Integration by Parts

January 28, 2010

Integration Methods

Example:

- We can do the following calculation using integration by substitution:

$$
\begin{equation*}
\int x e^{x^{2}} d x \tag{1}
\end{equation*}
$$

Integration Methods

Example:

- We can do the following calculation using integration by substitution:

$$
\begin{equation*}
\int x e^{x^{2}} d x \tag{1}
\end{equation*}
$$

We just use the substitution $u=x^{2}$, and thus $d u=2 x d x$. Hence, Equation1 now becomes

$$
\begin{aligned}
\int \frac{1}{2} e^{u} d u & =e^{u}+C \\
& =e^{x^{2}}+C
\end{aligned}
$$

for some constant C.

Integration Methods

Example:

- We can do the following calculation using integration by substitution:

$$
\begin{equation*}
\int x e^{x^{2}} d x \tag{1}
\end{equation*}
$$

We just use the substitution $u=x^{2}$, and thus $d u=2 x d x$.
Hence, Equation1 now becomes

$$
\begin{aligned}
\int \frac{1}{2} e^{u} d u & =e^{u}+C \\
& =e^{x^{2}}+C
\end{aligned}
$$

for some constant C.
We cannot use integration by substitution to do the following calculation:

$$
\begin{equation*}
\int x e^{x} d x \tag{2}
\end{equation*}
$$

We have to use a different method.

Differentiation Recap

Recall the product rule of differentiation:
Let $f(x)$ and $g(x)$ be two differentiable functions. Then

$$
\left(f(x) \cdot(g(x))^{\prime}=f(x) \cdot g^{\prime}(x)+f^{\prime}(x) \cdot g(x)\right.
$$

By the Fundamental Theorem of Calculus:

$$
\begin{aligned}
\int\left(f(x) \cdot(g(x))^{\prime} d x\right. & =\int f(x) \cdot g^{\prime}(x) d x+\int f^{\prime}(x) \cdot g(x) d x \\
(f(x) \cdot(g(x)) & =\int f(x) \cdot g^{\prime}(x) d x+\int f^{\prime}(x) \cdot g(x) d x
\end{aligned}
$$

Formulas

Hence

$$
\begin{equation*}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x \tag{3}
\end{equation*}
$$

Formulas

Hence

$$
\begin{equation*}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x \tag{3}
\end{equation*}
$$

Let $u=f(x)$ and $d v=g^{\prime}(x) d x$.

Formulas

Hence

$$
\begin{equation*}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x \tag{3}
\end{equation*}
$$

Let $u=f(x)$ and $d v=g^{\prime}(x) d x$.
Then $d u=f^{\prime}(x) d x$ and $v=g(x)$.
So Equation 3 gives

$$
\int u d v=u v-\int v d u
$$

Mnemonic: Ultra-Violet Voodoo.

Dont forget to include the term $d x$ with the terms u and $d v$! Indefinite version:

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

Recall Example 2,

$$
\int x e^{x} d x
$$

We choose:

- $u=x$ because its easy to differentiate;
- $d v=e^{x} d x$ because its easy to integrate.

Example

Recall Example 2,

$$
\int x e^{x} d x
$$

We choose:

- $u=x$ because its easy to differentiate;
- $d v=e^{x} d x$ because its easy to integrate.

So

- $d u=1 d x$ and $v=e^{x}$.

Thus

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
& =x e^{x}-\int e^{x} \cdot 1 d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

for some constant C .

Integration by Parts: Advice.

- How do we choose what to differentiate and what to integrate?
- According to LIPET!!

Preference for Differentiation: Best top, worst bottom.
L is for Logarithm;
I is for Inverse Trig Functions;
P is for Polynomials;
E is for Exponential Functions;
T is for Trig Functions.
Note: It is better to integrate by substitution than it is to use integration by parts.
Examples \& Drills: Link

