Complex Variables

January 27, 2010

Real Life Applications

Real Life quantities that are naturally described through complex numbers

- ➤ State of a circuit element descibed by the real numbers voltage V and the current I through it.
 - Can regard as z = V + iI.
- ➤ A circuit element also may possess a capacitance C and an inductance L.
 - Can regard as w = C + iL.
- Complex multiplication:
 - Liken to a light beam passing through a medium that reduces both the intensity and shift the phase.
- Important application:
 - ▶ Solving differential equations in their most general form!!

Equations

- ▶ Recall that if z = a + ib, then $|z| = z \cdot \overline{z} = a^2 + b^2$.
- Example:

Equation of a circle with radius 5 with centre (3,-2).

Satisfies the equation |z - (3 - 2i)| = 5.

Let the complex number z = x + iy. Then

$$|x + iy - (3 - 2i)| = 5.$$

Equations

- ▶ Recall that if z = a + ib, then $|z| = z \cdot \overline{z} = a^2 + b^2$.
- Example:

Equation of a circle with radius 5 with centre (3,-2).

Satisfies the equation |z - (3 - 2i)| = 5.

Let the complex number z = x + iy. Then

$$|x + iy - (3 - 2i)| = 5.$$

So |x-3+(y-2)i| = 5 (and its conjugate |x-3-(y-2)i| = 5). Thus

$$|(x-3)+(y-2)i|\cdot|(x-3)-(y-2)i| = 25.$$

Equations

- ▶ Recall that if z = a + ib, then $|z| = z \cdot \overline{z} = a^2 + b^2$.
- Example:

Equation of a circle with radius 5 with centre (3,-2).

Satisfies the equation |z - (3 - 2i)| = 5.

Let the complex number z = x + iy. Then

$$|x + iy - (3 - 2i)| = 5.$$

So |x-3+(y-2)i| = 5 (and its conjugate |x-3-(y-2)i| = 5). Thus

$$|(x-3)+(y-2)i|\cdot|(x-3)-(y-2)i| = 25.$$

Hence

$$(x-3)^2 + (y-2)^2 = 25.$$

Another example

Example:
$$\Re(z) + 4 = |z - 2|$$
. Again let $z = x + iy$. So $x + 4 = |x - 2 + iy|$. Note $x + 4 = |x - 2 - iy|$. Hence
$$(x - 2)^2 + y^2 = (x + 4)^2.$$

Solving gives
$$x = \frac{y^2 - 12}{12}$$
.

To try...

Describe or solve the following:

- 1. |z+i|=|z-2i|.
- 2. $\Im(z) = |z 3i|$.

To try...

Describe or solve the following:

1.
$$|z+i|=|z-2i|$$
.

2.
$$\Im(z) = |z - 3i|$$
.

Solutions:

1.
$$y = 1/2$$

2.
$$y = \frac{(x^2+9)}{6}$$
.

Arithmetic and the complex plane

Q: What do simple complex functions do to the complex plane? A: Transformations

► http://www.youtube.com/watch?v=xuO5lOhXBvM

Triangle Inequality

Let z_1 and z_2 be two complex numbers. Then

$$|z_1+z_2|\leq |z_1|+|z_2|.$$

Geometry of Complex Numbers:

http://math.fullerton.edu/mathews/n2003/ComplexGeometryMod.html

Complex exponential

Compare and contrast the properties of the real exponential function and the complex exponential function.

► Link

Definition:

If z = x + iy, then e^z is defined to be the complex number

$$e^z := e^x(\cos y + i\sin y).$$

Complex exponential

Compare and contrast the properties of the real exponential function and the complex exponential function.

▶ Link

Definition:

If z = x + iy, then e^z is defined to be the complex number

$$e^z := e^x(\cos y + i\sin y).$$

Motivation in terms of differntial equations. Using the above formula, we can easily show *De Moivre's formula*

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta).$$

Simple?! Graphs

The graph of $f(z) = e^z$.

➤ YouTube http://www.youtube.com/watch?v=6dcghhQVvNI.

Studying the repeated application of the function $f(z) = z^2 + c$, for different complex values c, to points in the complex plane.

YouTube: Fractals; http://www.youtube.com/watch?v=BngZUXqKeSk