turns about a frictionless axle. Its moment of inertia about
this axis is I, and its radius is R. A mass M is hung from the wire, which hangs
down and slowly uncoils the spool. What is the angular acceleration of the spool?
(If your answer is that a = RMg/I that’s a good start: it’s approximately correct
if M is really small. But try to find the exact answer that is correct even if M is
big. Also, for fun, you could try doing this at least a couple of different ways —
e.g., using energy and using torque and angular momentum.)

4.8 An ice-skater is twirling with her arms out. She then pulls her arms in. Assume that
the contact between her skates and the ice is frictionless. (Or if you don’t buy that,
have it be a twirling, spacewalking astronaut.) What is the net torque on the ice-
skater as she pulls her arms in? By what amount should her angular momentum
change? Make some reasonable assumptions about her size, and estimate the
fraction by which her angular velocity will increase when she pulls her arms in.
Does her rotational kinetic energy go up, go down, or stay the same? If it changes,
where does the extra/missing energy come from / go?

4.9 Re-do the calculation of the gravitational force of a line segment, using the angle ¢
(between the one tiny piece of the segment and the center of the segment, as seen
from the point where the mass m is located) as the main variable rather than x.

4.10 Measure/estimate the actual precession rate of an actual top, and use estimates/calculations
of its moment of inertia to estimate its spin rate w. Or devise some way of mea-
suring/estimating w in order to predict the precession rate €2, and then check the
prediction.

4.11 Use the fact that the gravitational potential energy between two point masses is

given by
GMm

r

U=-—

(4.121)

to calculate the potential energy of a mass m near a line segment of total mass M,
as in the example in the text. After doing the integral to get the potential energy,
take the derivative with respect to d and see if you get what you should.
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4.12

4.13

Calculate the gravitational potential energy between a point mass m and a sym-
metric spherical shell of radius R and total mass M. Sketch a graph of the result.
Take the derivative to calculate the force as a way of verifying that your calculation
was correct.

Suppose (only mildly contrary to fact) that the Earth is a solid sphere of uni-
form density. And suppose that a big hole were drilled straight through it, pass-
ing through the center. Now consider the force exerted by the whole Earth on
some “test particle” (like an apple, say) at some point in this hole, say a distance
r < Regrn from the center of the planet. Work out an expression for the force’s
dependence on r. What sort of motion would the apple undergo if you dropped it
in the hole?
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Chapter 5

Astrophysical Applications

The last two chapters have explored two rather different topics: (i) Newton’s discov-
ery of the law of universal gravitation, according to which massive particles exert an
inverse-square-law gravitational force on one another and (ii) the rotational dynamics of
extended (and in particular rigid) bodies. Our goal in this present chapter is to develop
some applications of and connections between these ideas, by surveying a number of
interesting discoveries from the period between Newton and today in which gravitation
and /or rotation play some interesting role. We focus on applications from astronomy and
astrophysics, considering (in proper Newtonian spirit) the Earth as part of the heavens.
Especially the latter parts of this chapter depart somewhat from the earlier practice of
explaining always not just “what is true” but also “how it was figured out.” We instead
just survey some interesting conclusions that have emerged from more recent research,
without giving all of the historical background that would make every detail clear. One
goal is to sketch some of the ways the two foundational topics of the previous chapters
play an important role in these more recent discoveries. Another goal is simply to tempt
you to want to learn more about these things in more advanced coursework.

5.1 The Shape of the Earth

As discussed in Chapter 1, the Ancient Greeks knew, some 2000 years prior to Newton’s
theory of gravitation, that the Earth was a sphere. And it is — approzimately. Of course
the surface of the Earth is marked with hills, valleys, and mountains. Such features are
produced by terrestrial causes such as volcanoes and erosion; they are not the departures
from perfect sphericality that will concern us here, as they have nothing (or at any rate,
less) to do with rotation and gravitation.

Instead we will focus on an interesting systematic departure of the Earth from perfect
sphericality: it “bulges” slightly at the Equator and is in fact a slighly oblate spheroid.
The oblateness can be quantified this way: the “radius” of the Earth at the poles is a
bit less than the “radius” at the equator. The difference is small compared to the radius
itself, but surprisingly big on human scales. It is about 21.3 kilometers, or about 13
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miles, or about 0.335% of the Earth’s average radius:

f:RE—Rp

=. . 1
7 00335 (5.1)

The earliest observational evidence pertaining to the Earth’s oblateness was acquired
in the 1600’s and was noted, by Newton, in the Principia:

“some astronomers, sent to distant regions to make astronomical observa-
tions, have observed that their pendulum clocks went more slowly near the
equator than in our regions. And indeed M. Richer first observed this in the
year 1672 on the island of Cayenne. For while he was observing the transit
of the fixed stars across the merdian in the month of August, he found that
his clock was going more slowly than in its proper proportion to the mean
motion of the sun, the difference being [2 minutes and 28 seconds| every day.
Then by constructing a simple pendulum that would oscillate in seconds as
measured by the best clock, he noted the length of the simple pendulum,
and he did this frequently, every week for ten months. Then, when he had
returned to France, he compared the length of this pendulum with the length
of a seconds pendulum at Paris (which was 3 Paris feet and 8 3/5 lines long)
and found that it was shorter than the Paris pendulum, the difference being
1 1/4 lines.”

The idea here is that the period of a pendulum depends on its length and the local
acceleration of gravity, g, according to

T =2m|~. 5.2
p (5.2)

Astronomers had constructed very precise pendulum clocks, whose lengths were carefully
“tuned” to tick precisely once per second. What was found, however, was that such clocks
failed to keep accurate time if they were transported too far to the north or south, i.e.,
to a different latitude. The obvious explanation for this would be that different weather
(e.g., changes in temperature or humidity) caused the length of a given pendulum to
change a little bit when it was transported to a new latitude. But even when such effects
were corrected for, the inconsistency persisted. So the only possible conclusion was that
the Earth’s gravitational acceleration, g, was not actually a constant — as it would have
to be for a spherically symmetric Earth — but instead varied slightly with latitude.

As Newton reports, in order to tick with the same period, a pendulum at the Equator
must be a little shorter than one in “our regions.” It is clear from the above formula for
the period that this implies that ¢ is a little smaller near the Equator than it is closer
to the Poles. This can be understood as the result of two related factors: the rotation
of the Earth, and the Equatorial bulge which is caused by the rotation.

To begin with, think of the Earth as a perfect sphere with an additional layer of
matter piled up near the Equator, as in Figure 5.1. An observer at point C in the Figure
is a distance h farther away from the dominant, spherical part of the Earth’s mass, than
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A (North Pole)

Figure 5.1: The Earth’s Equatorial bulge: the Earth can be thought of as a perfect sphere
of radius R, plus an additional layer of matter, thickest around the Equator, where its
thickness (i.e., the difference between the “radius” at the Equator and the “radius” at
the Pole) is h.

an observer at point A. This tends to decrease g near the Equator since the strength
of the gravitational effect produced by the Earth’s spherical core, falls off with distance.
On the other hand, an observer at C' has an extra layer of matter (of thickness h) right
below him, and this tends to increase his g compared to an observer at A. It turns
out (but is certainly not obvious) that the former effect is bigger in magnitude than
the latter, i.e., the overall effect of the Equatorial bulge is to decrease g at the Equator
relative to the Pole.

Actually, the fact that the Earth is rotating also contributes to the variation of ¢
with latitude. This is because we usually define g as the acceleration that we would
observe for a freely-falling object from a reference frame that is attached to the Earth.
But since the Earth rotates, such a reference frame is not inertial — and so we cannot
expect Newton’s second law to apply! As we will discuss in detail shortly, we can still use
Newton’s laws in non-inertial reference frames if we introduce certain fudge factors called
“inertial forces” — the most important and familiar of which is the so-called “centrifugal
force” which tends to pull objects away from the axis of rotation. The magnitude of this
(fictitious) centrifugal force turns out to be proportional to the mass m of the object it
acts on, just like the gravitational force. So in practice the centrifugal force cannot be
distinguished from a true gravitational force — which is why the two are usually lumped
together and jointly described as an “effective gravitational force.”
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Of course, no such centrifugal force really exists. The point is, if one finds oneself
in a non-inertial reference frame, it will feel like they do. And it is often convenient to
indulge those feelings and use a non-inertial reference frame for the analysis of certain
physical phenomena, even though, in principle, things could always be analyzed using
an inertial reference frame (and only real forces!) too.

In any case, the immediate point is that, according to observers on the Earth, there
is a centrifugal force which opposes and partly counteracts the gravitational force. The
“effective” gravitational force on an object of mass m — which is equal to m times the
effective gravitational accleration gy, this being a definition of g, ¢, — is the vector sum
of these two. Since the centrifugal force is strongest (and also most directly opposite
the true gravitational force) for observers at the Equator, the rotation of the Earth also
contributes to the systematic decrease of g.ry near the Equator.

Note also that these two causes of the systematic variation of g with latitude — the
oblateness of the Earth and its rotation — are not unrelated. The earth is oblate because
it rotates! It is precisely the centrifugal force which causes the (only semi-rigid) Earth
to bulge out around its waist.

To briefly mention some of the interesting history: in the mid 1700’s, scientists
undertook a new, more direct method of measuring the shape of the Earth. They
measured the actual distance, in miles, along the surface of the Earth that corresponded
to moving North or South by one degree of Latitude, for different Latitudes. As expected
on the basis of Newton’s theory, the distance was a bit less near the Poles than near the
Equator — i.e., the Earth really did bulge around the Equator. Today, the amount of
oblateness or flattening can be measured very precisely from space using satellite images.
And ground-based techniques of measuring g.ry are so precise that tiny local variations
can be used to locate valuable underground deposits of natural resources!

Our goal in the rest of this section will be to understand, in a little more detail, how
the rotation of the Earth, coupled with its self-gravitation, accounts for the observed
amount of the Earth’s oblateness. We'll then discuss the use of non-inertial (rotating)
reference frames and the associated centrifugal forces, and apply these ideas to analyze
again the relationship between the Earth’s rotation rate, its oblateness, and the variation
in the effective gravitational acceleration g.ry with latitude.

5.1.1 The Earth’s Oblateness

If the Earth were a perfectly rigid sphere, and it were set rotating, nothing would happen.
It would retain its spherical shape. But a somewhat elastic or liquid Earth will be flung
outward, away from the axis of its rotation — just as pizza dough is stretched outward
when it is tossed, spinning, into the air. Although this does not match the actual
chronological process by which the Earth achieved its present shape, it is clarifying, in
trying to derive a quantitative relationship between the Earth’s rotation rate and its
oblateness, to have in mind the following story: suppose the Earth used to be a perfectly
rigid sphere rotating at a certain rate w, but then “softened” and hence relaxed into
its present oblate shape. For example, suppose it used to be a big, perfectly-spherical
ice cube which then melted, allowing the water to flow into a new, energy minimizing,
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equilibrium configuration.

A crucial point is that the rearrangement of matter that occurs when the Earth
“melts” will be produced exclusively by internal forces. Indeed, for the moment, we
may simply ignore the fact that the Earth orbits the Sun, and instead imagine it to be
rotating on its axis at some fixed point in otherwise-empty space. There simply aren’t
any relevant external forces at all, so clearly whatever rearrangement occurs must be
the result of purely internal forces. And since, as shown in the previous Chapter, such
internal forces will not produce any net torque, the angular momentum of the Earth will
have to remain constant even as it melts and adjusts its shape.

Here’s why this is so crucial. Suppose we ignored it and made the following argument.
The rotating earth has some rotational kinetic energy

1 1
KE = § §mivi2 = §Iw2 (5.3)
(2
and also some gravitational potential energy
3GM?
PE ~ —— . 5.4
F R (5.4)

Now we contemplate the possibility that some of the matter from near one of the poles
(point A in Figure 5.1) should move toward the Equator (which is clearly how we’re going
to get from a sphere to an oblate spheroid). Suppose it moves first along the (quarter-
circle) path from point A to point B, and then along the straight line from B to C.
During the first part of the path, it is always moving precisely horizontally, maintaining
a fixed “altitude”. So there is no change in its gravitational potential energy. But then,
in moving from B to C', it has to move “uphill”, which increases the overall gravitational
potential energy. And since, by virtue of the rotation, the matter at the Equator has
to be moving faster than the matter at the Pole, moving some matter from the Pole to
the Equator entails an increase in the kinetic energy, too. And so, apparently, the total
energy must increase if any matter is moved from the Pole toward the Equator. And so
an initially-spherical Earth that “melts” certainly should not spontaneously acquire an
oblate shape!

Of course, that argument is wrong, for the reason we’ve already hinted at. The
problem is that it assumes that the Earth’s overall rotation rate w is the same before
and after the contemplated movement of some matter from the Pole to the Equator. But,
as we have argued, it isn’t the angular velocity w that would be constant if the initially
spherical Earth melted and reconfigured itself — rather, its (spin) angular momentum
L = Iw would be constant.

Moving some matter from the Pole (where r; = 0) to the Equator (where r; = R)
of course increases the Earth’s moment of inertia, I. So the conservation of angular
momentum implies that the angular velocity w must actually decrease. And since the
kinetic energy is proportional to I to the first power, but w to the second power, this
means that the contemplated re-organization of matter will actually decrease the overall
kinetic energy of the Earth: the kinetic energy of the one little blob of mass that moved
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will indeed increase, but the rest of the Earth will slightly slow its rotation and hence
decrease its overall kinetic energy — resulting in a net decrease.

It turns out that, at least for a while, this decrease in the net kinetic energy is bigger
than the associated increase in the potential energy. So matter will spontaneously “flow”
from the region near the Poles to the region near the Equator. At some point, though,
an equilibrium is reached, beyond which further transfer of material from the Pole to
the Equator would decrease the kinetic energy less than it increased the potential energy
— i.e., such further transfer of material would increase, rather than decrease, the total
energy. We can find a quantitative expression for the equilibrium shape of the Earth by
noting that, in equilibrium, the total energy change produced by moving a tiny piece of
matter from the Pole to the Equator should vanish.

To proceed with the calculation note that the total kinetic energy can be written in
terms of the spin angular momentum L = Iw as follows:

1, L?

KE = §Iw =37 (5.5)
Now, by taking differentials on both sides, we can write the following simple expression
for the change AKFE in kinetic energy that is produced by a small change Al in the
moment of inertia:
AKE = 1L2AI— L2AT 5.6

=5 Al =—5wAlL (5.6)
Note that for positive Al, the change in kinetic energy is negative. That’s just what we
reasoned out in words above. And note that, if we had forgotten about the conservation
of angular momentum and just naively taken differentials of K E = %I w?, we'd have
gotten the same final expression but with the opposite sign: AKE = %w2AI . And then
we’d never be able to understand why the Earth bulges at its Equator.

Let’s now try to develop an actual formula for the height of the bulge. Consider the
particular sort of change contemplated above — a small chunk of matter, say of mass
m, being moved from the Pole to the Equator. Since, as mentioned before, its r; (the
quantity that enters into this chunk’s contribution to the moment of inertia) increases
from zero to R (the radius of the Earth), we have

AI = mR? (5.7)

and hence 1
AKE = —§mR2w2. (5.8)

Of course, technically speaking the R here should be the Earth’s equatorial radius, not
its polar radius. But we’ll ignore this difference here, because it turns out not to make
a significant difference. (Taking it into account would only introduce a small correction
to the already-small thing we are here calculating: the difference between the equatorial
and polar radii!)

Now what about the change in the gravitational potential energy associated with
moving this chunk of matter from the Pole to the Equator? The idea is to first move the
chunk “horizontally” along the (initially spherical) surface of the Earth, from A to B in
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the Figure. Since the Earth is spherical, the potential energy of a mass m hunk should
be the same at B as it was at A, and so

APE4_p =0. (5.9)

We then have to move the hunk up a little bit, from point B to point C. Let’s call this
extra vertical distance h — it is just the difference between the Polar and Equatorial radii
that we are trying to calculate. Then the gravitational potential energy change, when
this one chunk of matter moves, is

APEp_.c = mgh. (5.10)

Of course, the relevant acceleration of gravity g will vary a little bit between B and C.
But it only varies a little bit, and we can ignore this for the purposes of the present
calculation.
We now need only plug Equations 5.8 and Equations 5.10 into the equilibrium con-
dition
AKE+ APE =0. (5.11)

The result is 1
mgh — §mR2w2 =0 (5.12)

or, solving for h and expressing the gravitational acceleration g in terms of Newton’s
constant and the physical properties of the Earth (g = GM/R?),

R*w?

h= 2GM’

(5.13)

This is the amount by which the Equatorial radius of an approximately spherical body
will exceed its Polar radius (assuming it’s rigid enough to rotate as a whole, but also
fluid enough to relax into this equilibrium configuration).

A nice dimensionless measure of the oblateness is the so-called “flattening parameter”
f — the difference in the Equatorial and Polar radii, divided by the (say, average) radius

f_ﬁ_R3w2
R 2GM°

(5.14)

What does this formula predict for the oblateness of the Earth? It is easy enough
to plug in numbers: R = 6.37 x 10%n, M = 5.97 x 10**kg, w = 2w radians/day =
7.27 x 10~°rad /sec, and G = 6.67 x 10~1'm3/kg s. The resulting prediction is

h=11km (5.15)

or

f =0.0017 (5.16)

which is about a factor of two shy of the actual observed numbers. As we’ll see in the
rest of this chapter, it’s pretty good for these kinds of problems even to get the order of



154 CHAPTER 5. ASTROPHYSICAL APPLICATIONS

magnitude right. Often, and certainly here, there are a lot of really complicated details
that we just ignore or approximate over. So getting within a factor of two definitely
counts as achieving a decent quantitative understanding of the observed facts — and also
leaves plenty of room for more sophisticated work in the future!

But actually here the factor-of-two discrepancy (between Equation 5.13 and the true
value h &~ 21.3 kilometers) is a result of a pretty bad flaw in the above argument. (Did
you notice it?!) We assumed that the potential energy of a hunk of matter at points
A and B was the same, such that APE4_,g = 0. That would indeed be true, as we
said above, if the Earth were perfectly spherical. But of course the whole point of this
discussion is that it isn’t! And indeed, thinking about it qualitatively, it’s pretty clear
that in moving from point A to point B, we are moving closer and closer to the extra
“belt” of matter surrounding the Equator — i.e., as far as gravitation is concerned, the
path from A to B is going to be decidedly downhill. And so in fact APE 4, will not be
zero, but will be negative. It stands to reason that it, like APEp_.¢, should be roughly
proportional to h — and indeed it turns out that these two contributions to APFE, one
positive and the other negative, are of roughly the same order of magnitude:

1 1
APEA_>B ~ —§APEB_>C ~ —émgh. (5.17)

And so the total change in potential energy associated with the contemplated transfer
of a small chunk of matter from the Pole to the Equator turns out to be more like

1
APEs_,c = APEs_.p+ APEp_o~ imgh (5.18)

which has the effect of doubling our earlier estimate for h, bringing the prediction much
better in line with the actual observations. The rather subtle and difficult task of calcu-
lating APFE 4, will be further explored in the Projects.

Newton’s theory of gravitation allows us to understand how primordial clouds of
gas and dust could clump up under the mutual gravitational attraction of their parts,
and form spherical blobs — the sphere being the natural result when lots of individual
particles of matter try to get as close as they can to one another. The upshot of the
above calculations is that Newton’s theory allows us also to understand not only why
the Earth and other heavenly bodies are more or less spherical, but also why and by how
much they deviate from perfect sphericality due to rotation.

5.1.2 Rotating Reference Frames

We have just analyzed the oblateness of the Earth in terms of a certain trade-off in
energies: if an initially-rigid and perfectly spherical rotating Earth were to melt, the
gravitational potential energy would be increased by having some of the matter flow from
the Poles to the Equator; but the overall kinetic energy would be decreased. Initially,
the decrease would be greater than the increase, so matter would spontaneously flow
toward the Equator — until an equilibrium is reached for which further such transfer of
matter is energetically indifferent.
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Figure 5.2: Some random particle in the Earth, undergoing uniform circular motion with
radius 7| and centripetal acceleration d@.. The centripetal acceleration’s magnitude will
be a. = 1)2/71 = 1| w?, where w is the Earth’s angular velocity.

It is also possible to understand the oblateness by using a (non-inertial!) reference
frame that co-rotates with the Earth. To see how to do this, let’s first think about how
Newton’s second law, F = md, applies to some particle of Earth if we use an inertial
reference frame. Let’s assume the particle is stationary with respect to the turning
Earth, i.e., undergoing uniform circular motion with speed v = r;w and centripetal
acceleration, directed perpindicularly in toward the Earth’s rotation axis, of magnitude
a. =v%/ry =r w? See Figure 5.2.

The point is just that, according to Newton’s second law, the net force acting on the
object — the vector sum of whatever gravitational, frictional, normal, electric, magnetic,
etc. forces are acting on it — will add up to its mass m times the centripetal acceleration
a.. That is:

—

Fnet = mEL’c. (519)

Since the centripetal acceleration is, well, toward the center, let us write this a little
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more explicitly as

Foot = —mw?r | 7 (5.20)
where 7 is a unit vector pointing radially outward (in the cylindrical rather than the
spherical sense), i.e., perpindicularly outward from the central rotation axis.

Now, what if we contemplate the motion of this same particle from the point of view
of a coordinate system that rotates around with the rotating Earth? The main point is
just this: relative to such a coordinate system, the particle isn’t ever moving! And so,
in particular, its acceleration is zero. Since the question of what forces act is not in any
way dependent on our (subjective, arbitrary) choice of reference frame, note that this
makes Newton’s second law false. The net force is not zero. Yet, as reckoned in this
co-rotating reference frame, the acceleration is zero.

None of that should be too interesting or surprising, but is maybe clarifying about
why the concept of inertial reference frames is so important for Newtonian dynamics (in
particular, why the first law of motion is more than a mere special case of the second).
What’s interesting and surprising is that we can make Newton’s second law hold, even
in the non-inertial frame, by cooking the books a little bit.

Here is the trick: whatever reference frame we choose to use, Equation 5.20 remains
true. How can we reconcile this with the fact that, in the co-rotating frame, the accel-
eration is zero? We may simply rewrite Equation 5.20 this way:

Fret + mw?r 7 =0 (5.21)

and interpret the right hand side as the mass m times the acceleration @ = 0 in this
non-inertial frame! We can then interpret the left hand side as some kind of modified or
“effective” net force: it is the sum of all the real forces and a fictitious centrifugal force
of magnitude mw?r | .

Let’s try to come to grips with this by considering the simplest possible example: a
rock sitting on the ground somewhere at the Equator. Suppose there are just two forces
acting on the rock: a weight force of magnitude W and a normal force of magnitude V.
(Of course, the weight force is down, toward the center of the Earth, and the normal
force is up, away from the center of the Earth.) Since the rock is rotating around with
the Earth it has centripetal acceleration of magnitude

ac. = w?R (5.22)

where R is the radius of the Earth. So evidently it must be that the weight force is just
a little larger in magnitude than the normal force: W > N. In particular, we must have
that

W — N =mw?R (5.23)

in accordance with Newton’s second law.

Now what if we consider this same situation using a non-inertial reference frame that
co-rotates with the Earth? It may seem at first that there is a contradiction: The weight
force is bigger than the normal force, yet the rock doesn’t accelerate! Ah, but there is
also the centrifugal force which, despite not really existing, must be treated as real if
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we insist on using this non-inertial frame of reference. And then, of course, there is no
problem: the weight force pulls the rock in one direction with a certain force, and the
normal force and the centrifugal force together pull the rock equally hard in the opposite
direction, resulting in zero acceleration:

W — N —mw?R =0. (5.24)

Note also that the centrifugal force is proportional to the mass m of the rock, just like
the weight force W = myg. So it is conventional to group these two forces (one real, one
fictitious) together into a single so-called “effective” gravitational force:

Wepp =W —mw?R =m(g — w’R) (5.25)

where the quantity in parentheses is then defined as the “effective gravitational acceler-
ation”:
geff =g — WR. (5.26)

Of course, in the general case (of an object not necessarily at the Equator) we’d have
to recognize the vector character of all these quantities. So the general formula for the
effective gravitational acceleration is:

Jepf = G+ wrLr. (5.27)

Now let’s see how this relates to the oblateness of the Earth. Consider some random
hunk of (say) water at the surface of the Earth at some latitude ¢. See Figure 5.3. The
important point is that the effective gravitational accleration (which determines the local
meaning of “up” and “down” in the rotating coordinate system) will be tilted slightly
away from its expected direction of “true down”, i.e., toward the center of the Earth.

Since the surface of the Earth is largely liquid (and even the solid parts are relatively
plastic on long, geological time-scales), its surface will everywhere be approximately
perpindicular to the local g.rr. And so if we can just calculate how g.rs varies with
latitude, we can determine exactly the angle that “effective up” makes with “true up”
at different latitudes, and from that understand the shape of the Earth.

Let’s begin by breaking the centrifugal force up into “true horizontal” and “true
vertical” components. The horizontal piece is

Fhoriz — Fsin(¢) = mw? R cos(4) sin(¢). (5.28)
The “true vertical” component is
FYert = F, cos(¢) = mw?R cos?(¢). (5.29)

Assuming that the true gravitational acceleration § is directed toward the center of
the Earth, we then have that

gé’;? = g — w?Rcos*(¢) (5.30)
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1

—. —

Figure 5.3: The gravitational (W) and centrifugal (F;) forces acting on a hunk of, say,
water at the surface of the ocean at latitude angle ¢. The centrifugal force has magnitude
F. = mw?r] = mw?R|cos(¢)|. The vector sum of these two forces (one real and one
fictitious!), the effective gravitational force Weff, is also shown. The important point
is that, because of the centrifugal force’s contribution, We 7f does not point toward the
center of the Earth, i.e., does not point in the direction we’ve been calling “true down.”
In equilibrium, the water’s surface will be perpindicular to We 7f,» and so the surface will
not be a perfect sphere.



5.1. THE SHAPE OF THE EARTH 159

which expresses the (small) reduction in g. ¢ with latitude that was primarily responsible
for the effects noted first by Richer and discussed by Newton.

The horizontal component of gery will then be just the relevant component of the
centrifugal force (divided by m):

gf}’}iz = w?Rcos(¢) sin(¢). (5.31)

The angle 6 that gey; makes with “true vertical” at latitude ¢ is therefore given by
tan() = gg}’;}iz / gé’?’}t. But since the right hand side is very small, we might as well use
the small angle approximation: tan(f) ~ 6. Moreover, since the second term in Equation
5.30 is small compared to the first term, we can here get away with approximating the
angle as

w?Rcos(¢)sin(¢)  w?R?cos(¢)sin(¢)

g N GM

where we have used the fact that g = GM/R?.

Now imagine traveling along the surface of the Earth from the North Pole down to
the Equator, and keeping track of the change in “true altitude” (distance from the center
of the Earth) as one moves. A decrease in latitude by d¢ corresponds to a linear distance
ds = Rd¢ along a meridian of the Earth. Over this distance, the “true altitude” will
increase by

f =

(5.32)

w?R* cos(¢) sin(¢)
GM

And so the total increase in “true altitude” between the Pole and the Equator can be
found by integrating:

dh =0ds =

do. (5.33)

W2RA /2 ) W2RA
h = /dh =Gl J, cos(¢) sin(¢)d¢p = 5G] (5.34)

which is the same result we got before in a different way. Or more precisely: this is the
same wrong result we got before in a different way. And the reason we got the wrong
result again is that we let the same wrong assumption creep in here! Before we wrongly,
at first, assumed that there was no potential energy change associated with moving a
hunk of matter from point A to point B of Figure 5.1. That is equivalent to assuming
that the gravitational force does no work on a particle moving along the (quarter circle)
path from A to B, which would be true precisely if § had no “horizontal” component,
which is what we assumed here.

Of course, what we eventually realized before — that the journey from A to B is
gravitationally “downhill” — implies here that § does have a “horizontal” component.
Why? Because there is this extra belt of matter around the Equator which attracts our
test particle and tilts the true gravitational acceleration g a little bit toward the Equator.
And that means we underestimated the amount by which the surface of the Earth at
latitude ¢ tilts relative to “true horizontal”. Evidently this extra tilt that results from
the not-quite-radial character of § contributes approximately as much to h as the (direct)
centrifugal force contribution we already calculated.
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Figure 5.4: The surface of a bit of water at latitude ¢. Over a small horizontal distance
ds which spans a small latitude range d¢, the height of the water increases (from the
Polar to the Equatorial side) by an amount dh = 6 ds.

Let’s finally return to the observations which began this whole discussion — the fact
that the period of the same identical fixed-length pendulum varies somewhat with lati-
tude, indicating that the local effective acceleration of gravity, g.s, also varies somewhat
with latitude. We’ve already written down equations for the horizontal and vertical com-
ponents of gerr. In principle, the magnitude g,y can be found from the Pythagorean
Theorem, but since the horizontal component (despite its important role in determining
the shape of the Earth!) is always small compared to the vertical component of g, it’s a
very good approximation to take

Gess| = 95} = 97" — w?Rcos®(9). (5.35)

Between the poles and the Equator, cos?(¢) varies between zero and one. So the part of
the difference in g,y between the Poles and the Equator that is attributable directly to
the Earth’s rotation is just

Agerp = Rw? =0.034m/s? (5.36)

with the g.rs at the Equator of course being this much smaller than at the Poles.
Actual empirical measurement reveals that g.sy varies by just a little more than this:

Agesr = 0.052m/s”. (5.37)

The extra discrepancy is of course due to the fact that ¢g"*"* itself varies a little bit with
latitude, it being, evidently, 0.018 m/s? smaller at the Equator than at the Poles.
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The main reason for this difference was mentioned earlier: at sea level at the Equator,
one is further from the center of the Earth, by a height A, than at the Poles. If one were
on a ladder of this height (rather than a several-miles-thick slab of solid, gravitating
earth!) above a perfectly-spherical Earth, the difference in g at the two locations would

be
GM GM

Ag = — . 5.38
9= R (R+ h)? (5.38)
To simplify this, it is useful to write the second term as
GM AN
— 1+ = .
T2 < + R) (5.39)

and then use the purely mathematical fact that
n 1 2
(1+x) %1+nx+§n(n—1)x + - (5.40)

for small z. (This can be derived, for example, by Taylor expanding the left hand side
about z = 0.)
Since h/R is small, we may use this approximation and keep only the first-order

term. The result is that
GM N GM _ 2GMh

~ 5.41
(R+ h)? R? R3 (541)
o °GMh _ h
Agr —— =2g—. 42
9 R3 gR (5 )
Plugging in numbers (in particular, the true value for h) gives
Ag = 0.066 m/s%. (5.43)

Of course, that’s not quite right, because a mass at the Equator is not on a ladder
of height h above a spherical Earth, but is rather supported by an enormous slab of
gravitating material. This turns out, not surprisingly, to increase g at the Equator more
than it does at the Poles, i.e., to contribute negatively to what we’ve been calling Ag.
Evidently this extra negative contribution is just what brings our previously-calculated
Ag = .066 m/s? in line with the empirically correct Ag = .018 m/s2.

Notice that we have again here skirted the question of how to actually calculate
the contributions to ¢ that arise from the gravitational effect of the Earth’s Equatorial
bulge. This is not in principle all that difficult to treat exactly, but requires some rather
sophisticated math. We’ll take it up in the Projects and, at least, work up some order-
of-magnitude estimates to convince us that everything makes sense.

There is one last thing we’ll need in the Projects. We mentioned above that the
actual, empirically-measured difference between the gravitational acceleration g (not
geff, but the genuine gravitational field g) at the Pole and Equator is Ag = 0.018 m/ s2,
where we are talking about sea level at both locations. We also just calculated that
climbing to the top of a height-h ladder near the surface of the Earth has the effect of
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reducing g by 0.066 m/s2. It is then straightforward to calculate that the Ag — between
points at the same “true altitude” at the Pole and Equator — is going to be:

Ag = (0.018 — 0.066) m/s* = —0.048 m/s%. (5.44)

Just for clarity, what this means is that the (genuine) gravitational acceleration at sea
level at the Equator is 0.048m/s? greater than the (genuine) gravitational acceleration
at a point just above the Pole such that the two points are equidistant from the Earth’s
center. Qualitatively, it of course makes perfect sense that, for two points equidistant
from the Earth’s center, the gravitational acceleration would be stronger at the point
that is nearer to the bulging part of the mass distribution.

5.2 Tides

There is another way in which the Earth’s surface bulges away from perfect sphericality,
familiar to anyone who has ever visited the ocean: the tides. Let’s try to understand the
physical origin of the tides, first qualitatively and then with some mathematical analysis.

First some basic qualitative facts about ocean tides. At least at most locations on
the Earth, there are roughly two high and two low tides per day — “roughly” because,
strictly speaking, the average time between two subsequent high tides is not precisely 12
hours, but rather about 12 hours and 25 minutes. This is just half of 24 hours and 50
minutes, which happens to be the amount of time it takes a given point on the Earth to
rotate all the way around and arrive at the same place — not the same place with respect
to the Sun (24 hours) or the stars (23 hours 56 minutes), but the same place with respect
to the Moon. So that is the first and most obvious piece of evidence that the tides are
controlled, somehow, by the Moon.

Actually, even this was a controversial claim for a surprisingly long period in history.
Many commentators had speculated that the Moon is somehow or other controlling the
tides, but nobody understood how and nobody was able to explain satisfactorily why
there were fwo high tides per day. A naive explanation involving the Moon would have,
say, the Moon pulling the Earth’s water toward it a bit, causing an extra-high pile-up
of water on the side of the Earth facing toward the Moon, and an extra-low deficit of
water on the side of the Earth facing away from the Moon. Then, as the Earth rotated
(all the way around every 24 hours 50 minutes!) underneath the moon, a given point
on the Earth’s surface would pass alternately through the high- and low-water regions,
resulting in one high and one low-tide per day. It’s a nice story, but, unfortunately, it is
contradicted by the observations.

Galileo also came up with a speculative theory in which the twice-per-day rising
and falling of the tide was explained (in some way that is a little obscure, and not too
important because it is definitely wrong) by some sort of interaction between the two
primary motions of the Earth: its daily rotation and its yearly orbit around the Sun.

The point is just to acknowledge that the tides are confusing and complicated. They
were only first properly understood by Newton, using (what else?) his theory of universal
gravitation.
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The basic idea of Newton’s gravitational explanation of the tides is this. Since (in
accordance with Newton’s third law) not only does the Earth exert an attractive gravita-
tional force on the Moon, but also vice versa, the Earth itself undergoes uniform circular
motion (centered on the Earth-Moon center of mass point) and is thus constantly ac-
celerating toward the Moon. But the parts of the Earth that are closest to the Moon
will experience — because the gravitational force decreases with distance — a stronger
than average gravitational attraction toward the Moon, while parts of the Earth that
are farthest from the Moon will experience — for the same reason — a weaker than average
gravitational attraction toward the Moon.

The point is that — relative to this average attraction toward the Moon (as embodied,
say, by the gravitational acceleration of the point at the Earth’s geometrical center) —
the stuff on the side of the Earth nearest the Moon will be attracted (just a little bit)
toward the Moon, while stuff on the side of the Earth farthest from the Moon will be
(just a little bit) repelled, away from the Moon. And so stuff — like the water in the
oceans — that is more or less free to flow around and re-position itself will tend to pile
up at these two opposite positions on the Earth’s surface. And that, obviously, is where
it’ll be high tide. And so a typical point on the Earth’s surface will pass through both
high-tide regions per day.

This is illustrated in Figure 5.5. The normal arrows represent the strength of the
gravitational force exerted on that part of the Earth by the Moon. As discussed above,
the points closer to the Moon experience a greater than average attraction to the Moon
and the point farthest from the Moon experiences a smaller than average attraction to
the Moon. In addition, points like those at the top and bottom of the Earth in the
Figure experience an attraction that is approximately the same magnitude as average,
but tilted at a slight angle. The double arrows represent the difference between the
actual attraction at a point, and the average attraction. The upshot is clear: relative
to the average motion of the Earth as a whole, the surfaces on the top and bottom (of
the Figure) are pushed in/down, while the surfaces on the sides are pushed out/up. The
result is something like the elliptical shape (technically a prolate spheroid) indicated in
the Figure — though the extent of the tidal bulges is significantly exaggerated there.

One should think of this ellipsoid as an equilibrium shape that the surface of the
oceans would make if this were the only relevant effect. But of course, the Earth itself is
spinning around once per day (or once every 24 hours 50 minutes relative to the Moon).
So, as a kind of first approximation, one should think of the oceans as always making
roughly this equilibrium ellipsoid, with the tidal bulges essentially fixed in space relative
to the Moon — but with the solid parts of the Earth rotating around, underneath and
through the tidal bulges. In particular, since there are two tidal bulges, a given point
on the Earth’s surface will revolve around through this relatively fixed pattern of high-
and low- water, passing alternately through high- and low-tide regions.

Of course, how one describes this is going to be reference-frame dependent. From the
point of view of the Earth itself, there are two big tidal bulges which race around and
around and around, trying to keep up with the Moon (and the point in the sky opposite
the Moon, respectively) as it rises and sets each day.

Let’s see if we can now calculate the actual amplitude of the tides, i.e., the difference
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Figure 5.5: The tidal forces produced by the Moon on the Earth. The single arrows
represent the gravitational force (per unit mass) exerted on a given part of the Earth.
The double arrows represent the difference between the actual force acting at a point
and the average force. This difference is called the “tidal force.” The decrease of the
Moon’s gravitational influence with distance explains why the tidal force is toward the
Moon on the right and away from the Moon on the left. The fact that the force is always
directed straight toward the Moon explains the slight “tilt” of the forces at the top and
bottom of the figure, which in turn results in a tidal force that points back in toward
the center of the Earth. The net result of these differential forces is that water flows
toward the two high-tide points on the right and left of the diagram, as indicated by
the (much exaggerated) elliptical surface shown. Note finally that the three dimensional
shape generated by these tidal forces will have rotational symmetry about the Earth-
Moon axis. So it is low-tide not only at the top and bottom of the Earth (as shown in
the figure) but also on the parts of the Earth that come out of the page, and the parts
that go into the page.
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h in height between the high- and low-tide points shown in the previous Figure. As with
the calculations of the amplitude of the Equatorial bulge in the previous section, there
are several ways to do this. The simplest is probably to use the equilibrium argument
which says that the total energy change associated with moving (say) some mass m
blob of water from the high-tide surface to the low-tide surface should be zero. You can
work it out this way in the Projects. Here we’ll adopt the slightly less straightforward,
but in some ways more revealing, method of calculating first the effective gravitational
accleration at different points on the Earth’s surface, and then using this to calculate
the “slant” of the equilibrium surface relative to “true horizontal” — just as we did in
the previous section as a final way to analyze the oblateness of the Earth.

Figure 5.6 shows a cross-section of the Earth. We assume, to begin with, that the
Earth is spherical. This seems like a dubious assumption given the previous section, but
all we are going to calculate here is the extra deviation to the Earth’s shape produced by
the tidal interaction with the Moon. The idea is that the Earth’s Equatorial oblateness
is caused by its (daily) rotation — so we can ignore both the rotation and the oblateness
in order to isolate the effect of the tides.

The Figure shows the two relevant contributions to the effective gravitational ac-
cleration, g.rs, at a point near the Earth’s surface that is an angle 6 down from the
Earth-Moon axis. One of the contributions, ¢meon, is of course the result of the Moon’s
gravitational influence. The other, g., is equal to the “average” (centripetal) acceleration
of the Earth (toward the Moon, or, equivalently, about the Earth-Moon center of mass
point).

The clearest way to think of this is to assume that we are using a non-inertial reference
frame that is attached to the Earth. Since the Earth as a whole accelerates to the right in
the Figure (if one uses an inertial frame), there will exist (in this Earth-attached frame)
a “fictitious” gravitation-like force that pushes everything back to the left with a force
proportional to its mass: F. = mg.. Note that the magnitude of g. is just the accleration
of the Earth (as a whole, on average) toward the Moon: g, = GMmoon/r2.

It is important here to appreciate that this is a non-inertial but also non-rotating
reference frame. Using a rotating reference frame (e.g., centered at the Earth-Moon
center of mass point and rotating in tandem with those bodies’ mutual orbits) to analyze
this problem is certainly possible. You can work it out in the Projects. But it can be
a little confusing because, really by definition, the effect we are here trying to isolate
and understand — the effect of the Moon’s tidal forces on the shape of the Earth — has
absolutely nothing to do with rotation. As we saw in the last section, rotation produces
relatively large deviations from perfect sphericality, on the order of tens of kilmeters.
The tides, of course, are nowhere near that high! (Luckily!) So we need to be careful
to isolate the purely tidal effects we are interested in, by systematically avoiding any
assumption (which may creep into the analysis if we’re not careful to avoid it) that
the Earth is rotating. So for now we forget about the rotational/spin motion of the
Farth, and treat it as having a fixed orientation with respect to the fixed stars. Then,
a reference frame that is rigidly attached to the Earth will be accelerating (because the
Earth accelerates toward the Moon) but not rotating. And so the fictitious forces needed
to use this non-inertial reference frame will be as described in the previous paragraph.
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Figure 5.6: Diagram for calculation of tidal contributions to g.y; near the surface of the
Earth.

The Figure also indicates an x — y coordinate system, which will help us in writing
down expressions for the x and y components of these two contributions to the effective
gravitational acceleration for a point a distance R from the origin:

€T GMmOOn
erf = 2 cos(¢) — ge (5.45)
GMmOOn GMmOOn
" 24+ R2—2Rrcos(d) 12 (5.46)
and oy
Gerg = ——z sin(@) (5.47)

where we have used the law of cosines: s2 = r% + R? — 2Rr cos(f).

Now we are going to make some simplifying approximations. The idea is essentially
to expand things in the small parameter R/r =~ 1/60 and keep only the leading non-
vanishing contributions in each term. As suggested (but understated) in the Figure, the
angle ¢ is already small: sin(¢) ~ Rsin(f)/r. So we can then make the crudest possible
approximation for the denominator in the expression for the y-component: s ~ r2. This
gives

G M poon R sin(0)

= (5.48)

Y ~
Gerr =~ —
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On the other hand, cos(¢) ~ 1. So we need to be more careful to pick off the similarly-
sized contribution in the expression for the z-component. In particular, we’ll ignore the
R? — but not the 2Rr cos(#) term — in the denominator. This gives

GMmoon GMmoon

e R — A4
Jerf r2 — 2Rr cos(0) 72 (5-49)
GMymoon 2R -1
= — 5 (1 - cos(@)) - 1] (5.50)
2G M 00n R cos(0)
~ 3 (5.51)

which is indeed the same order of magnitude as the y component.

It will eventually be useful to have an expression for the Moon’s tidal force not just
on the surface of the Earth, but at an arbitrary location. The previous expressions can
be easily converted by replacing R cos(f) with x, and Rsin(f) with y:

GM,
9ol f () ~ SO0y (5.52)
and GM.
gef 1" (@,y) m —5==y.

So those are the x and y components of the tidal force (per unit mass... probably we
should say the tidal acceleration). As with the calculation of the size of the Equatorial
bulge, however, it’s really the horizontal component that directly affects the “slant” of
the equilibrium ocean surface at angle 6 relative to “true horizontal”. It is easy enough
to work out that

(5.53)

gifys = iy sin(0) — g¥p cos(6) (5.54)
3GMmOOnR .
= Tcos(@)sm(@) (5.55)

and hence that the angle made by the water surface at angle 0 relative to “true horizontal”
will be hori
o ge;;zz o 3MmoonR3
a= = 3
g MearthT
And, still just following the earlier calculation, this means that, over a small angle df
at angle 6, the height of the water (relative to the initial spherical shape, i.e., constant
height) will decrease by

cos(0) sin(0). (5.56)

3 Mmoon R4

dh = df =
oft MearthT

cos(0) sin(0)do. (5.57)

We need only finally integrate this from # = 0 to § = 7/2 to find the total difference h
between the heights of the low- and high-tide points:

3 Mmoon R4
h — /dh — EMem,th ’r'_3 (558)
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If we plug in the actual values for the Moon’s and Earth’s masses and the relevant
distances, we find

h =54 cm (5.59)

or about two feet — certainly in the ballpark of the actual variations observed.

Actually, though, it is not at all uncommon for high- and low-tides to differ by two or
three times this estimate, or more. The reason for this can be qualitatively understood
by thinking again about what’s happening using a reference frame that co-rotates with
the Earth. Then the story one tells is that there are these two giant tidal waves which
are constantly propagating around the Earth to the west. If the whole surface of the
Earth were covered with water, the tidal bulges would more or less just flow around, and
the above calculation would be pretty accurate. But, of course, they can’t — there’s land
in the way! So, for example, the tidal bulge in the Atlantic Ocean runs up pretty hard
against the whole east coast of the Americas, and has to somehow go around that land
mass to get, just a few hours later, into the Pacific. So there is a tendency for the water
to pile up more along the east coast than it would if there were no land there, much as a
small ripple in the bathtub can make the water level go up and down with significantly
greater amplitude when the ripple sloshes against the edge of the tub. And then, after
all that water races around the continents into the Pacific, the two giant streams (from
the north and south) meet in the middle and again create a bulge with an even-greater-
than-equilibrium height. Of course, the details of this are extremely complicated and vary
significantly between different geographical locations, even locations that are relatively
close together. So if you want to know exactly when it will be high- or low-tide at a
given location on a given day, consult a tide table! These are based on empirical fits to
historical data, and so are much more reliable than any possible calculation a physicist
could make. On the other hand, if you want to really understand what produces the
tides and how to think about them, well, now you do!

There are several additional points that should be mentioned. First, although we’ve
talked as if the tides are produced exclusively by the gravitational influence of the Moon,
everything we’ve said applies equally much to the Sun. What low-high-tide difference h
would be produced by the Sun (if we could isolate its tidal effect)? We can immediately
co-opt our previous result, just changing everywhere the word “Moon” to “Sun” and
re-interpreting the r to mean now the distance between the Earth and the Sun:

3 Mg, R*

5 Meanh 7‘_3 =25cm (560)

hSun =

which turns out, by sheer coincidence, to be of the same order of magnitude as the h
produced by the Moon.

Of course, the Sun and Moon are both always present and always influencing the
Earth’s waters. The interesting point is that, depending on their relative alignment,
the Sun and Moon can produce particularly strong tides, or particularly weak tides.
Consider for example New Moon — when the Moon and the Sun are both in (roughly)
the same direction relative to Earth. Then the tidal bulges produced by the two bodies
are right on top of each other (one bulge on each side of the planet), and their amplitudes
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Figure 5.7: Two possible orientations of the Earth’s tidal bulge relative to its geography.
In the top panel, the Moon lies in the plane of the Earth’s equator. An observer on the
Equator will experience two equally high and two equally low tides on this day. Observers
at other location will also experience two equally high and two equally low tides, but
they won’t be as high and low (respectively) as at the Equator. In the bottom panel, the
Earth’s spin axis is tilted down toward the Moon, so the two tidal bulges are somewhat
north and south of the Equator, respectively. On this day, an observer at the Equator
will observe two equally high high tides and two equally low low tides (but they won’t
be as high and low, respectively, as they were on the day pictured in the top panel).
An observer at moderate latitude will observe two high tides, but one of them will be
considerably higher than the other. The two low tides will be about the same. Observers
at very extreme latitudes (near the north or south Poles) may experience just one high
tide and just one low tide on this day! That should give you a sense of the monthly
variations that are possible in the tides, and how those variations vary by latitude. The
seasonal variations mentioned in the text arise the same way, but with the Sun replacing
the Moon in the Figure.
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add. Hence, one expects particularly strong tides (meaning particularly high high-tides
and particularly low low-tides) around New Moon — and, as you can see with a little
thought, also around Full Moon. By contrast, when the Moon is about half full, so the
Sun, Moon, and Earth make a right triangle, the Moon tries to create a high tide at the
same place (on Earth) that the Sun tries to create a low tide, and vice versa. That is,
their effects tend to cancel resulting in particularly weak tides (not too high high-tides
and not too low low-tides). The weak tides that occur when the moon is half full (either
waxing or waning) are called “neap tides”. The strong tides that occur at Full and New
Moon are called “spring tides” — not because they happen in the spring, but, evidently,
because the waters spring up particularly high then.

There are, however, some seasonal (and monthly) variations in the tides as well, which
have to do with the fact that the Earth’s spin axis is not perpindicular to, but tilted
relative to, the plane of the ecliptic. See Figure 5.7. Additional seasonal and monthly
variations are produced by the fact that neither the Moon’s orbit around the Earth
nor the Earth’s around the Sun are circular. Instead, as discovered first by Kepler, the
orbits are slightly eccentric ellipses. The distance r between the Earth and the Moon, for
example, varies up and then down away from its average by about 5 % each month. And
since the strength of the tides depends on this distance to the third power, the relatively
small changes in the distance to the Moon can produce relatively large changes (15-20%
variations away from average) in the strength of the tides. (The same is also true for the
Earth’s orbit around the Sun, but since this is eccentric only by one or two percent, the
corresponding seasonal variations in the Sun’s tidal influence are smaller.)

So next time you visit the ocean, pay attention to the tides. In particular, notice
how the rising and falling of the tide correlates with the location and phase of the moon.

5.3 The Non-Spherical Earth and Associated Torques

As we mentioned in passing in Chapter 4, a uniform gravitational field — like that near
the surface of the Earth — will exert a net force but no net torque on an object, no matter
how complicated its shape. On the other hand, a non-uniform gravitational field — like
the spherically-symmetric radially-inward field produced by a moon or planet or star —
can exert not only a net force but also a net torque on an arbitrarily shaped object.
Consider, for example, the situation depicted in Figure 5.8.

It can be shown (we won’t bother here) that a spherically symmetric object, however,
cannot have such a gravitational torque exerted on it. (Actually, it’s sort of the converse
of the earlier proof that a spherically symmetric body acts, gravitationally, just like a
point mass — the point here is that such a body also re-acts, gravitationally, just like
a point mass.) In order for a gravitational torque to be produced on an object, the
object must lie in a non-uniform gravitational field and must itself be non-spherically-
symmetric. Of course, just like the imaginary giant barbell in the Figure, the Earth sits
in the not-quite-uniform gravitational field of the Moon. (The tidal forces we analyzed
in the previous section can be thought of as nothing but the departures of the Moon’s
gravitational field from uniformity in the vicinity of the Earth.) Moreover, both of the
last two sections have concerned themselves with respects in which the Earth fails to
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Figure 5.8: A giant barbell in space near (say) the Moon. The net gravitational force
on the barbell (the sum of the two forces exerted on the two masses) pulls it toward the
Moon. But because the gravitational field produced by the Moon is not uniform, the two
masses composing the barbell have different forces exerted on them — which produces,
in addition to the overall tendency to accelerate toward the moon, a torque which tends
to rotate the barbell (clockwise in the Figure).

be perfectly symmetric. So one should expect that the Earth’s various bulges result in
torques, which — in some ways we’ll now explore — affect the rotational state of the Earth.

5.3.1 The Tidal Torque

In the previous section, we discussed how the non-uniformity of the Moon’s gravitational
field near the Earth (the tidal forces) produces two tidal bulges, one on the side facing
the Moon and the other on the opposite side. We calculated the equilibrium height of
the bulges and discussed the simple equilibrium model in which a given point on the
Earth’s surface just rotates around, moving alternately through the high- and low-tide
regions, and thus experiences two high- and two low-tides per day.

There is also, however, an important dynamical coupling between the rotation of
the Earth and the tidal bulges. As viewed from (say) an inertial reference frame above
the Earth-Moon system, the tidal bulges have to move (pretty fast!) relative to the
rotating Earth, just to stay in their equilibrium positions. And because there is some
friction between the solid rotating Earth under the oceans, and the waters themselves,
the tidal bulges don’t quite keep up. Put another way, the rotation of the Earth is
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Figure 5.9: The perspective here is looking down from far above the North Pole. The
Earth’s daily Eastward Rotation drags the tidal bulges a little bit to the east relative
to their equilibrium positions (which would be along the line connecting the Earth’s
and Moon’s centers). (Note that the picture exaggerates this. In fact, the tidal bulges
are only a few degrees to the east of the Earth-Moon line.) The tidally bulging Earth
therefore acts just like the giant barbell from the previous Figure: the bulge that is closer
to the Moon is attracted toward the Moon more strongly than, and in a slightly different
direction from, the bulge on the other side, producing a torque that tends to turn the
Earth to the west. Or here is a slightly better way to think about the same thing. If one
imagines the slightly-rotated tidally bugling Earth superimposed on the tidal forces as
shown in Figure 5.5, the result is clearly a net torque: both bulges are pulled, by those
tidal forces, in a way that tends to produce a clockwise (i.e., westerly) rotation of the
bulging Earth. Of course, since the Earth is already rotating to the East, the result of
this torque is a (very gradual) decrease of the easterly angular velocity. That is, because
of the torque exerted by the Moon on the tidally bulging Earth, the length of the day is
very gradually increasing!

constantly pulling the bulges away from their equilibrium positions (just under the Moon
and opposite it). The result is that the tidal bulges are not precisely in their equilibrium
positions, but are instead pulled a few degrees to the east by the rotating Earth. See
Figure 5.9.

As explained in the Figure’s caption, the Moon’s tidal forces produce a net torque
on the Earth because of this slight departure of the tidal bulges from their equilibrium
orientation. This torque acts to slow down the rate at which the Earth rotates, i.e., to
increase the length of the day. Indeed, scientists have measured that the length of the
day is increasing by about 1.6 milli-seconds per century.

It is very interesting to consider this process from the point of view of the Earth-
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Moon system. For that system, all of the complicated frictional and tidal/gravitational
forces that are involved in the slowing down of the Earth’s rotation are internal forces,
which can therefore produce no net torque. The total angular momentum of the Earth-
Moon system must therefore be a constant — which means that, since the (eastward) spin
angular momentum of the Earth is decreasing, the (eastward) orbital angular momentum
of the Moon must be increasing. It can be shown that the orbital angular momentum
for a roughly circular orbit is proportional to the square root of the radius of the orbit
— 80 increasing orbital angular momentum implies increasing radius. Thus, it follows
from the conservation of angular momentum that the size of the Moon’s orbit should be
slowly increasing.

Amazingly, this too has been directly measured in recent decades. When the Apollo
astronauts landed on the Moon in the early 1970s, they left some mirrors (technically
“corner reflectors”) from which Earth-based scientists can reflect light. Measuring the
amount of time it takes for a pulse of light shot toward the Moon to be reflected and
subsequently detected (and knowing the speed of light) allows for extremely precise
measurements of the distance to the Moon. And indeed, this distance has been measured
to be increasing at a rate of approximately 3.5 cm per year.

By the way, the reason for this gradual (but measurable) change in the Moon’s orbit
can be understood without mentioning angular momentum conservation. As we have
seen, the torque on the tidally bulging Earth can be understood as a result of the bulge
closest to the Moon being attracted to the Moon more strongly than the bulge on the
far side. But also vice versa: the tidal bulge closest to the Moon attracts the Moon
more strongly than does the bulge on the far side. So the net force exerted by the Earth
on the Moon is not quite toward the center of the Earth, but rather ever-so-slightly
tilted toward the Moon’s direction of motion. This component does positive work on the
Moon, increasing its energy and allowing it to “climb” into ever-higher orbits.

The upshot of all this is that the Earth-Moon system is not in equilibrium. The
Earth’s “daily” rotation rate is decreasing, and the Moon’s orbital radius is increasing.
When and how will these gradual changes cease?” A little thought reveals the answer:
when the Earth’s (spin) angular velocity matches the Moon’s (orbital) angular velocity.
In other words: when the Earth daily rotation slows so much that it always presents the
same face to the Moon. Then the Moon (which already always presents the same face
to the Earth) and the Earth will be “tidally locked” in a face-to-face dance.

So — as a result of the subtle interplay of tidal forces, friction between the oceans and
the sea floor, and the laws of rotational dynamics — your distant ancentors may someday
be able to see the Moon in the sky all the time (or never, depending on where they live).

5.3.2 Torque on the Equatorial Bulge

We previously treated the Earth’s Equatorial Bulge as an intrinsically interesting feature
that can be understood and explained using Newton’s theory of gravitation and some
concepts of rotational dynamics and kinematics. But the Earth’s Equatorial bulge is
interesting for another reason, too: just as with the tidal bulges, the tidal forces exerted
by the Moon (and Sun) interact with the Equatorial bulge to produce a torque. And
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this torque, like the one on the tidal bulges, results in some interesting gradual changes
in the Earth’s state of rotation.

Actually, the effect of the torque (exerted jointly by the Sun and Moon) on the
Equatorial bulge is something we’ve already discussed, way back in Chapter 1: the
precession of the equinoxes — that subtle long-period turning of the Earth’s rotation axis
that was (despite its roughly 26,000 year period) noticed already by the Ancient Greeks.

In principle, the mechanism here is simple. The Earth spins, like a top. And — because
the FEarth is not quite perfectly spherical — the Sun and Moon exert a gravitational torque
on the Earth. The torque is produced by the Sun’s and Moon’s tidal forces, which would
tend to align the Earth’s Equatorial plane with the plane of the Ecliptic (the plane of
the Earth’s orbit around the Sun, roughly also the Moon’s orbit around the Earth). But
just as the gravitational torque on the spinning top causes it to precess rather than tip
over, so with the Earth: the gravitational torques exerted on its bulging Equator by the
Sun and Moon cause its spin (or spin angular momentum) axis to sweep out a cone,
always staying roughly the same 23.5° away from the fixed point among the stars called
the Pole of the Ecliptic.

Really, the story here is precisely like the story from the previous chapter for the top.
So there are only two things to fill in. First: why and how, exactly, does the Moon or
Sun exert a net torque on the Earth? And second: how big is that torque, and does it —
in accordance with Equation 4.102 — account for the observed rate of one revolution per
26,000 years?

We'll discuss the first point here and then leave the second part (a hard but very
cool calculation) for the Projects.

Actually, there’s not that much to say since the effect is the same as that for the
tidal bulges. See Figure 5.10 for a sketch of the Equatorially bulging Farth sitting in the
tidal force field produced by (say) the Moon.

The only subtlety is that, since the orientation of the Earth’s spin axis is (approx-
imately!) the same throughout the month or year, the tidal forces and bulge will not
always be exactly as depicted in the Figure. It is probably easiest here to think first
about the tidal forces exerted by the Sun. Then, Figure 5.10 will depict the situation
correctly at the Summer Solstice (with the Sun to the left along the negative z-axis) and
also the Winter Solstice (with the Sun to the right along the positve z-axis). These two
times turn out to correspond to the torque being a mazimum. And it is important that
at these two times the torque is in the same sense, the same direction.

Around the equinoxes, however, the situation is rather different. The relevant tidal
forces are as shown in Figure 5.11. As should be clear qualitatively from the Figure, the
torque now wvanishes. Hence, over the course of the year, the torque exerted by the Sun
on the Equatorially bulging Earth varies back and forth (twice) between some maximum
value and zero.

Since this back and forth variation in the torque turns out to be extremely fast
compared to the main effect produced by the torque (the 26,000 year period precession
of the equinoxes), it is reasonable to calculate an average torque, and then treat the
phenomenon as if that average torque were exerted steadily in time. We may guess that
the average torque produced by the Sun’s tidal forces will be about half of the maximum
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Figure 5.10: The Equatorially bulging Earth lies in the tidal force field produced by (say)
the Moon. The picture will be accurate if the Moon is to the right along the z-axis, or to
the left along the negative xz-axis. Clearly the tidal force on the bulge on the right tends
to turn it clockwise, as does the tidal force on the bulge on the left. There is therefore
a net torque exerted on the Earth by these tidal forces.

torque (exerted at the Solstices):
avg 1 an
TSun ~ 5 Sun * (561)

Now finally note that everything we’ve just said about the tidal forces and torques
produced by the Sun, applies in just the same way to the Moon. The only difference
really is that we don’t have terms for the points in the Moon’s orbit around the Earth
which correspond to the Solstices and Equinoxes — i.e., the times when the Earth’s spin
axis is tilted maximally toward or away from the Moon (the “Lunar Solstices”) or tilted
down perpindicularly from the Moon-Earth line (the “Lunar Equinoxes”). So it would
have been a little harder to describe and understand. But if you followed the discussion
for the Sun, everything is truly the same for the Moon — except that the relevant torque
(produced by the Moon’s tidal forces on the Earth’s Equatorial bulge) oscillates back
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Figure 5.11: The Earth sitting in the tidal force field produced by the Sun around the
Spring or Autumn Equinox. The perspective is (say) from the Sun. The tidal forces are
radially symmetric in a plane perpindicular to the Earth-Sun line, and so produce no
torque on the Earth — or at least, it is clear from the picture that there is no torque on
the particular planar slice of Earth shown. But all of the other slices will have the same
symmetry pattern, and so, indeed, the total torque will vanish.

and forth between its maximum value and zero twice per month, rather than twice per
year. But we still have, in analogy with the previous equation, that

1
Z(\lj)gon ~ 5 ﬁgin' (562)

The time-averaged total torque exerted on the Earth (in virtue of its Equatorial bulge)

is therefore
avg avg avg

1
Tiotal = TSun + TMoon = 5 (ngf + Tﬁgin) . (563)
So if we can calculate (or approximate) the “max” torque produced on the Equatorial
bulge by the Sun at the Solstices — and by the Moon at the “Lunar Solstices” — we’ll
be able to plug the resulting total torque into Equation 4.102 and see if, indeed, this
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process accounts quantitatively for the observed precession rate. But we’ll leave that fun
project for the Projects.

5.4 Measuring Masses

Back in Chapter 4, we discussed the Cavendish experiment in which Newton’s grav-
itational constant G was first measured. Because the gravitational acceleration g =
9.8m/s? of objects near the Earth’s surface is readily measureable, and because this
acceleration is given, according to Newton’s theory, by

o G Mearin
.

earth

(5.64)

— and because the radius of the Earth is also known — the measurement of Newton’s
constant G allows the mass of the Earth to be computed. This is why, as we discussed,
this laboratory measurement was and is often referred to as a means of “weighing the
Earth.”

We also discussed, in that earlier chapter, how a similar approach could be used to
determine the mass of the Sun. Since, for example, the (centripetal) acceleration of the
Earth toward the Sun is known

2r2R 4r? x 1 AU

_ . 2p _ _ 2
Qearith = W R = T2 (1 year)2 = .0059 m/s (565)
and given, according to Newton’s theory, by
GM,
Qearth = R;un (566)

where R = 1 AU is the Earth’s orbital radius, the mass of the Sun can be worked out:

2 23
Moy = ‘Z“”h - 4;22 =2 x 10 kg (5.67)
or about 300,000 times the mass of the Earth.

Here is the principle involved: whenever a relatively light body moves under the
gravitational influence of a relatively heavy body, and the relevant kinematical properties
of the light body (its acceleration toward and distance from the heavy body) can be
measured directly, the mass of the heavy body can be inferred. This is a relatively
simple point, but an extremely important and fruitful one for modern astronomy and
astrophysics. For example, it is by this same method that the masses of other planets
can be determined — but only if those planets have moons!

Moons orbiting Mars, Jupiter, and Saturn were discovered when (or shortly after)
Galileo first pointed a telescope to the heavens. Thus Newton, in the Principia, was
already able to estimate the masses of these planets. A more recent and particularly
interesting instance is the planet (recently demoted to “dwarf planet” status) Pluto,
which was discovered in 1930. Pluto’s mass, however, remained unknown until 1978,
when a moon (“Charon”) orbiting Pluto was discovered.
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The apparent (angular) diameter of Charon’s orbit, combined with knowledge of
the distance to the planet-moon system, allowed the absolute size (R) of its orbit to
be determined. Observations over time also allow the period of Charon’s orbit to be
determined. By plugging this information into Equation 5.67, Pluto’s mass can be
calculated. You can work through that calculation in the Projects.

We should note, though, that this is a bit over-simplified. The mass of Pluto turns
out to be pretty low — so low that its moon, Charon, really is not “relatively light”
compared to it. Indeed, it turns out that the center of mass of the Pluto-Charon system
is not within Pluto’s body at all, but is rather in the empty space between them. (By
comparison, the center of mass of the whole solar system is somewhere inside the Sun
— slightly toward Jupiter from its center, typically; similarly, the center of mass of the
Earth-Moon system is within the Earth, some 1700 km below the Earth’s surface, on
the side facing the Moon, obviously.) The Pluto-Charon system is therefore sometimes
classified as a “dwarf double planet” system rather than a (dwarf) planet plus a moon.

Another interesting (and only recently-discovered) fact about the Pluto-Charon sys-
tem is that both bodies are “tidally locked” to one another. This is also a result of the
fact that the two bodies are of comparable mass.

Anyway, the fact that the two bodies are of comparable mass — and hence must
really be described as each orbiting around their mutual center of mass — requires a
somewhat more careful analysis to convert the observed kinematical information into a
determination of their masses. Let’s work this out in general for two objects of mass mq
and mg, orbiting around their mutual center of mass with (circular) orbits of radii Ry
and R, as shown in Figure 5.12.

For the Pluto-Charon system, we would observe the system “edge-on” rather than
the “face-on” perspective shown in the Figure. The latter, however, is a little simpler for
analyzing the physics. In any case, no matter what perspective we have on the system, as
long as we can observe it over time (and as long as the absolute distance to the system is
known, so the apparent angular separations can be converted into absolute distances) we
can determine the radii of the two orbits, R1 and Ry. These are distances measured from
the (empty) center of mass point, so one might wonder how this point can be located.
The answer is simple: it is the center of the two observable orbits.

It follows from the definition of the center of mass that the product miR; should
equal moRs. This can be converted into an expression for the mass ratio:

m_ By (5.68)
my I
An additional algebraic constraint on the two masses can then be inferred from orbital
dynamics. According to Newton’s theory, the mass mso exerts on my a force of magnitude
F = Gmims/(R1 + R3)? which produces acceleration a; = Gma/(R1 + R2)%. But this
is just the observed centripetal acceleration of mq, so we may write

G’I’)’Lg . U_% . 47T2R1
(Rl + R2)2 - Ry - T2

(5.69)

where T is the period of the orbit. The same reasoning leads to a corresponding condition
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Figure 5.12: A binary system: two bodies, of mass m; and mso respectively, orbit about
their mutual center of mass (the black dot in the Figure) with circular orbits of radii Ry
and Ra.

for the other mass:
G’I’)’Ll . 47 2R2

(Rl + R2)2 - T2
The previous two equations can then be added, and the result simplified, to give an
expression for the sum of the masses:

(5.70)

472 (R1 + R2)3
GT? '

With the ratio and the sum both determined by observable quantities, it is then clear
that the two masses — mj and mgy — can each be uniquely determined.

This would all probably be analytical overkill if it were useful only as a way to figure
out the mass of Pluto and its moon Charon. But in fact this same technique can be used
to determine the masses of stars, many of which, perhaps surprisingly, are found to be
trapped in a gravitational orbit with another star — a so-called binary star system. For
example, two of the best-known stars — Polaris (the north star) and Sirius (the bright
star near Orion) — happen actually to be members of binary star systems.

The simplest kind of case is a binary star system in which the two stars are indi-
vidually observable, such that their individual orbits can (as in the case of Pluto and
Charon) be tracked over time. If the absolute distance to the binary star system can also
be determined, it is then straightforward to measure R;, Ry, and T from observation,
and hence to infer (just as sketched above) the masses of the two stars.

mi+meo = (5.71)
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Actually, it is more commonly successful to measure the masses of stars in binary
systems in a slightly more subtle way. This takes advantage of the so-called Doppler
effect, which is probably familiar in the case of sound: the paradigm example is the
ambulance siren that sounds higher in pitch as the ambulance approaches you, but then
appears to drop in pitch as the ambulance passes you and starts to recede. The physics
involved here is that the observed frequency f of a wave (such as the sound wave emitted
by the ambulance siren) depends not only on the intrinsic frequency of the source, fo,
but also on the radial velocity, v,, of the source — i.e., the rate at which its distance from
the observer is decreasing. For a sound wave, the relevant formula for the Doppler shift
is

Af=f—fo=fo (5.72)

where c is the speed of sound. For a light wave, the formula is the same (at least as long
as v, is small compared to ¢), but with ¢ now the speed of light: ¢ =3 x 103 m/s.

The upshot is that, by carefully monitoring the frequency of light emitted by stars,
one can learn something about the speed with which they move, toward or away from
the observer. For stars in a binary system as discussed above — but viewed “edge on”
— the radial velocity will oscillate back and forth (say, around zero) with a maximum

absolute value

maz _ 21R
"M = wR = 7 (5.73)

where T is the period of the orbit and R is its radius.

The point is then that, for a so-called “spectroscopic binary” in which this Doppler
wobble can be detected for both stars, we can rewrite the above mass-determination
equations purely in terms of the radial velocity amplitudes, v]"** = wR; and v5'** = wWRy,
instead of the radii R; and R which are, as a matter of observational fact, much harder
to measure than the velocities.

The only problem is that, if we just determine the v"** values from spectroscopic
data without actually resolving the precise motion of the two stars, there is no way to
know whether the binary system is being viewed precisely “edge-on.” To be general, we
should assume that the system is inclined at some angle ¢, in which case the maximum

observed radial velocities are given by

T

V" = wRsin(i) = ? sin(i) (5.74)

where i = 0 corresponds to the “face-on” perspective shown in the Figure and i = 7/2
corresponds to the “edge-on” perspective. With this more general relationship, the
relevant formulas for the masses of the two stars in the binary become

mi vy
m—2 — U{naw (575)
and X
T max max
mi+ mo = (Ul 1Y ) (5.76)

271G sin3 ()
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Figure 5.13: The “light curve” for an eclipsing binary star system. (A light curve is a
plot of the intensity of light coming from a certain source, plotted against time. Since
the light curve for this system is periodic, the intensity has been plotted against the
phase of the period. This makes the structure of the periodic curve much clearer to the

eye.)

In some cases, the two stars in a binary system can be observed to eclipse one another
as they orbit. The light curve for one such eclipsing binary is shown in Figure 5.13. The
eclipsing implies that the system is being observed edge-on, such that sin(i) &~ 1. In such
cases, careful observations of 7', v1"**, and v5*** allow very accurate determinations of
the masses of the two stars. In other cases, there is no way of determining ¢ from the
observations, and the most one can do is put a lower limit on the masses.

At this point a fair question would be: who cares about the masses of stars? Part
of the answer would surely be that, as we now know, gravity plays a crucial role in the
formation and evolution of stars. So if you want to understand stars — which means, if
you want to understand the universe and our place in it — you better know something
about the source of gravitation, which is mass. As just one concretization of this (perhaps
otherwise unsatisfying) answer, note that empirical studies of relatively nearby binary
star systems reveal an amazing correlation between stars’ mass and luminosity. See
Figure 5.14. “Luminosity” refers to a star’s intrinsic brightness — the total amount of
energy radiated, as light, per unit time. This can be determined by measuring the
intensity of the star’s light — that is, the energy per unit time passing through a unit
area (e.g., a detector) here on Earth — and then multiplying by the area of a sphere
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Empirical Mass-Luminosity Relation
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Figure 5.14: Graph of the mass-luminosity relation. Data are from Popper 1980 and are
for “main sequence” stars only. See C/O problem 7.9 on page 200.

whose radius is the distance from that star to the Earth, the idea being that the star
radiates its light uniformly in all directions, so the total amount of light (the luminosity)
should equal the amount of light per unit area (as sampled over some very small area
here on Earth) times the total area through which starlight of that intensity passes. As
an equation,

L =1 x 4nD? (5.77)

where L is the star’s intrinsic luminosity, I is the measured intensity of its light here on
Earth, and D is the distance to the star.

Anyway, the mass-luminosity correlation indicates that the directly observable fea-
tures of stars (such as their brightness, but including also such features as color and
radius) are intimately related to their intrinsic internal structures. Better understanding
the details of this connection between the hidden internal structure of stars and their
outward appearances is a major part of astrophysics. As you can imagine, this relies not
only on the theory of gravitation, but also thermodynamics, hydrodynamics, optics, and
even nuclear physics — because it is the nuclear process of fusion, occuring in the cores
of stars, which fuels them.

One particularly interesting implication of the empirical mass-luminosity relation is
that massive stars live much shorter lives. All other things being equal, one might have
thought that a more massive star would burn longer than a less massive star, since it
has more internal fuel. (The fusion reaction that powers stars is the nuclear “burning”
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of Hydrogen into Helium. More massive stars, however, will continue to burn after the
Hydrogen is used up — by fusing Helium into Carbon, for example.) But the empirical
relationship between mass and luminosity shows that all other things are not equal. A
star that is, say, twice the mass of the Sun will be about 10 times brighter, and will
therefore burn through its fuel in roughly a fifth the time. (The Sun will run out of
Hydrogen fuel — and puff up into a red giant, before eventually settling back down to
become a “white dwarf” — in about 5 Billion years.)

A star that is a hundred times the mass of the Sun will use up its fuel millions of
times faster, and hence have a lifetime that is thousands of times shorter than the Sun.
Such massive stars not only end their lives sooner than the Sun — they also end it much
more dramatically. We will discuss in the next section.

5.5 Cataclysms

In our discussion of the Earth’s tides above, we noted that, because the overall tidal
effect depends on the third power of the distance between the central and orbiting bodies,
relatively small variations in this distance (as result from the Moon’s not-quite-circular
orbit) can produce relatively large fluctuations in the strength of tidal effects. This is
of course a general fact about tidal forces, which applies not just to the Moon’s tidal
influence on the Earth, but also the Earth’s on the Moon, Pluto’s on Charon, and so
forth. Let us think about the following thought experiment in terms of a generic planet-
moon system.

Imagine that some planet’s moon was somehow brought into progressively smaller
and smaller circular orbits around the planet. The planet’s tidal effect on its moon would
grow and grow, in accordance with the inverse-cube law just mentioned, and so — at least
to the extent that the moon is deformable over the relevant timescales — its departure
from sphericality would increase. But at some point (i.e., at some particular distance
from the planet) a dramatic transition will have to occur: the tidal forces acting on the
planet would become comparable in size to the (largely gravitational) forces by which
the moon holds itself together as an integrated body. At this point, the moon would be
unable to hold itself together, and would be literally torn apart by the tidal forces.

To estimate when this should happen, we may calculate the distance at which, say,
a rock on the side of the moon facing the planet is pulled just as hard toward the planet
(by the tidal force) as it is pulled toward the moon (by the moon’s own gravitational
force). The strength of the gravitational field produced by the moon’s own gravity is

GMmoon
9Moon = R27 (578)

moon

while the tidal field exerted by the planet is (for a rock on the near side)

2GMplanet Rmoon
r3

Jtidal = (5.79)

where R is the radius of the moon and r is the critical planet-moon separation.
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If the moon were just at this critical distance where the two previous expressions are
equal, a rock released from just above the Moon’s surface would be at a kind of unstable
equilibrium point, and might either fall back to the moon’s surface or be pulled by the
tidal forces toward the planet. Solving for the critical value of r by equating the previous
two expressions gives
2Mplanet > 13

Mmoon .

This critical distance is usually referred to as the Roche limit, after the physicist Edouard
Roche who first discovered it in 1850.

It is clarifying to re-write this expression in terms of the mass densities of the moon
and planet, given by

Terit = Rmoon ( (580)

M
%T(R?’
for each of the two bodies. The result is that the critical radius — the Roche limit — is
proportional to the radius of the planet:

p= (5.81)

9 1/3
Terit = Rplanet <M> . (582)

Pmoon

For the Earth-Moon system, a quick calculation reveals that the Roche limit occurs
at about five and a half times the radius of the Earth — well inside the actual distance
to the Moon, about sixty Earth radii. And since the tidal interaction discussed earlier is
causing the Moon to slowly increase its distance from the Earth, we needn’t worry that
our (distant) ancestors will someday see the Moon ripped apart.

Interestingly, though, such a fate does lie in the future for several other moons in
the solar system. Phobos (one of Mars’ moons) and Triton (one of Neptune’s moons)
both orbit their planets in a way that is, in a sense, opposite to the Moon’s orbit around
Earth. Phobos orbits Mars faster than Mars rotates: the Phobosian month on Mars is
shorter than a Martian day! In the case of Triton, the moon actually orbits the planet
in a retrograde fashion, i.e., opposite the direction of the planet’s “daily” rotation. (As
seen from way to the north of the solar system, Neptune — like all the other planets —
orbits the Sun counter-clockwise, and Neptune — also like all the other planets — rotates
counter-clockwise. But Triton’s orbit around Neptune is clockwise.) In both cases, the
effect is to reverse the sense of the slow tidal evolution discussed above for the Earth-
Moon system: the two moons in question are (unlike the Earth’s moon) getting ever
closer to their planets. And so at some point (millions of years in the future) they will
reach the relevant Roche limits for their respective planets and be shredded.

Perhaps it has occured to you that the famous rings of Saturn could be the dusty
remnants of a tidally shredded moon. Indeed, Saturn does have a number of moons,
all of which are farther away than its famous rings. And, indeed, it turns out that
(making some reasonable estimates for the density of the moons) the current moons
are outside the Roche limit, while the rings are inside. So it is entirely possible that
the rings formed, at some point in the past, when tidal (or other) interactions pulled a
previously-coherent moon inside the critical radius. Another possibility is that the rings
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Figure 5.15: A picture of Saturn and its beautiful rings. Several of Saturn’s moons are
also present, though it is hard to tell that they are all more distant from the planet than
the rings. This photo was taken in 2007 by the Cassini spacecraft. What aspect of the
picture proves immediately that it wasn’t taken from Earth?

are a well-preserved remnant of a primordial swirl of dust that clumped up billions of
years ago to form Saturn and its moons. Under this hypothesis, the rings are not the
debris of an ex-moon, but rather the ingredients that would have formed a moon had
they not found themselves at a distance from the central planet for which the tidal forces
prevented the usual moon-formation process of gravitational clumping.

The “tidal cataclysms” we’ve been discussing here can in principle occur not only
for moons which get too close to their planets, but also for planets which get too close
to their stars, or even stars in binary systems which get too close to their partners. We
will explore this a bit in the Projects. But at least for the case of the moons in the
solar system, although the effect is interesting to understand and contemplate, it is a bit
moot. For another type of cataclysm will eventually befall many of these systems.

At some point, several billion years in the future, the Sun will start to exhaust the
Hydrogen that fuels the internal Hydrogen-to-Helium fusion reactions which power it.
As this happens, Helium — the inert by-product of this fusion reaction — will tend to
pile up in the core. The inert core will cool somewhat and contract, allowing the still-
Hydrogen-rich material above to fall in somewhat, a process which heats the Sun’s outer
layers. This, in turn, will dramatically increase the rate at which Hydrogen-to-Helium
fusion is occuring there, heating the outer layers even further. All this newly generated
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heat will cause the outer layers of the star to puff up — the net result being that the Sun
will become a so-called “red giant” star.

The radius of the newly-formed red giant will exceed the (current) Sun’s radius by a
factor of about 100 — which means, among other things, that the Sun will then occupy
what used to be the orbits of several of the inner planets, probably including Earth.
(And even if Earth is spared in this process, the dramatic increase in the Sun’s total
luminosity will increase the Earth’s average temperature far beyond the boiling point of
water, making Earth in any case not exactly hospitable.)

Eventually — i.e., after wiping out much of the solar system — the Sun will really run
out of Hydrogen fuel, and settle back down to a smaller size. At this point its “life” is
essentially over. All that will remain is an inert core of mostly Helium, which will simply
sit there and slowly cool off over the subsequent billions of years.

A more dramatic death awaits stars which are significantly more massive than the
Sun. For the Sun, the Helium by-product of the primary Hydrogen-to-Helium fusion
process is inert — it doesn’t participate in any further nuclear processes. But for stars
which are ten to a hundred times heavier than the Sun, the temperature and pressure in
the star’s core greatly exceed those in the core of the Sun. And, it turns out, under such
conditions further energy-producing nuclear reactions are possible. For example, three
Heliums can fuse together to form Carbon in the so-called triple-alpha process. (The
name is because Helium nuclei, which fuse in this process, are also known as “alpha
particles.”) And likewise, Carbon can fuse with Helium to form Oxygen — which can
in turn fuse with another Helium to form Neon — and so on, to heavier and heavier
elements.

It is now understood that virtually all of the elements heavier than Helium were
created, in stars, in precisely this process. So, for example, the trace amounts of Car-
bon, Nitrogen, and Oxygen in our Sun (which incidentally act as catalysts in a special
Hydrogen-to-Helium fusion reaction called the CNO cycle) signify that the Sun is not
a first-generation star, but was rather formed from the remnants of an earlier cycle of
stellar evolution. And of course it also means that we — who are made of lots of Car-
bon and Oxygen and Nitrogen — are, in the memorable phrase of Carl Sagan, “starstuff
pondering the stars.”

Anyway, there is a definite end to this process of fusion reactions leading to heavier
and heavier elements in massive stars: Iron. It turns out that fusion reactions from Iron
to anything heavier than Iron are endothermic — you don’t get energy out, but rather
have to put it in. That’s why nuclear reactors here on Earth — which proceed by fission,
or the breaking apart of nuclei into smaller components — always begin with elements
(such as Uranium) which are heavier than Iron. In terms of nuclear energy, Iron is the
bottom of the barrel. You can get energy out by fusing smaller nuclei together or by
breaking larger nuclei apart, but once you have Iron you are truly stuck.

So what we said above about Helium in the case of the Sun, applies in a more
fundamental, non-negotiable kind of way to Iron for stars massive enough to produce
it. That is, the Iron eventually produced by such stars forms a truly inert core, which
just grows and grows as the fusion of still-remaining lighter elements continue above it.
Since the core is inert, however, it doesn’t produce any heat and hence doesn’t contribute



5.5. CATACLYSMS 187

much to the ability of the star to hold itself up against its own tremendous weight — i.e.,
against the inherent gravitational attraction of all its parts.

Eventually, the ultimate cataclysm occurs. The inert Iron core is simply unable to
support the weight of the material above, and gives way: the entire star implodes, along
the way crushing the electrons from the Iron atoms in its core right into their nuclei,
where they are literally forced to react with protons. The result is that the core is
converted into a uniform and immensely hot soup of neutrons. And now things get really
interesting. Eventually, after shrinking in linear size by about 5 orders of magnitude —
i.e., after being crushed to something like 107! times its original volume — the core
finally again becomes very stiff, very difficult to compress further. All those neutrons,
by virtue of a phenomenon that can only be understood using quantum mechanics, really
don’t like to get too close together. Over-simplifying only a little, the result is a very big
“bounce”: the ten or more solar masses worth of material that is racing in toward the
collapsing core at tremendous speed suddenly encounter something akin to a brick wall.
So all that material bounces off the suddenly solid ball of neutrons that used to be the
core, and flies now outward at tremendous speed.

The implosion has been converted into an explosion. This process is called a core-
collapse supernova. Most of the material of the star is blown out into surrounding space,
often leaving behind an observable remnant called a planetary nebula such as that shown
in Figure 5.16.

Also left behind by the supernova explosion is the solid ball of neutrons that used to
be the star’s inert Iron core. Such an object is called a “neutron star.” We’ve already
mentioned that, in the collapse, the volume of the core gets compressed by some 15 orders
of magnitude. This is, not surprisingly, about the same as the ratio between the volume
of a normal atom and the volume occupied by the atom’s nucleus. Thus, a neutron star
has roughly the same total mass as the Sun, but an incredibly large density comparable
to that (or actually several times bigger than that) of atomic nuclei. A single teaspoon of
neutron star material would weigh as much as a billion cars! Perhaps more dramatically,
this means that the neutron star has a radius of only about 10 kilometers. A neutron
star thus has as much matter as the Sun, compressed into a ball no larger than a small
town!

Neutron stars don’t shine in the visible part of the spectrum the way normal stars
do, but they can be detected and observed by astronomers nevertheless. The first ob-
servation of (what was only later identified as) a neutron star occured in 1967 when two
radio astronomers, Jocelyn Bell and Antony Hewish noticed a curious and extremely
regular pulsation in the radio signal coming from a certain direction in the sky. They
initially thought the signal must be some kind of noise in the apparatus, or of some other
terrestrial origin, because the precisely-regular beep-beep-beeping seemed too strange to
admit a heavenly origin. But that conclusion eventually became inescapable, and the
mysterious astronomical source was dubbed a “pulsar.”

The discoverers briefly considered the possibility that the beeping was being emitted
by extra-terrestrials! But cooler heads prevailed, and in time the consensus developed
that pulsars were rotating neutron stars, emitting a burst of radio-wave radiation toward
us each time a certain part of their magnetized bodies passed by.
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Figure 5.16: The Crab nebula. The supernova which produced it was visible to the
naked eye from Earth and was actually observed and recorded by Chinese astronomers
in 1054. Buried in the rubble is a rotating neutron star — the Crab pulsar — which was
first identified by radio astronomers (but not yet understood to be a rotating neutron
star) in 1968.

Many hundreds of pulsars were subsequently discovered, most with rotational periods
of around one second. Note that this is one of the key pieces of evidence in favor of
interpreting puslars as rotating neutron stars: if an ordinary Sun-like star were rotating
with a period of one second, the result would be not just a small Equatorial bulge, but
complete centrifugal annilihation (like the batter on the electric mixer pulled too soon
out of the bowl).

Actually, even some neutron stars are fairly close to this limit. The Crab pulsar —
the rotating neutron star in the Crab nebula shown in Figure 5.16 — has a period of only
0.033 seconds. And other pulsars have been discovered whose periods are as short as a
few milliseconds. But no pulsars have been observed with periods less than a millisecond.
This is additional evidence for the rotating neutron star model of pulsars. Following the
calculation above of the critical distance for tidal disintegration, we may estimate the
critical period for centrifugal disintegration as follows.

Assuming a roughly spherical body of mass M and radius R, the gravitational field
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at the surface has magnitude
GM

R2
while the centripetal acceleration of a point on the Equator (i.e., the centrifugal contri-

bution to the effective gravitational field there, if we use a co-rotating reference frame)
is

g= (5.83)

412 R

T2
If these are equal, it means the disintegrative centrifugal force (on, say, some random
neutron near the Equator) is comparable to the gravitational force keeping it together
with the rest of the star. We may thus set them equal and solve for the critical rotation

period
3
ot = 271 f—M. (5.85)

If the rotation period is shorter than this (i.e., if the rotation is faster), the body will be
torn apart by centrifugal forces.

What is the critical rotation period for a neutron star? Plugging in the rough numbers
M ~ Mg, and R =~ 10 km gives

ge =w’R = (5.84)

TNS ~ 0.5ms. (5.86)
So, on the premise that pulsars are rotating neutron stars, we can understand why no
sub-millisecond pulsars have been observed.

The intriguing question of how a neutron star could get to be rotating up to a
thousand times per second will be left for the Projects.

5.6 New Discoveries

Not only can gravitation be used to indirectly measure masses of previously known
objects like moons and stars — it can also be used to discover entirely new objects!
A contemporary terrestrial example of this was noted earlier in the chapter: sensitive
modern instruments can measure the gravitational field § near the surface of the Earth
with such great precision, that the tiny local fluctuations produced by, for example,
underground mineral deposits can be detected. Such measurements have thus allowed
scientists to know, beforehand, where to dig or drill to tap into valuable natural resources.
This is a remarkable and beautiful example of the long-term practical benefits of progress
in basic science.

5.6.1 New Planets

A less immediately practical but even more dramatic example of using gravitation to
make new discoveries occurred in the 19th century. Recall that, according to the Ancient
Greeks, there were (in addition to the Sun and Moon) five planets: Mercury, Venus, Mars,
Jupiter, and Saturn. Of course, with the Copernican revolution, it was realized that the
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Farth too was a planet, bringing the number to six. In the last section we noted the 20th
Century discovery of the ninth planet (or, at any rate, what was formerly considered the
ninth planet), Pluto. But when and how were the seventh and eighth planets — Uranus
and Neptune — discovered?

Uranus was first recognized as something other than an ordinary star by the great
English astronomer William Herschel in 1781. He stumbled on it essentially at random, in
the course of his ongoing systematic surveys of the heavens. Herschel originally suspected
that the newly discovered object was a previously unobserved comet, but subsequent
observations revealed a more-or-less circular orbit around the Sun with a period of about
84 years. This object, subsequently named Uranus, was therefore a new planet. Its
orbital radius was about 19 AU, or roughly twice that of Saturn, which previously marked
the outer fringe of the known solar system.

Over the subsequent decades, though, the increasingly detailed observations of Uranus’
actual motion increasingly failed to match up with theoretical expectations. This is not
to say, for example, that Uranus orbited the Sun in a square rather than an ellipse, in
gross violation of Kepler’s laws. Actually, by this time it was known that all of the plan-
ets violated Kepler’s laws to some small extent, because their orbits are influenced not
only by the gravitational force of the Sun, but also by small gravitational forces exerted
by the other planets. The point here is that the observed motion of Uranus seemed
anomalous even when these tiny inter-planetary perturbations were taken into account.

Two quite reasonable hypotheses arose to explain the discrepancy. One possibility
was that Newton’s theory of gravitation simply didn’t apply for an object at such a
tremendous distance from the Sun. After all, Kepler’s laws — taken here as summaries of
the motion of the planets known about by Kepler — were the central pieces of evidence
for Newton’s theory, and that evidence pertained only to objects whose separation was
at most the distance between Saturn and the Sun. There simply was no direct empirical
data to support the extrapolation of Newton’s inverse square law to longer distance
scales. And clearly, by some appropriate modification to Newton’s formula (i.e., by
inventing the right fudge factor) the anomalous behavior of Uranus could be accounted
for.

The alternative hypothesis was the existence of another previously-unknown object,
whose gravitational influence on Uranus could in principle account for the small anoma-
lies in its observed motion. This idea remained just another speculative gesture toward
an appropriate fudge factor until two scientists, John Adams from England and Urban
Leverrier from France, undertook to calculate the precise position and orbit of the hy-
pothesized object. Adams and Leverrier worked independently and didn’t know of each
other’s work, and the successful outcome led to a great international controversy. Adams
probably finished the relevant calculations first, but his request to astronomers at the
English Royal Observatory went unheeded for some time, since Adams was “merely” an
unknown mathematician.

Leverrier, on the other hand, sent his predictions to a colleague at an observatory
in Berlin. The eighth planet, Neptune, was discovered right away, in 1846, in just the
region of sky that Leverrier (and Adams) had predicted. Neptune had an orbital radius
of about 30 AU, and an orbital period of 165 years.
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Figure 5.17: Schematic description of the calculations made by Adams and Leverrier.
The acceleration of Uranus is produced by the joint effect of the gravitational forces
exerted by the other bodies in the solar system. The forces exerted by the Sun, Jupiter,
and Saturn are indicated by the three solid arrows, at two different times. Since the
actual acceleration can be inferred from observation, the “anomalous forces” — the dotted-
arrows in the Figure — can be computed. These are the gravitational forces exerted by the
hypothetical new object, which of course turns out to be the new planet Neptune. Note
that if the new planet were stationary, its position could be calculated by “triangulation.”
But since it, too, is expected to be in orbit around the Sun, the calculation is a little
more subtle. If its own orbital radius were known, Kepler’s third law would tell us the
rate of its motion around the Sun, and its motion could be explicitly corrected for in the
triangulation. In fact, both Adams and Leverrier made what turns out to have been a
rather bogus assumption about the orbital radius of the hypothetical new object, based
on a curious (one might say numerological) regularity in the orbital radii of the then-
known planets called Bode’s Law. As it turns out, their assumption about the orbital
radius of Neptune was off by about 20%. It was a matter of sheer dumb luck that this
bogus assumption didn’t significantly affect Adams’ and Leverrier’s predictions!
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Figure 5.17 gives a somewhat schematic indication of the kinds of calculations Adams
and Leverrier made to predict the existence of Neptune, whose successful discovery was
regarded as a major triumph for Newton’s theory of gravitation. Omne scientist later
described it this way:

“The explanation by Newton of the observed facts of the motions of the
moon, the way he accounted for precession and nutation and for the tides,
the way in which Laplace [using Newton’s theory] explained every detail of
the planetary motions — these achievements may seem to the professional
astronomer equally, if not more, striking and wonderful.... But to predict in
the solitude of the study, with no weapons other than pen, ink, and paper,
an unknown and enormously distant world, to calculate its orbit when as
yet it had never been seen, and to be able to say to a practical astronomer,
‘Point your telescope in such a direction at such a time, and you will see
a new planet hitherto unknown to man’ — this must always appeal to the
imagination with dramatic intensity.”

Actually, the same story more or less repeated itself, in a slightly less dramatic way, with
the discovery of Pluto. In the decades after Neptune’s discovery, its orbit was observed to
deviate slightly from theoretical predictions, just as had that of Uranus decades earlier.
This time, however, the deviations were much smaller. And so, although people this time
guessed right away that the deviations were probably caused by yet another previously
unknown planet, it was much harder to get a reliable estimate of that undiscovered
planet’s location. Pluto was finally discovered in 1930 as a result of these calculations,
but this was after several decades of failed searches. And the specific calculations which
led directly to Pluto’s discovery were subsequently shown to be erroneous (in a more
significant way than were those of Adams and Leverrier). Persistance and dumb luck
thus played a great enough role in Pluto’s discovery that it usually isn’t considered any
great triumph of Newton’s theory of gravity. Nevertheless, it was ultimately Newton’s
theory which made that discovery possible, if only in an indirect sense.

We now understand better why the search for Pluto was so fraught with difficulty.
Pluto is significantly less massive than any of the other planets — the next smallest, Mer-
cury, is 20 times heavier! Thus, Pluto’s gravitational perturbation on Neptune is very
small. Moreover, Pluto turns out to be just one of a larger group of small, planet-ish
objects occupying the outer fringes of the Solar System and marginally perturbing the
orbit of (especially) Neptune. As Pluto was the first of these so-called trans-Neptunian
objects (TNOs) to be discovered, it was naturally treated initially as another planet.
But as more and more TNOs were discovered in the 1990s and 2000s, it became increas-
ingly clear that Pluto had more in common (including its size, composition, and orbital
character) with these other objects than it did with the eight planets. Pluto turns out
not to even be the biggest of the TNOs. So you can see why Pluto was recently demoted
from full planetary status — i.e., using a neologism inspired by this controversial episode,
why Pluto was “plutoed.”
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5.6.2 Exo-planets

In the 1990s, the discovery of new planets extended beyond our own solar system for
the first time. Of course, once it was understood that the stars were more or less like
the Sun, only farther away, it became natural to speculate that other stars, like the Sun,
would be centers of planetary systems. Newton even mentions this possibility in the
Principia. But the first genuine empirical discovery of a planet orbiting a Sun-like star
was made only very recently, in the 1990s. The star in question is 51 Pegasi, and its
planet — 51 Pegasi b — was detected indirectly, via its gravitational influence on the star.

The physics here is very similar to that presented already in the discussion of binary
systems such as Pluto and Charon or binary stars. The idea is that, strictly speaking, the
planet doesn’t orbit a central, fixed, star. Rather, the star and planet both orbit around
their mutual center of mass. Since only the star is directly observable (at least with
current technology, and even this is starting to have exceptions), the planet manifests
itself in the tiny back-and-forth periodic wiggle of the position of the star. Observations
of the amplitude and period of this wiggle then allow some inferences about the properties
of (or, less specifically but more profoundly, the ezxistence of) the planet.

Actually, just as with the mass determinations of binary stars, it is more common
(i.e., currently possible/easier!) to observe not the back-and-forth wiggle in space, but,
instead, the back-and-forth fluctuations in frequency from which the periodic oscillations
in the radial velocity can be inferred. Then the same formalism we developed before —
Equations 5.75 and 5.76 — can be used to infer the mass and orbital radius of the invisible
planet.

This is precisely the method that astronomers used to discover 51 Pegasi b. A graph
of the radial velocity of the parent star, 51 Pegasi, as a function of time is shown in
Figure 5.18, and shown again as a function of the phase of the inferred periodic cycle,
in Figure 5.19. The star moves in and out relative to us with a period T' = 4.23 days
and an amplitude of about 56 m/s. Unfortunately, the planet does not appear to pass
in front of the star during its orbit, so the inclination ¢ of its orbit remains unknown.
Nevertheless, it is possible to put a lower limit on the planet’s mass. This turns out to
be

mo > 45 Mjup (587)

where M, is the mass of (our own) Jupiter. It is also possible to infer from the data
that 51 Pegasi b has an orbital radius of Ry = .05 AU. So the planet is (probably)
roughly as big as Jupiter, but — compared to the real Jupiter — very close to its parent
star. It, and the many other extra-solar planets like it which have been subsequently
discovered, are therefore sometimes called “hot Jupiters.”

You should probably be wondering: how exactly did the scientists determine the
mass of this extra-solar planet? In our discussion of measuring masses in binary systems
(such as the Pluto-Charon system or a double star system), we found that one must
determine empirically not only the period of the orbit(s), but also the radii or maximum
radial velocities of each of the two bodies, in order to determine either of the masses.
Recall, for example, Equations 5.75 and 5.76. But the extra-solar planet discussed here
remained invisible: so while the period and v"* of the star’s wobble could be observed,
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Figure 5.18: Data for the radial velocity (inferred from Doppler effect observations) of
the star 51 Pegasi over the course of about a year. The wiggly line is a sinusoidal fit to
the data, which maybe looks a little suspicious given the seemingly random character of
the data. The residuals for the fit, however, are shown below and indicate that the fit
is quite good. (Observations of nearby, non-wiggling stars indicate that there is about
a 5 m/s uncertainty on any of the velocity measurements — so the residuals are just the
size one would expect given the inherent accuracy of the data.) Note also how the data
were taken over the course of the year: lots and lots of observations over a month or two
to get an accurate guess of the periodicity, and then just a few measurements, almost
randomly spaced over the subsequent months, to test whether the guessed periodicity
continues to fit the data over a longer timescale. As the points to the right in the plot of
the residuals shows, it does. This provides much more confidence that the fit is correct,
than would (say) the same total number of data points crammed into just a month of
observation, or the same number of data points uniformly spaced over an entire year.
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Figure 5.19: The same data as the previous figure, but plotted as a function of the phase
of the inferred 4.231 day cycle. This makes the sinusoidal character of the in-and-out
motion of the star particularly clear.

the v™?* for the actual planet could not be. One of the three crucial pieces of evidence
seems to be missing!

Here is the resolution to this puzzle: we can make an educated guess about the mass
of the star by measuring its luminosity and then using the mass-luminosity relation
discussed above and shown in Figure 5.14. This, of course, requires an assumption that
the star in question is relevantly like the stars whose masses and luminosities were shown
to be so correlated. But there is abundant evidence for this hidden away in the light
emitted by the stars — in particular, in their spectra, i.e., in the distribution of their
emitted light across the frequency spectrum.

Most of the subsequently discovered extra-solar planets were discovered by more or
less the same method. And so that’s, in a nutshell, how scientists in recent decades have
established that, as had long been suspected, there do exist planets orbiting stars other
than our own (the Sun) — and how they measure the mass and orbit of the planets to
boot. At this writing, hundreds of extra-solar planets have been positively detected, and
the rate of their discovery is continuing to accelerate.
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5.6.3 Dark Matter

Let us close with one more example of a recent discovery made using Newton’s theory
of gravitation: the discovery of so-called “dark matter.” This follows roughly the same
pattern discussed above under the heading of measuring masses. Moons orbit planets and
planets orbit stars, and the orbital character of the orbiting body (in particular its period
and radius) can be used to infer the mass of the central gravitating body. Similarly, it
turns out that stars arrange themselves in enormous clusters called galaxies, with the
individual stars all (more or less, on average) orbiting around the galactic center.

A particularly beautiful type of galaxy — see for example Figure 5.20 — has most of
the stars clumped up into a spiralling disc.

Using the same Doppler-effect-related spectroscopic techniques described before, as-
tronomers can measure the speed with which individual stars (or groups of them) orbit
around the center of their galaxies. For a star on the outer fringes of its galaxy, the orbital
speed should be given approximately by the familiar Newtonian calculation which sets
the centripetal gravitational force (produced collectively by all the stars in the galaxy)
equal to the mass m of the star in question times its centripetal acceleration, a, = v?/R.

Thus we expect

2
c:g_;n - m% (5.88)
where M is the total mass of the galaxy and R is the galactic radius of the star in
question. This reduces to
GM

v=1 " (5.89)

Of course, we’ve assumed here that the rest of the galaxy can be treated as if it were
a single point of mass M located at the galactic center. For a star anywhere near the
middle of the galaxy, this is a terrible approximation — for such a star, “the rest of the
galaxy” will be pulling it in several directions at once and from several different distances.
But for stars out on the outer fringes of the galaxy, “the rest of the galaxy” s all pulling
it in the same direction. Of course, the mass is distributed in something like a disc
shape (not a perfect sphere) so we might worry that there are corrections to the simple
point mass formula like those we dealt with in discussing the Earth’s Equatorial bulge.
And, indeed, such corrections should exist. Nevertheless, they will be increasingly small
corrections for stars that are truly on the fringes, very far from the galactic center.

All of this is just meant to underscore that, although Equation 5.89 is derived with
the crudest possible approximations, we have good reason to think it should apply to
stars on the outer fringes of galaxies. Yet, when the orbital velocities of such stars are
actually measured, they do not appear to vary with R in the way that Equation 5.89
suggests they should — i.e., decrease with R as 1/v/R. Instead, what is observed is that
the orbital velocities of stars on the outer fringes of galaxies tend to be quite constant —
independent of R. See Figure 5.21.

What does this mean? Obviously it means that one of the assumptions we’ve made
in generating the wrong expectation, is itself wrong. One possibility (again, just like
in the discussion of Neptune’s discovery) is that Newton’s formula for the gravitational
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Figure 5.20: The galaxy M51, also known as the Whirlpool Galaxy. It is located about
30 million light years away, and has a radius of (roughly, since there’s no well-defined
edge) about 30 thousand light years or about 9 kiloparsecs. (Recall that a parsec is the
distance a star would have to be from the Sun in order to exhibit a parallax of one second
of arc, i.e., 1/3600 of a degree. The closest stars to the Sun are about a parsec away,
which is about 200,000 AU. It’s nice to have a sense of the relative order of magnitude
of these things. To summarize: the nearest stars are hundreds of thousands of times (5
orders of magnitude) farther away from us than the Sun. And the galaxy — ours turns
out to be roughly the same size as the Whirlpool — is another 10,000 times (four orders of
magnitude) bigger than that. The galaxy, then is some 9 orders of magnitude — a billion
times — bigger than the Earth’s orbit around the Sun. The distance between Galaxies
is then another factor of a thousand — three more orders of magnitude — bigger than
that. And it turns out galaxies themselves form clusters, with relative gaps between
them. And believe it or not, even the galaxy clusters form clusters — “superclusters”
they’re called. So there is important and interesting structure in the universe across an
incredibly broad spectrum of length scales. And we haven’t yet even begun to discuss
the small end of the spectrum!



198 CHAPTER 5. ASTROPHYSICAL APPLICATIONS

200 LI S S B B S S B B I B B A '“m_|||||||1|||1l1|1|1||||||
I NGC 2403 ) - NGC 2841 ]
i 300 |~ 1
-'u . T“ o :
E - é 200 ]
o 1 & ]
i 100 -
o _r-..;._lf_l.l.l__l_hll_k 11 l 1 l- Ll | L L1 ]
1 20 a0 a 10 20 30 40 S0
Radius (kpe) Radius (kpe)
300 — =T LI N N N R 200 7 LA B B B B |
- NGC 2903 1 I NGC 3198
~ 200 - -4 o~ i
Tm L P! ~ N T 4
E ol 18 i
L] - — _:: .
" 100 - - J
e | |
o
/'/ s i —— 7 4
o t-l',/’| |.m_!l“""|, L 1 L ] | L L 1 ' o ] 1 -1”I 1 I 181 1 l L1 1.1 1 Ll Ll
a 10 20 30 o 10 20 30 40
Radius (kpe) Radius (kpe)
200 T T T T T T T T ‘mﬂ_—:—rr1[1r1r‘|r||||||n|||||_
I NGC 6503 | L NGC 7331 ]
i 300 — -
c‘i n __.hEi -
i 1 4 ]
o '_’_.I.-—""I' PR S S R TR S S T S 0 Li%) n/|/|’1 APETS NEITE INA T are
1] 10 20 20 4] 10 20 a0 40 a0
Radius (kpe) Radius (kpe)

Figure 5.21: Observed rotation curves for six “typical” galaxies. Dots are data points for
the rotational velocity (as measured via the Doppler effect). The three curves below are
the components of a three-parameter fit to the rotation curve data: “the dashed curves
are for the visible components, the dotted curves for the gas, and the dash-dot curves
for the dark [matter| halo. The fitting parameters are the mass-to-light ratio of the disc
(M/L), the halo core radius (7.), and the halo asymptotic circular velocity (V;,).” Image
and parts of caption from “Extended rotation curves of spiral galaxies — Dark haloes
and modified dynamics” by K. G. Begeman, A. H. Broeils, and R.H. Sanders, Royal
Astronomical Society, Monthly Notices, vol. 249, April 1 1991, pages 523-537.
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force simply doesn’t apply at these (now really) large distance scales. This is considered
a going hypothesis in current research — the idea generally goes by the name Modified
Newtonian Dynamics, or MOND for short.

But by far the more popular interpretation of the surprising data is the hypothesis of
so-called “dark matter.” The idea is that, although the stars we have been talking about
appear to be on the fringes of the galaxy, in the sense that virtually all of the observable
matter (i.e., the other stars) are much nearer the galaxy’s center, in fact those stars are
not near the galaxy’s “edge” because the galaxy consists not just of the visible stars but
also of some mysterious non-visible (“dark”) matter which, nevertheless, gravitates.

Another way to put the problem and the (hypothesized) solution is this: if you just
calculate, using Equation 5.89 and the actual velocities and radii for some stars near
the (apparent) fringes of a galaxy, the mass M of the galaxy — that calculated mass
is substantially bigger than the mass you would have guessed by counting up all the
stars in the galaxy and multiplying by the average mass of a star. So there must exist,
in addition to the stars (which both gravitate and produce light), some “dark matter”
(which gravitates but does not produce light).

Note that the dark matter is no mere marginal correction. Current estimates (based
not only on the velocities of stars in galaxies, but several other methods as well) suggest
that there is something like five or ten times more mass in dark matter than in ordinary
“light matter” (mostly stars).

All of this obviously raises the question: what s this dark matter? No answer can
be given, because it is simply not yet known. Some have speculated that the dark
matter is ordinary matter that does not produce light — e.g., billions of Jupiter-sized
“planets” roaming around the universe. This is an intriguing possibility if only because
it doesn’t require the postulation of any wholly new type of matter. It is, however, very
difficult to understand where all these Jupiters would have come from. (Suffice it to say
that otherwise strongly-confirmed theories of the evolution of stars and planets do not
suggest that such Jupiters could be produced in the needed numbers and with the needed
spatial distribution.) Other proposed dark matter candidates include exotic new sub-
atomic particles (beyond the electrons and quarks of which ordinary matter is made).
Such models are, in a way, more consistent with the overall astronomical evidence. But
they suffer from the fact that none of the candidate particles have ever been observed in
particle physics experiments.

The identity of dark matter thus remains a profound mystery.

And while it may perhaps feel a bit anti-climactic, that is a fitting way to close our
survey of the astrophysical applications and implications of Newton’s theory of gravita-
tion. As we have seen, Newton’s theory forms the crucial support for virtually everything
we have discovered about our world and our universe. But it also continues to provide
the basic context for the questions and puzzles at the current frontier of our knowledge.
Surely there could be no stronger testament to the theory, especially considering that
we are now well into the fourth century after its publication!
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Questions for Thought and Discussion:

1.

Suppose a piece of pizza dough were thrown up, spinning, repeatedly. (Or equiva-
lently: suppose it were set spinning in outer space.) Would it keep getting flatter
and flatter indefinitely? Or would it, like the Earth, reach some kind of equilib-
rium beyond which further flattening would increase the total energy? What’s the
relevant difference, if any, between the pizza dough and the Earth?

. Everyone knows that the highest point on Earth is the top of Mt. Everest (on the

border between Nepal and Tibet). But actually, this depends on what you mean by
“highest.” The point on Earth whose distance from the Farth’s center is greatest,
is the top of Mt. Chimborazo in Ecuador. What is going on here? How can the
highest point (by the usual meaning of “highest”) not be furthest from the center?
What exactly is the “usual meaning” of “highest”?

. Because of the bulging of the earth near the equator, the source of the Mississippi

River, although high above sea level, is nearer to the center of the Earth than is
its mouth. How can the river flow ‘uphill’?

. If you turn your car to the right, you experience being pulled to the left, e.g.,

pushed up against the left side of the interior of the car. Is there really a force
pushing you left?

. Suppose the Earth were perfectly spherical. Would your weight change as a result

of moving North or South, i.e., changing your latitude? Would the reading of your
bathroom scale change? Explain. What does a bathroom scale actually measure?

. Near the equator, during what part (or parts) of the year are high tides highest

and low tides lowest? How about near the poles? How about in middle latitudes?

. The caption to Figure 5.7 perhaps gave the impression that — wherever there are

two low tides per day — the two low tides should be equally low. As you may
have noticed on ocean visits, this is not true. The two low tides each day are
not necessarily equally low. The question is: can this be understood from the
“equilibrium” model of tides that most of the text’s discussion (and Figure 5.7 in
particular) is based on? Or must we resort to the complicated sloshing of tidal
waves to understand this? To make the assignment a little more concrete: can you
come up with a scenario (i.e., a relative arrangement of the Earth, Moon, and Sun)
in which (say) observers at middle latitudes will experience two low tides that are
not equally low?

. Would you expect the amplitude of tides to be higher in Hawaii, or in Florida (at

about the same latitude)? Why?

. How, if at all, would the tides be different if, instead of orbiting one another,

the Earth was rigidly stapled to the cosmic graph paper, with the Moon orbiting
around it?
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10.

11.

12.

13.

14.

When we calculated the height h of the (rotation-produced) Equatorial bulge,
our formula was too small by roughly a factor of two because we ignored the
gravitational effect of the Equatorial bulge itself. (Thinking in terms of g ;s near
the surface of the Earth, the point is that the Equatorial bulge makes the true
gravitational acceleration g itself have a “true horizontal” component. Or, thinking
in terms of the energy argument, the point is that a mass of material would actually
be moving gravitationally “downhill” in going from the pole to the Equator, i.e.,
APEA~B is not zero, but negative and about half as big as APEB~C = mgh.)
Was there a parallel error in our calculation of the height h of the tides? That is,
is the true equilibrium tide height h (the altitude difference between the high and
low tide points) produced by the Moon about twice what we said? About a meter,
rather than 54 cm?

The text discussed how, in millions of years, the Earth and Moon will become
“tidally locked” in a face-to-face dance in which the same face of the rotating
Earth is always pointing toward the Moon. It was mentioned in passing that the
Moon already orbits in such a way that it presents the same constant face to the
Earth. Why do you think it does this? Is this just a coincidence? (You better
not say yes — it is extremely common for moons orbiting other planets in the solar
system to orbit this way!) If your answer has something to do with tides, does this
square with the fact that the Moon is dry (no oceans)?

Following up on the previous question, can you explain why it is so common for
moons in the solar system to have very circular (as opposed to highly elliptical)
orbits?

The text encouraged you to think about the gradual increase in the orbital radius
of the Moon in terms of the Work-Energy theorem. But what was said there
was actually a little sketchy. It’s true that the net gravitational force exerted
by the Earth on the Moon has (because of especially the near-side tidal bulge)
a small “easterly” component. We hinted (too quickly) above that this was a
component of the net force that was parallel to the direction of motion. Hence,
by the Work-Energy theorem, we said, positive work is being done on the Moon
and so its total energy should increase — which we then interpreted as meaning
that its orbital radius should increase. But that’s not what the Work-Energy
theorem says! The theorem says that the net work done on an object should
equal the change in its kinetic energy. But when the orbital radius of an orbiting
body (in a roughly-circular orbit) increases, its kinetic energy does down, not up!
(You should prove this to yourself.) Does this mean the Work-Energy Theorem is
actually contradicted by the behavior of the Earth-Moon system? How can you
resolve this paradox?

Consider the distant future in which the Earth-Moon system has become tidally
locked. Now step back and think about the system comprising the Sun and the
Earth-Moon. What should happen in the even more distant future?
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15.

16.

17.

18.

19.

20.

21.
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Do you think Pluto should be classified as a planet? Why or why not? What, if
anything, hinges on this question? Is it a pointless discussion?

Our discussion of determining the masses of the stars in binary star systems as-
sumed that the stars’ orbits were circular. Is this necessary? Is there any reason
that highly-elliptical orbits for stars in binary star systems should be rare?

We all live well inside the Earth’s Roche limit. How come we aren’t ripped apart
by tidal forces?

Think about the calculations that Adams and Leverrier made to predict the loca-
tion of Neptune, as sketched in Figure 5.17. Can you understand why they needed
to make some assumption about Neptune’s oribtal radius? Strictly speaking, given
Kepler’s thrid law, wouldn’t only one orbital radius be consistent with the two
“anomalous forces” shown in the Figure? So why was this assumption necessary?
Think about what other factors were glossed over in the text, including the pre-
cision with which these anomalous forces could be calculated. Also, roughly what
period of time must elapse between the two times when Uranus’ position (and the
forces acting on it) are shown in that figure?

The extra-solar planet discussed in detail in the text, 51 Pegasi b, was described as
a “hot Jupiter.” Though not all of the other currently known extra-solar planets
are hot Jupiters, most of them are. Do you think this means that most planets
outside our own solar system are hot Jupiters? Why or why not?

The text explained how, by measuring the masses of stars in binary systems close
enough to the earth that their intrinsic luminosities can also be calculated, the em-
pirical Mass-Luminosity relation (plotted in Figure 5.14) was worked out. Explain
qualitatively how, once this Mass-Luminosity relationship is known, one could use
it to determine the distance to another binary system which, say, is sufficiently far
away that its distance cannot be determined by parallax.

An ordinary star is in a close binary orbit with a neutron star. Suppose now that
the ordinary star becomes a red giant, such that its outer surface gets inside the
neutron star companion’s Roche lobe. What will start happening, and what do
you think will happen to the neutron star eventually?

Projects:

5.1 In the text, we derived Equation 5.13 for the oblateness of a rotating sphere like

the Earth in two different ways. There is a third way, which is probably easier than
the other two (especially once you understand the other two!). It involves using
energy considerations as in the first method, but using a non-inertial co-rotating
frame of reference as in the second method. The crucial point is that the centrifugal
force which appears in the co-rotating frame implies an additional contribution to
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5.2

5.3

the potential energy. Work out an expression for this, and use it to re-derive (yet
again) Equation 5.13.

Let’s try to estimate the quantity APEA™F that plays an important role in the
calculation of how the Earth’s oblateness depends on its rotation rate w. The
simplest model is probably to think of the Earth as a perfect sphere plus a “hula
hoop” near the Equator. The spherical part is, of course, spherically symmetric and
so won’t contribute anything to APEA™5. We need then only try to estimate the
contribution from the “hula hoop.” To begin with, write down some approximate
expressions for the mass and radius of the hula hoop, in terms of the total mass of
the Earth M, its radius R, and the height of the Equatorial bulge h. (The hoop’s
mass should probably be something like the total mass of the Earth times the
fraction of the Earth that is in the Equatorial bulge as opposed to the underlying
spherical core, which fraction will have to be estimated. The hoop’s radius should
probably be Reqrtn Or Regrin/2 or something like that, to take account of the fact
that not all of the Equatorial bulge is right at the Equator, i.e., much of the mass
of the bulge is closer to the spin axis than Req,.) Now use calculus to develop
expressions for the potential energy of a point mass m a distance r from the center
of a hula hoop (radius Rpeep and mass Mpeep) (a) along the symmetry axis and
(b) in the plane of the hoop. (For this problem it will be sufficient to expand
these expressions in powers of Rpop/r and drop terms smaller than R,Qwop/r?’, if
you want.) Now compare the potential energy at the same distance, 7 = Regrth,
along the two different directions — i.e., at the Pole vs. at the Equator. You should
find that the difference in potential energy is

3 GMpoopymR3
APE = —— oop (5.90)
4 Rgarth

which should reduce to something in the neighborhood of
1
APE ~ —§mgh (5.91)

but with probably, some other dimensionless fraction (like 2/3 or 9/32 or some-
thing) out front, depending on exactly what you said when you estimated Mpq0p
and Rpoep. So the point of this calculation is only to show that you can get in the
general ballpark of the result claimed in the text — namely, that APEA™E is in
the neighborhood of —1/2 times APEB~C = mgh, which effectively doubles the
prediction for the Earth’s Equatorial flattening, bringing that prediction very very
close to the actual, empirically measured value.

Here’s another nice model for the not-quite-spherical Earth. This has the advantage
of being simpler than the sphere-plus-hula-hoop model considered previously, but
the disadvantage of failing to possess the same rotational symmetry as the actual
Equatorially bulging Earth. That can cause problems, but is actually OK so long
as we restrict ourselves to discussing features of the Earth’s gravitational field that
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5.4

9.5

5.6

5.7

5.8
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are confined to some cross-sectional plane like that shown in Figure 5.1. Here is
the model: pretend that the Earth is a dumbbell, i.e., two point masses separated
by some distance and both located near (but not quite at) the real Earth’s center.
Suppose that the two masses each have one half of the Earth’s total mass so
that, together, they are (in terms of total mass) equivalent to the actual Earth.
Then: what should their separation be in order to reproduce the empirical fact
reported at the end of section 5.1 — namely, that at equal distances Req¢p from the
center, the gravitational acceleration near the Pole is 0.048 m/s? smaller than the
gravitational acceleration near the Equator? The idea here is to take this empirical
fact as fixing the (otherwise free) separation parameter in the model. We can then
test the accuracy of the model, for example, as follows: what does it predict for
the quantity APFE4_. g that plays some role in the energy-based calculation of the
size h of the Equatorial bulge? (Note: later, in Project 5.8, we will use this same
model to calculate the period of the Earth’s precessional motion!)

Jupiter is an oblate spheroid just like Earth, but with an observationally measured
flattening parameter of f ~ .065. This flattening is so large that Jupiter’s oblate
shape is noticable just looking through a telescope! Given values for Jupiter’s mass
(Mjup = 1.9 x 10%"kg) and radius (Rjy, = 70,000 km), what do you think its spin
angular velocity should be? What is the corresponding period of revolution (i.e.,
the duration of a Jovian day)? This last can be estimated by watching observable
surface features (such as the famous “great red spot”) move across the surface.
Your teacher will tell you the rotational period that comes from such observations
so you can check the accuracy of your prediction. (By the way: do you understand
how Jupiter’s mass and radius can be known?)

The Sun’s mass is My, = 2 x 103%kg and its radius is Rgun = 7 x 10 m. Obser-
vation of Sun Spots progressing slowly and systematically across the visible face
of the Sun suggest that the Sun rotates with a period of about 25 days. What do
you predict should be height of the Sun’s Equatorial bulge and/or its flattening
parameter? Should the Sun’s oblateness be obvious through a telescope the way
Jupiter’s is?

In the discussion of the Earth-Moon tidal interaction, we mentioned that the
Moon’s orbital angular momentum is proportional to the square root of its or-
bital radius. Show that this is right.

Using angular momentum conservation, find the angular velocity at which the
Earth and Moon will both move, long in the future when they are finally tidally-
locked, face to face. How long will the Earth day be then? How long with the
“month” (the period of the Moon’s orbit) be?

Approximate the torque exerted on the Earth by the Moon due to the Earth’s tidal
bulge. Roughly how long will it take for the Earth and Moon to become tidally
locked?
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Use the model developed in Project 5.3 and Equations 5.52-5.53 to calculate the
torque exerted on the (bulging) Earth by the Moon, say during the part of the
monthly cycle when the Earth’s spin axis is tilted maximally toward the Moon —
i.e., the Lunar equivalent of the Summer Solstice. You should be able to get out
an actual honest-to-god number (of Newton-meters or whatever your favorite unit
of torque is). Now think about how this torque varies during the monthly Lunar
cycle. What do you think the average torque is? Now do all of this again for
the torque exerted by the Sun (to whatever extent, that is, doing anything again
is required). Add the two results together to find the total time-average torque
exerted on the Earth. And finally plug the result into Equation 4.99 from Chapter
4 to predict the Earth’s precessional period. (Recall from Chapter 1 that the actual
period is about 26,000 years. You should get something in this ballpark, which
is pretty cool given the crudeness of this model for the Earth. We'll count it as
definitely understanding the cause of the observed rate for the “precession of the
equinoxes.”)

According to a speculative theory going back to George Howard Darwin (son of
the biologist Charles Darwin), our moon might have been formed from material of
the Earth’s crust flung off by the rotating Earth. How fast would the Earth have
had to rotate at that time to make the latter picture plausible?

Here’s a cute little model that will help you understand the tides: consider a little
“barbell” type thing made of two masses m connected by a spring of spring constant
k and rest length L. Suppose this object is orbiting another object (a star or planet
or whatever) of mass M, with an orbital radius R. Consider the various ways it
could orbit (axis-on, side-on, no spin angular momentum, spinning fast, etc.) and
address, for the different types of orbit (or different moments during the orbit as
appropriate): what is the separation between the two masses?

The moon, like the Earth, is not a perfect sphere. Its biggest “radius” exceeds its
smallest “radius” by about 2.2 kilometers. Can you understand this number based
on the physics in this chapter? In particular: is the Moon’s 2.2 kilometer bulginess
a result of rotation or tidal forces or what? What about the fact that the Moon
doesn’t rotate — i.e., that it always presents the same face to the Earth?

In the discussion of the torque exerted by the Moon on the Earth’s tidal bulges
(and its effects) it was mentioned that the length of the day is increasing by 1.6
milli-seconds per century, and that the radius of the Moon’s orbit is increasing by
3.5 ¢cm per year. From each of these numbers, calculate the rate of change of the
associated angular momentum. They should be about the same (with one positive
and one negative), in light of angular momentum conservation for the combined
Earth-Moon system. Are they?

Not long after Pluto’s discovery in 1930, its distance from the Sun was measured
to be about 39.5 AU. (Actually, Pluto’s orbit is highly elliptical, so that’s just an
average. You should be able to explain how this distance could be measured!) As
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seen from Earth, around the time Pluto’s distance from the Earth is 38.5 AU, its
moon Charon appears to oscillate back and forth about Pluto with a period T =
6.39days and with an amplitude of 3.4 x 1076 radians. (This is equivalent to the
angular diameter of Charon’s orbit being 1.4 arc-seconds.) What is Pluto’s mass?
What not-quite-true assumption explains why your answer is slightly different than
the currently accepted value of 1.52 x 10%! kg?

Our derivation of the “Roche limit” for tidal disruption of a moon left something
important out. (Actually it left several important things out, but this is the biggest
and easiest to address.) For any moon which is in danger of approaching the Roche
limit, it is likely that the tidal forces are already strong enough to have gotten the
moon into a tidally locked synchronous rotation in which it always presents the
same face to the planet. This means, as viewed from an inertial frame, that the
moon will be rotating, which means that there will be a “centrifugal” tendency
for the moon to come apart, in addition to the tidal effect noted in the earlier
derivation. It turns out that the centrifugal effect is just about as big as the tidal
effect, so it really should be included. So include it! For definiteness: calculate the
centrifugal component to the effective gravity at the surface of the moon. This is
given by

9ec = W2Rmoon (592)

so your only task here is to find an expression for the rotational angular velocity w
in terms of the mass of (Mpqne) and distance to (r) the planet. Hint: for a tidally
locked synchronous orbit the rotational and orbital angular velocities are the same.
Now that you’ve got that worked out, develop a new-and-improved formula for the
Roche limit.

Using the new and improved formula for the Roche limit that you got from the
previous Project, calculate the Roche limit for Saturn. Of course, if you were to
look up the fact that Saturn’s radius is 6 x 107 meters, you could calculate the
Roche limit in meters. But it is more revealing to just calculate the dimensionless
multiplier by which the critical distance exceeds the planet’s radius. Saturn’s
average mass density is about 0.7 g/cm3. What’s a reasonable value to use for the
mass density of the (perhaps shredded) moon? Is the result more or less consistent
with the picture of Saturn in Figure 5.15 and the hypothesis that the rings exist
as rings because they are inside the Roche limit?

You might think some special mechanism is needed to explain how a neutron star
could come to be rotating up to a thousand times per second. But in fact, the
conservation of angular momentum is sufficient. First, explain qualitatively why
the angular momentum of the progenitor star’s core should be conserved during
the core-collapse supernova which produces the neutron star, and why this collapse
would magnify any small initial angular velocity into a much larger angular velocity.
Write an expression for the core’s moment of inertia in terms of its mass and radius,
and then use conservation of angular momentum to derive an expression for the
final rotation period as a function of the initial rotation period and the initial and
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final radii. What initial rotation period is needed to produce a millisecond pulsar?
Is this reasonable? (Hint: recall Galileo’s sunspot observations from Chapter 2.)

Estimate the amount by which the gravitational binding self-energy of the core
changes when a star undergoes a core-collapse supernova. Work out the actual
number in Joules. Is this an increase or a decrease in its energy? Where do you
think the missing (or extra?) energy comes from (or goes?)?

It turns out that only about a hundredth of a percent (0.0001) of the energy
difference calculated in the previous Project is converted into visible radiation.
(Most of the energy escapes in the form of neutrinos, a type of particle that is
copiously produced as a by-product of the electron + proton — neutron reaction
which occurs during the collapse.) But still, this is a tiny fraction of a huge amount
of energy. Calculate the luminosity of a supernova if this entire energy is given off
over a period of about a month (which is about the period during which a typical
supernova is at its brightest). For comparison, the Sun’s luminosity is about

Lgun =4 x 10 W. (5.93)

The text discusses how a neutron star is formed during — and then left behind by
— a core-collapse supernova explosion. It is possible, however, for the core to turn
not into a neutron star but something else instead: a black hole. As a preliminary
definition, we would say that a black hole is any object for which the escape velocity
from the surface exceeds the speed of light (¢ = 3 x 103m/s). The idea is then
that even light cannot escape from the surface, and so the object will appear black.
It turns out, however, that according to general relativity, one cannot have such a
small, rigid black hole with a well-defined (albeit unobservable) surface. Rather,
such an object would necessarily be unstable and collapse indefinitely, forming
a point or “singularity.” (Actually, this shouldn’t be taken too seriously either,
since at some point such a high density will be reached that even general relativity
doesn’t apply — but then nobody has any way to guess what might happen.) In
any case, although it doesn’t exactly have a “surface,” even a point mass will have
some specific distance away from it — the so-called “Event Horizon” radius — at
which the escape velocity equals the speed of light. The idea is then that light (or
anything else, since it is another principle of relativity theory that nothing can go
faster than light!) which finds itself inside the Event Horizon can never escape.
Find an expression for the Event Horizon radius in terms of the mass of the central
body. How big is it (in kilometers) for the Earth? For the Sun? By what factor
would you have to compress a neutron star (whose mass is the same as the Sun’s
mass and whose radius is 10 km) to convert it into a black hole?

Your teacher will give you some data for the radial velocities of the two stars in an
eclipsing binary star system, over time. Determine the masses of the two stars.

Use the graph and associated data discussed in the text, to work through the
calculation of 51 Pegasi b’s orbital radius and mass. (Hint: this is mostly an
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exercise in appropriately simplifying Equations 5.75 and 5.76 for the special case
that one mass is much greater than the other. If you do that first, it should then be
relatively straightforward to plug in the numbers given in the text for the period
and amplitude of 51 Pegasi’s radial velocity oscillation.

Your teacher will give you a file containing data for the radial velocity of a star at
a number of times over the course of several months. The intrinsic luminosity of
this star is about 10 times the luminosity of the Sun. Try to find a good sinusoidal
fit to the data, and use the results to argue for the existence of (and calculate a
lower limit on the mass of) an associated extra-solar-planet.

Stars on the (apparent) fringes of our own galaxy, the Milky Way, appear to orbit
the center with a speed of about 225 km/sec. For a star whose galactic radius is
17 kiloparsecs (about twice as far from the galactic center as the Sun), what does
this imply about the total mass of the Milky Way galaxy? How does this compare
to the results of statistical studies which show that the Milky Way contains about
50 Billion (10'1) stars comparable to the Sun? Based on the numbers given here,
what fraction of the Milky Way’s total mass is dark matter?



Chapter 6

Numerical Solutions of
Differential Equations

As a final sub-topic under this first half of the course (on astronomy, gravitation, and
astrophysics), we are going to discuss the use of a computer to solve differential equations.
We’ll begin with some general discussion to make clear (a) what a differential equation
is, (b) what it means to solve it numerically using a computer, and (c) how to go about
actually doing this. Then we’ll develop and practice our new skills by taking one final
look at several lingering loose ends from earlier chapters. For example, you'll finally
be able to demonstrate something that we have claimed and used but not yet actually
proved — that the proposed inverse-square-law gravitational force field produced by the
Sun gives rise to elliptical orbits for the planets, with the Sun at one focus. You will
also be able to try out other force laws (e.g., an inverse-cube-law, or whatever else you
want to make up) and see what sorts of planetary trajectories are produced. This fills an
important gap in the logic from Kepler’s laws to Newton’s theory: an inverse-square-law
force is not just a way to account for the Keplerian orbits of the planets; it’s the only way
to account for them. As another example, you’ll also be able to explore the departures
from perfect Keplerian orbits that are produced by the gravitational forces exerted by
the planets on each other.

The structure of this chapter will be slightly different from the previous ones. The
main text here will hardly concern physics at all, but will instead help you get up to
speed on some mathematical and computational ideas that you’ll then use — to explore
some interesting physics — in the Projects.

6.1 Overview of Differential Equations

Let’s begin with some basic background about differential equations as such. What is
a differential equation (DE)? Basically, it’s any equation involving the derivatives of
an unknown function. To solve a differential equation means to find the function whose
derivatives have the properties stated in the DE. This probably sounds more complicated
and unfamiliar than it is — you’ve definitely seen DEs before, even if you didn’t realize
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it.

For example, remember back to the very beginning of your physics course, and the
topic of motion with constant acceleration. One of our early formulations of this was
that the velocity v(t) = dx(t)/dt should change uniformly, i.e., linearly, in time. Mathe-
matically, that means

dx(t

dt

where vy (the “initial velocity”) is the value of dx/dt at t = 0, and a is the rate at

which the velocity, dz/dt, increases. The point is that this is an equation which tells us

something about the derivative of some (unknown) function, z(t) —i.e., it is a differential

equation. It specifies that the derivative of the unknown function z(¢) changes in a certain
way with time.

The solution of this DE (as one can check by explicit differentiation) is the familiar
expression:

) =19 + at (6.1)

1
z(t) = xo + vot + §at2. (6.2)

Although Equation 6.1 is indeed a differential equation, it is a sort of special case because
here the derivative of the unknown function is specified in terms of the independent
variable (¢) alone. In a more typical DE, the derivative of the unknown function depends
not just on the independent variable (i.e., the variable that the unknown function is a
function of ), but on the function itself, too.

Here’s a familiar physics example of that type: recall that the force exerted by an
ideal spring with spring constant k is given by the formula

F=—ka (6.3)

where x is the displacement of the spring from its equilibrium length. (The minus sign
reminds us that the spring exerts a restoring force — i.e., the force is always in the
opposite direction of the displacement.) So if one has a particle of mass m attached to
a spring of spring constant k£ (and no other forces act) then Newton’s second law takes
the form:

—kx = ma. (6.4)

But the acceleration a and the position x are not unrelated quantities: a is the second
derivative of x. And so the equation of motion can be written

2':17
{é”:—ﬁﬂw (6.5)

which makes it clear that this is a differential equation. One should of course think of
this as an equation which one is supposed to solve for z(t). But one cannot simply solve
for z(t) algebraically, because the information the equation specifies about z(t) is more
abstract: it tells us only that x(¢) is a function whose second derivative is proportional
to the function itself (the proportionality constant being —k/m).

You probably already realized (or remembered or can show by substitution and ex-
plicit differentiation) that the solution here looks like this:

x(t) = Asin(wt + ¢) (6.6)
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where A and ¢ are constants (the amplitude and phase, respectively) and — in order
that this actually be a solution to Equation 6.5 — the angular velocity must be given by
w = /k/m. All of this of course makes sense, as one expects a mass on a spring to
oscillate, and that is precisely what Equation 6.6 describes.

Let’s introduce a bit of terminology that will help draw our attention to several
important features of differential equations, on the basis of which they can be classified.

e The order of a DE is defined as the number of the highest derivative appearing
in it. So our first example above — Equation 6.1 — is a first order DE, while the
second example — Equation 6.5 — is a second order DE.

e A linear DE is one in which each term contains the unknown function (or one of
its derivatives) to the first power. Thus, both of the example DEs mentioned above
are linear. In equation 6.1, the unknown function z(¢) only appears once, in dz/dt,
and that is to the first power. Similarly, in Equation 6.5, the two terms contain,
respectively, the second derivative of the unknown function to the first power, and
the unknown function itself to the first power. Here’s a random example of a DE
that is non-linear:

dz(t) 2
= t 6.7
" — o (o) (67)
where + is a constant. And here’s another less obvious example of a non-linear DE:
dx(t
Zg ) = vy cos [ax(t)]. (6.8)

where v and « are constants. The way to understand this last one is to think of
expanding the cosine as its Taylor series: cos(z) = 1 — 22/2 + 2%/24 — ..., This
makes it clear that terms involving z(t) to higher-than-the-first-power are going
to be present, even though they are sort of hidden inside the cosine function. But
clearly pretty much any time the unknown function (or one of its derivatives!)
appears in the argument of some other function in the differential equation, the
DE in question will fail to be linear.

e A final distinction one sometimes encounters in the taxonomy of DEs is homogenous
vs non-homogenous equations. These terms primarily apply to DEs that are linear
— the issue is then whether all of the terms contain the unknown function (or its
derivatives) to the first power (in which case the DE is homogenous) or whether
there is also a term in which the unknown function doesn’t appear at all (in which
case the DE is in-homogenous). Thus, the first example given earlier — Equation
6.1 — is in-homogenous because there is a term (namely the whole right hand side)
which doesn’t contain z(t) at all. By contrast, the second example — Equation 6.5
— is homogenous.

The point of introducing this terminology is mostly just to give you a better sense of
some of the different kinds of equations one sometimes encounters. And having seen the
terminology probably gives you a sense that some equations are going to be easier /harder
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than others to solve. For example, it probably isn’t shocking or incomprehensible to hear
that, all other things being equal: first-order DEs are easier to solve than second-order
DEs (and so on); linear DEs are easier to solve than non-linear DEs; and homogenous
DEs are easier to solve than in-homogenous DEs.

Let’s now turn (briefly) to the problem we eventually want to solve, just to get it on
the table: F = ma for a planet orbiting the sun. We might as well write this equation out
more explicitly just so we can have it in mind as an example for what follows. Assuming
we place the Sun (mass M) at the origin, and let the planet orbit in the z — y plane,
then, according to Newton’s theory of gravitation, the force felt by an orbiting planet

(mass m) will be
GMm

F=—
r3

7 (6.9)

where G is Newton’s constant and 7 = 27 + y7J is the position of the planet at a given
moment. Of course, the whole point is that these are functions of time: x = z(t) and
y = y(t). And since the force is going to be set equal to m times the planet’s acceleration
(which in turn can be written as the second derivative of the position) it’s pretty clear
that we’re going to have a differential equation.

Actually we have two, one for each of the components of the position:

d*x(t) x
and 2 0
y(t Yy

where we have used the fact that r = |[F] = /22 + y2. Note that each equation is second-
order and non-linear! Note also that the two equations are coupled — meaning that the
unknown function y(t) appears in the equation for the (second derivative of) x(¢), and
vice versa.

So it looks like these are going to be hard equations to solve! That is precisely why
we're going to approach them here by using a computer to solve them numerically. As
it turns out, though, these equations can be solved exactly. That is, by a sequence of
clever changes-of-variables, analytical tricks, and magic incantations, one can actually
generate explicit expressions for x(t) and y(t). And despite being way more elegant than
using a computer to generate approximate, numerical solutions, doing it this way is hard.
Students with adequate math backgrounds can work though this hard calculation in the
Projects. But even if you are able to do that, you will still gain important insight and
develop some really important skills by approaching it the way we’re going to do in the
rest of this chapter.

6.2 FEuler’s Method

In order to explain the basic approach to solving a DE numerically using a computer,
we’ll first spend some time discussing an algorithm called “Euler’s Method” which turns
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out to be really inaccurate for most problems. So you probably won’t (and certainly
shouldn’t) use Euler’s method if you ever actually care about solving a DE with some
modicum of accuracy. Nevertheless, it is simple to understand, so I'll try to convey the
basic idea using Euler’s method and then show you some more sophisticated algorithms
that are more useful in practice.

One more preliminary before we jump into Euler’s method. Any higher-order DE
can always be converted into a collection of several first-order DEs. For example, take
the DE Pt N

;Tg) = ——a(t) (6.12)
that was mentioned above. This is second-order. But we can introduce an additional
unknown function v(t), which is just the first derivative of x(t):

dx(t)
=v(t). 1
2 =) (613)
And so then the original equation can be re-written in terms of v this way:
do(t) k
= ——x(1). 6.14
) (6.14)

The point is, the last two equations together are exactly equivalent to the original DE
— Equation 6.12. We’ve replaced a single second-order DE with a pair of first-order
DEs. This is good, because (as we’ll see momentarily) first-order DEs are easy to solve
numerically using a computer. Indeed, solving lots of them at the same time is really no
harder, since the computer is doing all the work. By the way, note that the two first-
order DEs are coupled: the equation specifying the derivative of v depends on z, and
vice versa. But, again, as we’ll see shortly, this doesn’t introduce any serious trouble.

OK, so finally let’s talk about Euler’s method. As we’ve just discussed, there is no
loss of generality in talking about a first-order DE, so we’ll do that. We'll first discuss
this in a somewhat abstract way, and then work through a particular concrete example
in detail.

So: suppose we have a first-order DE for some unknown function x(t):

dx(t)
dt

= fl=,1] (6.15)

where the f on the right hand side represents some arbitrary expression involving z(t)
and t. This will be known for a given problem. And suppose we are given an initial
condition — i.e., the value of x(t) at t = 0:

z(0) = zo. (6.16)

Here’s the idea. Since we know z(0), we can evaluate f (i.e., the right hand side of our
DE) for ¢t = 0. This tells us the rate at which x is changing, dz/dt, at ¢ = 0. But from
that we can estimate the value of x some short time At (think “a millionth of a second”)
later:

x(At) = xg + At f(20,0). (6.17)
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You should pause here and make absolutely sure you fully understand why that last
equation makes sense. If you miss this, you’ll have missed the whole thing!

Once you understand why Equation 6.17 makes sense, we can raise an important
question: why is it only approzximately true? As you hopefully already realized, Equation
6.17 is based on the approximate equality of the instantaneous velocity dx/dt at t = 0,
and the average velocity Ax/At for a duration At beginning at ¢ = 0. What’s ezactly
true is this:

(At) = xo + At Vgng (6.18)

where v4,4 is the average velocity:

x(At) — o

Vavg = A7 (6.19)

The point is that, according to Equation 6.15, f(zo,0) is equal to the instantaneous
velocity right at ¢ = 0. This will not in general be equal to v4,4, but — the idea is — if
At isn’t too big, it should be close. And so the two sides of Equation 6.17 should be,
while not exactly the same, close. (You should pause here and make sure that you can
now derive Equation 6.17.)

Let’s recap. From the given DE and the given initial value, we’ve figured out a
“pretty good” approximation to the value of the unknown function at a slightly later
time, t = At. Now the whole point is that we can do that same thing again and again
and again. Now we know — or at least have a good approximation to — z(At). So we
can evaluate f[z(At), At]. This tells us the rate of change of z(t) for ¢ = At¢. And so,
knowing both x and dx/dt at t = At, we can approximate the value of x at the “next”
moment, t = 2At:

x(2At) ~ x(At) + At flx(At), At]. (6.20)

And so on.

In case the notation is confusing you, just think of it this way. We're going to get an
approximate value for x at a bunch of different times: t = 0, t = At, t = 2At, etc. So
let’s just call these times tg, t1, to, etc., and the corresponding x values xq, x1, x2, etc.
Then the Euler’s method algorithm can be written:

Tpt1 = T + AL f(xp, 1) (6.21)

which amounts to: use the “current” value of x to figure out the “current” rate at which

x is changing, and then use that to approximate the “next” value of x. And then keep
going as long as you want.
That concludes the abstract overview. Now let’s see how this works for a simple
concrete example:
dx(t)
dt

with, say, the initial condition xy = 1. This is a nice example because (a) it is simple and
(b) we don’t actually need any numerical algorithm to solve it. The solution will be a
function whose derivative is equal to the original function (that’s just what the DE says)

= z(t) (6.22)
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and which has the value 1 at t = 0 (that’s what the initial condition says). But anybody
who has taken calculus already knows that the solution is the exponential function

z(t) =¢ (6.23)
whose derivative is
dx(t) t
= .24
il (6.24)

which, as required, equals the function itself! The fact that we know the exact solution
will help us see that and why the approximation produced by Euler’s method is just that
— an approximation.

Let’s think about using Euler’s method to fill in the following table, which initially
contains just the initial value, 2(0) = 1. We'll take the “step size” At to be 0.3. You
might want to open Excel (or equivalent) and work through this yourself as you read.

0.0 | 1.0
0.3
0.6
0.9
1.2

The first thing we can do is to use the DE, Equation 6.22, to fill in the dx(t)/dt column
in the first row. The DE tells us that dz/dt = x, so we fill the 1.0 we read off from the
x column in the same row. That gives the following updated table.

t | x(t) | 20
0.0 [ 1.0 | 1.0
0.3
0.6
0.9
1.2

Now we apply Euler’s method, according to which the “next” value of x(t) is approxi-
mated by the “previous” value (1.0) plus At (0.3) times the “previous” right hand side
(1.0). That gives z(0.3) = 1.3, which we can fill into the table.
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t | x(t) | &0
0.0 ] 1.0 |10
03| 1.3

0.6

0.9

1.2

If you are doing this yourself, e.g., in Excel — and you should be! — you’ll want to let the
computer to the work. That is, don’t try to figure out in your head what “the previous
value plus At times the previous slope” equals. Just type it in as a formula which refers
to the contents of the appropriate cells in the previous row.

Now we are in a position to just repeat the same steps over and over again. We can
fill in the dx/dt column in the second row by again appealing to the fact that, according
to Equation 6.22, dx/dt just equals x. So we put a 1.3 there. And then we can fill in the
x(t) cell in the t = 0.6 row: it’s just the previous x value (1.3) plus At (0.3) times the
previous dz/dt value (1.3). This works out to z(0.6) = 1.69. We’ll put this in the table,
along with the next few values that fill it out.

t | x(t) |20
00 1.0 |10
03|13 |13
0.6 | 1.69 | 1.69
0.9 | 2197 | 2.197

1.2 | 2.8561 | 2.8561

And of course we could keep going if we wanted to. The point is, by following this
method, we’re able to generate a list of the values of the function z(t) at a bunch of
equally spaced times, which is just what we want.

It is illuminating to make a graph of the z(t) values we just calculated, and compare
them to the exact solution, x(t) = e'. The two are shown in Figure 6.1.

The first point, of course, lies exactly on the curve. But the next point misses by a
little bit — then the next misses by a little bit more — and so on. Let’s try to understand
graphically why the second point is a little bit off, and why the error grows with each
subsequent step.

Figure 6.2 shows a blow-up of the first two points and the exact curve. Also shown
is a line connecting the two points on the exact curve which correspond to ¢t = 0 and
t = 0.3. The slope of this line is, of course, just the average slope of the exact curve in
this interval. And the point is that this is close to — but not exactly equal to — the slope
of the exact curve at t = 0 which, by construction, matches the slope of the line that
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Euler’s Method vs Exact Solution
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Figure 6.1: Comparison between the first few points generated by the Euler’s method
solution to dx(t)/dt = x(t) with x(0) = 1, and the exact solution z(t) = e’. (The exact
solution is the smooth curve, and the Euler’s method points are the crosses.)

connects the first two Euler method points. Remember, the whole content of Euler’s
method is to approximate the average slope over some interval, with the slope at the
beginning of the interval. As discussed already, we can minimize the error by using a
smaller At; but — for any nonzero At — there will be some error.

Think too about the way the error accumulates. The story over the second interval
(i.e., between t = 0.3 and ¢ = 0.6) is much the same as the story over the first interval:
the ezact increase of the function over this interval is just the width of the interval
multiplied by the average slope over this interval; but (just as before) the average slope
isn’t known, so we have to use, as a proxy, the instantaneous slope at the beginning
of the interval. But here’s a further problem with this second interval which we didn’t
encounter with the first interval: we don’t actually know the instantaneous slope at the
beginning of the interval, if that means the instantaneous slope of the exact solution at
t = 0.3. Rather, what we know is the slope that that curve would have, if 2(0.3) were
the value we got from the first Euler step (1.3) — which, as we’ve already discussed, it
isn’t! So instead of even using the (already wrong) slope at the beginning of the interval
to proxy for the average slope across the interval, we actually end up using the slope of
some point a little to the left of the beginning of the interval — the point where the exact
curve has the value 1.3 — to proxy for the average.

The point is that there is a double sense in which the error is cumulative as we
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Figure 6.2: The first step is not quite right because it is based on the (not quite true)
assumption that the average slope over the interval is equal to the slope at the beginning
of the interval. Both slopes are shown.

proceed to higher and higher times. First, each additional step contributes some of the
same sort of error we had during the first step, the error associated with equating the
average slope across the interval with the instantaneous slope at the beginning of the
interval. And second, because our best approximation to dz/dt at a given point depends
on the value of x there — and because (for all but the initial points) we don’t know the
exact value of x — the slope used in Euler’s method doesn’t even match the real slope at
the beginning of the interval.

We happen to have chosen an “extreme” example in which these two sorts of error
leapfrog off of one another and cause the Euler method approximation to diverge badly
from the exact solution. The point is, things aren’t always quite as bad as we’re seeing
here. On the other hand, it’s good to know how bad things can be when you are trying
to decide whether or not to believe the results of a computation — the point being, of
course, that in actual use we won’t have “the exact solution” in hand to compare to!

6.3 Better Algorithms

It is traditional to summarize Euler’s method by writing

Tpi1 = T + k1 (6.25)
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where

k1 = At f(zn, tn) (6.26)

is the approximation to the change in the function x between the “current” and “next”
times that you get by following the line whose slope at the “current” time matches the
slope there. As discussed before, this provides a pretty good approximation to 11
so long as At is small. But it isn’t perfect, and it’s clear that it’s going to be off
systematically since it equates the average slope over some finite duration At with the
instantaneous slope at the beginning of that duration.

A little thought suggests a better approach. Instead of approximating the average
slope over At by the instanteous slope at the beginning of that interval, we could approx-
imate the average slope by the instantaneous slope at the middle of the interval. This is
likely to be a much better approximation. The problem is, we don’t know dz/dt at the
middle of the interval — we only know it at the beginning! But what we can do is use
Euler’s method to take a “trial step” over to the midpoint of the interval. This will give
us at least an approximate value for x there. And then we can plug this approximate
value back into f to get the slope at the midpoint. It’s plausible (though not completely
obvious) that this will result in a more accurate algorithm overall, and indeed it does.
It’s called the midpoint method and can be summarized like this:

Tpt1 = Tp + k2 (6.27)

where
k1 = At f(zp,tn) (6.28)
k2 = At f(x,+k1/2,t, + At/2). (6.29)

Don’t let this one be a total black box. Pause and follow the logic of this: k1 is just the
Euler’s method approximation for x,+1 — 2. So z, + k1/2 will be a naive guess for the
value of = at the midpoint of the time interval. And so f(x, + k1/2,t, + At/2) — the
slope at the midpoint of the interval as approximated by Euler’s method — will be the
more accurate guess for the average slope of x(t) across the whole interval. And so this
times At should be a very good approximation to the amount by which z should change
during At.
Let’s walk through how to use the midpoint method to solve the same toy DE we
used above
dx(t)
dt

= z(¢) (6.30)

using the same initial condition x(0) = 1 and stepsize At = 0.3 we used before.

To begin with, let’s set up a table which contains the initial condition and columns
for calculating the quantities k1 and k2 introduced above.
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t x(t) | k1 | k2
0.0 | 1.0
0.3
0.6
0.9
1.2

The first thing we can do is calculate the value of k1 in the first row. This is just At (0.3)
times “f” evaluated at t = 0. Here f is just x, so we have k1 = 0.3. Then k2 is At times
f evaluated at x(0) + k1/2. Here that works out to be k2 = 0.3(1 + .15) = .345. Note
that if you are following along with Excel — and again you should be! — you shouldn’t
be typing “0.3” (etc.) but should instead be writing a formula which refers to (e.g.) a
cell where you declare a value for At. That way, once you get it set up, if you want
to change At — for example, to find out how the accuracy of the algorithm scales with
the stepsize — then you only have to change one thing. Anyway, at this point your table
should look like this

00|10 | .3 |.345
0.3
0.6
0.9
1.2

where, just to be clear, the value for k1 is computed according to a formula which refers
to the z value (from that same line) and the At value (from somewhere else in the sheet).
Then the k2 value is computed according to a formula which refers to =z, At, and the
already-computed k1.

That was the hard part. Now we can compute the z(t) value in the ¢ = 0.3 row. It’s
2(0.3) = x(0.0) 4+ k2, where, of course, here k2 means £2(0.0), i.e., the k2 value from the
previous row of the table. That gives 2(0.3) = 1.345. Then we can compute the new k1
and k2 values (by just copying and pasting the formulas we already typed in just above),
and... wash, rinse, repeat. The table ends up looking like this:
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t x(t) k1 k2
0.0 1.0 3 .345
0.3 | 1.345 4035 464025

0.6 | 1.809025 | .542708 | .624114
0.9 | 2433139 | .729942 | .839433
1.2 ] 3.272571 | .981771 | 1.12904

Figure 6.3 shows a graph of the midpoint method’s results here, compared both to
the exact solution (z(t) = e') and the Euler’s method approximation using the same
stepsize. It is immediately clear that (all other things, in particular the step-size, being
equal) the midpoint method is more accurate than Euler’s method (but still not perfect).

Of course, one might object that really the midpoint method cheats. What we call
the “midpoint method” with a stepsize At = 0.3 actually involves taking these trial steps
of size At/2 = 0.15. So maybe the only reason the midpoint method is more accurate, is
because we are really in effect using half the reported stepsize. This is a good objection
to think about carefully — in the Questions and Projects!

In any case, the immediate upshot is clear: with only a marginal increase in the
difficulty of setting things up, the midpoint method provides a more accurate solution
of a given DE than does Euler’s method.

And it turns out you can keep going this way. For example: instead of just taking
one trial step to get a better approximation for the change in = over the time interval
At, one can take two trial steps — with the first trial step being used to then take a
more accurate second trial step, which then one uses finally to calculate the change in x.
And so on. A robust and widely used method along these lines (which involves taking a
kind of weighted average of four different trial steps) is called the 4th Order Runge-Kutta
algorithm. It is defined this way:

k1 k2 k3 k4
ntl = Tnp —_— =+ — 4+ — 31
where
k1 = At f(zp,tn) 6.32
k2 = At f(z,+k1/2,t, + At/2) 6.33

k3 = Atf
ki = Atf

Tn +k2/2,t, + At/2)
Tn + k3, t, + At)

o~~~ o~

It’s probably OK to just accept this as a black-box, although it’s easy enough to get the
gist of it: k1 is just the Euler’s method approximation to Ax; k2 is then the better guess
based on the midpoint recalculation; k3 is then an even better approximation to Az based
on using k2, in the same way that k1 is used to recalculate Az when computing k2; and
finally k4 uses k3 to extrapolate over to the end of the time interval At and represents
the Az you’d get by using the slope there as a stand-in for the average across the whole
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Figure 6.3: Midpoint method (the crosses) and Euler’s method (the Xs) with the same
stepsize. The curve is the exact solution. Clearly the midpoint method is more accurate.

At. And then some cleverly-chosen weighted average of all these approximations turns
out, quite plausibly, to be a very very good approximation to the real Ax.

To solve a real problem (like you’'ll do for the planet orbiting the sun) it’s definitely
worth investing some extra time at the beginning to use one of the more complicated
but more accurate algorithms. It takes more time to set up, but once it’s set up, you
just copy and paste and the computer does all the really hard work.

Again at this point it would be a good idea to sit down in front of a computer and
use Excel or some equivalent to play with the same simple toy example

dx(t)
dt

=z (6.36)

using the more complicated but more accurate algorithms.

We reproduce here, in the following table, the first several values one gets using
the 4th order Runge-Kutta algorithm, as well as the various intermediate numbers (k1
through k4) that are involved. Use this as a check to make sure that your own calculations
are giving the right numbers. That is, you should stop reading right now, sit down in
front of a computer, open Excel, and make sure you understand how to reproduce the
numbers in this table!
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Figure 6.4: 4th order Runge-Kutta algorithm, vs Midpoint and Euler.

t ] x(t) k1 k2 k3 k4

0.0 1.0 0.3 0.345 0.35175 | 0.405525
0.3 | 1.349838 | 0.404951 | 0.465694 | 0.474805 | 0.547393
0.6 | 1.822061 | 0.546618 | 0.628611 | 0.64091 | 0.738891

The numbers in the ¢ column are of course just given, as is the first entry in the
x(t) column. The four k& columns in the ¢ = 0 row are then filled in in order: kl
at t = 0 is just the step size (0.3) times the x(t) value in that row. Then k2 is the
step size (0.3) times x(t) + k1/2. Then k3 is the step size (0.3) times z(t) + k2/2.
And finally k4 is the step size (0.3) times z(t) + k3. Finally, with all four of the k’s
computed, the value of z(t) at the “next” time — t = 0.3 — is computed: x(0.3) =
x(0)+k1(0)/6+k2(0)/3+k3(0)/34k4(0)/6. The result happens to be 2(0.3) = 1.349838.
And with that new value of z computed, the cycle begins again — computing the four
k’s across the ¢t = 0.3 row, on the basis of which (0.6) can be computed, and so on.

Figure 6.4 shows the results of this computation for times up to three seconds, com-
paring the 4th order R-K results with the midpoint and Euler methods (shown previ-
ously) and the exact formula. As far as one can tell from the graph, the 4th order R-K
algorithm reproduces the exact formula exactly. As the logirithmic graph of the errors
shown in Figure 6.5 shows, it is not perfect. But it is substantially better than the other
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Figure 6.5: The (base 10) logarithm of the error (i.e., the exact value minus the value
given by the computational algorithm) for each step. Results for the Euler method
(crosses), the Midpoint method (X’s), and the 4th order R-K method (stars) are all
shown. Notice that, for the reasons discussed earlier, the total error (for a given method)
increases with time. It doesn’t typically increase with time quite as fast as it does in this
particular problem, but it’s good to see how quickly the results can become completely
unreliable. So one has to be increasingly careful the longer one runs a simulation. Note
also that, at a given moment, the Midpoint method is about one order of magnitude
more accurate than the Euler method, and that the R-K method is about three orders
of magnitude more accurate than Euler. (This last statement depends on the stepsize
we’ve chosen, so don’t take it as any kind of dogmatic, out-of-context statement about
the accuracies.)
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mgsin(6)

Figure 6.6: A simple pendulum constructed from a mass m and a (massless) string of
length L. When displaced at angle 6 from the vertical, the tangential component of the
weight force produces a restoring torque (about the point where the string attaches to
the ceiling) of magnitude 7 = mgLsin(0).

two methods.

6.4 A more involved example: the pendulum

Now that we understand the basic idea of using a computer to numerically solve a
differential equation, let’s work through a slightly less artificial example: the physical
motion of a simple pendulum.

Consider a pendulum made of a point mass m hanging from a massless string of fixed
length L. See Figure 6.6. When the pendulum is displaced to angle 6, there is a net
torque (about the point where the string attaches to the ceiling). This is produced by
the tangential component of the gravitational force acting on the mass. The torque is:

7 = —mgLsin(0) (6.37)

where the minus sign indicates that the direction of the torque (e.g., clockwise in the
figure) is opposite the (e.g., counter-clockwise) sense of the angular displacement itself.

Now we can use the results from Chapter 4 to write down the differential equation
governing the pendulum. The moment of inertia of the pendulum about the pivot point
is just I = mL?, independent of the angle §. The basic law of rotational dynamics is
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that the net torque should equal the time rate of change of the angular momentum. Here
that comes down to

dL
i ¢ 6.38
T=— =l (6.38)
since the angular momentum L = [w and [ is independent of time.
Plugging in our expression for the torque and remembering that o = dw/dt =
d?6/dt?, we have:
d%6 g .

which is a second-order, non-linear differential equation for 6(t).
Recall that, if the pendulum swings with small amplitude, then sin(f) =~ 6, and the
exact non-linear DE turns into the following linear equation

d*6 g
which has exact solution
0(t) = A sin(wt + ¢) (6.41)

with w = y/g/L. This corresponds to a back-and-forth motion with period T' = 27 /w =
27y/L/g. This is a well-known formula for the period of a pendulum; the interesting
thing here is to see not only how it is derived, but also that the derivation applies only
for small amplitudes. For larger amplitudes, the period will deviate significantly from
the above formula.

Unfortunately, there’s no simple explicit way to write down exactly how the period
varies with amplitude. That’s essentially because no simple explicit solution to the
full non-linear differential equation exists. So this is an excellent candidate for solving
numerically using a computer.

Since it is a second-order DE, let’s first convert it to a pair of first-order DEs (each of
which can be solved using any of the methods discussed previously). Thus we introduce
the angular velocity w and write: ;

d
gl (6.42)

and

(2—‘:; = —% sin(f). (6.43)
And let’s take as initial conditions 6(0) = 6y, w(0) = 0 — i.e., the pendulum is pulled
over by angle 6y and let go.

Let’s get really concrete and sketch how we could work through this computation in
Excel or equivalent. Suppose the length of the pendulum is L = 1 meter, suppose 6y = 1
radian, and for convenience we’ll take g = 10m/s2. A pendulum of this length moving
with small amplitude would have a period of about two seconds. Our amplitude, one
radian, isn’t exactly small. But still we expect a period of not more than a few seconds.
So let’s use a step size of At = 0.05 seconds, at least at first. (A smaller step size would
of course produce more accurate results, but this is an OK starting point.)
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We'll start by using Euler’s method, just to get clear on the approach. Set up a table
with a column for the time ¢, one for the variable 8, one for the variable w, and then
two more columns — one for the “k1” associated with the variable 8, and another for the
“k1” associated with the variable w. It looks like this:

t 00t |w() | klp | kL,
0.00 | 1.0 | 0.0

0.05

0.10

Now we can start filling in the table. Note that each of the k1’s — k1y and k1, — is a
function of, in principle, both of the dependent variables: § and w. Though in our case
here, k1g depends only on w, and vice versa. In particular: klg is given by

klg = At f@(@,w,t) (6.44)

where the function fy is just the right hand side of the first-order differential equation
for 6, Equation 6.42. Thus, concretely, we have

klg = Atw (6.45)

and similarly for the k1 associated with the variable w:
kl, = At f,(0,w,t) (6.46)

where f, is the right hand side of Equation 6.43. Thus,
kl, = —At % sin(6). (6.47)

Equations 6.45 and 6.47 are what we need to continue filling in the table.

The two k1’s in the ¢ = 0 row can be computed on the basis of the § and w values
in that row (and, of course, At). Then, “new” values for # and w can be computed:
6(0.05) = 6(0.00) + k19(0.00) and w(0.05) = w(0.00) + k1,,(0.00). And so on. The first
few rows of the table look like this:

t 1000 o) 5 k1L,
0.0 | 1.0 0.0 0.0 -0.42074
0.11]1.0 -0.42074 | -0.02104 | -0.42074
0.2 | 0.97896 | -0.84147 | -0.04207 | -0.41496
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Figure 6.7: Numerical solution of the pendulum equation using Euler’s method and a
step size of At = 0.05 seconds. The qualitative behavior is roughly correct, at least for
a while, but there are some signs that the solution is not very accurate: the amplitude
increases with time (which is unphysical since it implies that the total energy is not
conserved), and after just a few oscillations, the solution goes completely crazy. This
suggests using a smaller step size and/or one of the more accurate algorithms.

Once you get this set up, it’s trivial to have the computer compute as many rows as you
want. Figure 6.7 shows a graph of the resulting 6(t) vs ¢ for the first ten seconds. We
clearly are reproducing the qualitatively correct oscillatory motion of the pendulum —
at least at first. But after only a couple of swings, the motion is obviously unphysical.
For one thing, the amplitude is increasing with time. (We know this is unphysical,
for it implies a failure of energy conservation. Indeed, you can see already from the
numbers in the previous table that energy isn’t being conserved exactly. In the first row,
the pendulum is at 6§ = 0 at rest, i.e., with w = 0. In the second row, the pendulum
is still at & = 0, and hence has the same potential energy, but now it’s moving with
w = —0.42074 and so has some kinetic energy, too!) And something completely crazy
starts happening between about 6 and 10 seconds. All of these issues are of course a
result of the inherent numerical inaccuracy of this method. We could improve things
by sticking with the Euler method and using a smaller stepsize, or by sticking with
At = 0.05 seconds and using one of the more accurate algorithms — or both.

You are encouraged to work through this same problem (the pendulum) using the
midpoint or 4th order Runge-Kutta algorithm. See the Projects.
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And then it is not too much harder to finally tackle the problem that motivated all
of this: solving for the motion of a planet in the inverse-square-law gravitational force
field produced by the Sun. Remember that the defining equations here are Equations
6.10 and 6.11, which we may rewrite as a set of four coupled first-order equations by
introducing the x- and y-components of the velocity:

dx
T v (6.48)
dvg T
— = GM-———=% 4
dt G (22 + y2)3/2 (6.49)
dy
W (6.50)
dvy, Yy
We then have four “f” functions
fx(x7vxayavy) = Uz (652)
For(@,02,y,0)) = —GMaz/(a® +42)*? (6.53)
fy(33>vxayavy) = Uy (654)
) (6.55)

o, (@, 00, y,0)) = —GMy/(z? +y?)3/?

which allow us, for example, to calculate the four associated k1’s in order to calculate
the trajectory using Euler’s method.

Some additional Projects will step you through this, and then a number of interesting
and illuminating applications.

Questions for Thought and Discussion:

1. In what sense is, say, the midpoint method better than Euler’s method? Sure, it’s
more accurate for a given stepsize, but you have to (or, really, the computer has
to) do twice as much work per step. So why not just stick with Euler’s method
and reduce the step size by a factor of two, instead of switching to the more
complicated algorithm? Indeed, aren’t the midpoint method (with a given step
size) and Euler’s method (with half that step size) equally accurate? If you're not
sure how to answer this, do Project 6.1 and then come back!

Projects:

6.1 Set up an Excel worksheet to solve the toy DE discussed in the text (dz/dt = z,
x(0) = 1) using both the Euler and midpoint methods. Calculate x(3) using the
Euler method with a stepsize At = 0.3, and subtract this from e to get the total
error. Now calculate the same thing using some different stepsizes (say, At = .1,
.03, .01, .003, and .001), and make a graph showing the total error vs. the stepsize.
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6.2

6.3

6.4

6.5

6.6
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You should notice that, for the pretty small stepsizes, the total error is roughly
proportional to the stepsize — so that, for example, to increase the accuracy of the
final result by a factor of 2, you need to reduce the stepsize by a factor of 2. Now
do all these calculations again with the midpoint method. If, using the midpoint
method, you reduce the stepsize by a factor of 2, by what factor is the total error
reduced?

Implement the 4th order Runge-Kutta algorithm for the toy example (dz/dt = z,
x(0) = 1). For reasonably small-ish stepsizes, how does the total error scale with
the stepsize? That is, if you reduce the stepsize by a factor of 2, by what factor is
the total error reduced?

Finish up the pendulum example we began in the text by implementing the 4th
order Runge-Kutta algorithm. Note that there will be eight k’s — a kly, a k1,
a k2¢, ..., and a k4,. Use the parameters mentioned in the text, and a step-size
of At = 0.1 seconds. By what factor is the period of the pendulum (moving with
amplitude one radian) greater than the period of the same pendulum at small
amplitude?

Explore the accuracy of your R-K pendulum program. Think of some way to
quantify the accuracy — e.g., calculate the total energy at each step, or monitor the
maximum 6 the pendulum gets to on each cycle, or something else clever that you
think of. Now systematically vary the step size At and explore how the accuracy
changes. Make an appropriate graph to display your findings.

Using an algorithm and a step-size whose accuracy you trust, find the period of
a pendulum for the following amplitudes: 0.01 radians, 0.1 radians, 0.3 radians,
0.5 radians, 1 radian, 1.5 radians, 2.0 radians, 2.5 radians, and 3.0 radians. Make
a nice graph to display the results. (Note that you can physically interpret the
meaning of amplitudes greater than 7/2 by imagining that the string is replaced
with a massless rigid rod.)

Write a program to solve for the trajectory of a planet in the gravitational field of
the sun, using Euler’s method. Hint: use one year as your time unit, and one AU
as your distance unit. Then, from the hopefully familiar formula

4 R GM
T (6.56)
(where M is the mass of the Sun) you can infer that
GM = 4n*AU3 /year? (6.57)

which comes in handy when you have to type in a formula for the gravitational
force — i.e., the right hand sides of Equations 6.10 and 6.11.

Note that, if you approximate the Earth’s orbit as a circle, its orbital speed is
v = 27 AU /year. So, to test your program, maybe start with the following initial
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6.7

6.8

6.9

6.10

6.11

conditions: x(0) = 1, y(0) = 0, v,(0) = 0, v,(0) = 27. If everything is set up
correctly, this should launch your planet on a roughly circular orbit with a radius
of about 1 (meaning 1 AU) and a period of about 1 (meaning 1 year). Use a
stepsize of about .01. Of course, you won’t get an exact circle, because Euler’s
method isn’t all that accurate. But you should at least get something recognizably
orbit-ish. (Make a scatterplot of the z and y coordinates to see the trajectory.
What happens over the course of several years?)

Soup up your Euler’s method program by adding columns for the £2’s and thus
implement the midpoint method (or both Euler and midpoint simultaneously).
Test the program to make sure it’s working correctly.

Soup up your earlier program even further by adding columns as appropriate to
implement the 4th order R-K algorithm. (Note that there will be 16 total columns
of k’s!) Test it.

Assuming now you’ve got a worksheet that can calculate the trajectory of the
planet according to all three methods, compare them using again the Earth-like
circular orbit. With the right initial conditions, the period of the orbit should be
exactly one year. But of course none of these algorithms are exact, so you should
find that at ¢ = 1 the planet is not quite back to its starting point.

The point here is to see how these inaccuracies scale with the stepsize. So, for
example, start by finding the position error after one year if you use N = 100 steps,
i.e., a step size of 0.01 year. (You’ll have to think about how best to characterize
“the positional error”.) Then use N = 200 (i.e., At = .005) and so on for several
additional values. Make a plot (a log-log plot is particularly good here) of the error
vs N for each of the three methods. Its slope (which characterizes the quality of
the algorithm) should be different for each of the three algorithms.

Once you have something whose accuracy you trust, use your program to make
some generic (moderately eccentric) orbit for a planet. Prove that the resulting
points in fact lie on an ellipse with the Sun at one focus. (You’ll have to go back
to Chapter 2 and think about which mathematical definition of an ellipse is the
best one to use to make this test.)

It is easy to show that, for a circular orbit, the total energy E (the kinetic energy
plus the potential energy of the planet) depends on the radius R of the orbit as

follows: L GM
m

E= 3T R (6.58)
where M is the mass of the Sun and m is the mass of the planet. Show that this
same formula is true for the more general elliptical orbits, if R is interpreted as the
semi-major axis. That is, show that a bunch of different orbits (e.g., a circle, and
then several ellipses with differing eccentricities) which all have the same R, also
have the same total energy F. Since you can easily control the energy F by setting

initial conditions (e.g., by doing a little algebra to work out what initial velocity
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needs to be for a given initial radius, in order for the total energy to be some fixed
value), it is probably easiest to do this by creating several different orbits that you
know have the same energy, and then verifying that they also have the same R.

Similar to the previous one, but with the formula for how the period T of the orbit

depends on the radius R:
T2 = 4—7T2R3. (6.59)
GM
Show that this is true (in general, for elliptical orbits, with R the semi-major axis)
by producing a number of orbits with the same R and showing that they have the

same period T

Write a program that has, as “sources”, both the Sun and another planet, which
we will think of here as Jupiter. Put in a fixed circular orbit for Jupiter at the right
radius and speed. Then calculate the force on the earth at each moment from the
combined forces exerted by the (stationary) sun and (moving) Jupiter. What is the
effect of Jupiter on the orbit of the earth? (You won’t see any, unless you track the
trajectory for many years! But you can, for example, make Jupiter heavier and/or
closer to the Farth and see what happens, in order to get a qualitative sense of
the effect. You should be able to connect this to one of the astronomical effects
mentioned way back in Chapter 2, but not yet explained!

Use the code from Project 6.13 to find the trajectory of a moon orbiting a planet
(“Jupiter”) as the planet orbits the Sun.

Play around some more with the program that models the combined gravitational
effects (on Earth) of the Sun and (something like) Jupiter. Make Jupiter pretty
heavy and pretty close to Earth, and give Earth’s orbit enough eccentricity that it
reaches almost as far as Jupiter. What can happen? What are the implications?
Is there some reason other than just tidal forces which causes planets to tend to
have circular orbits?

Newton proved in the Principia that the inverse square force law is the only one
that gives elliptical orbits with the Sun at a focus. Try to produce some support-
ing evidence for this by changing the force law and seeing what happens to the
resulting trajectories. Try, for example, an inverse cube law. What shape would
the planet’s trajectories have if they were connected to the Sun by springs (instead
of gravitational forces)? What if the gravitational force varied as 1/r2*¢ where €
is some small number like .017

Work through the polar-coordinates calculus to prove (without resorting to numer-
ical solutions) that the inverse-square force field produces elliptical orbits, with the
general energy and period equations discussed in the earlier projects.



