
Complex Variables

2nd February 2010



e
iy?

Recall:

I We know what exmeans when x is a real number.

I What does e iy mean?

Properties:

I d
dz

(ez) = ez ; follows by di�erentiation by substitution;

I d
dy

(e iy ) = ie iy ;

I d
d(iy) (e iy ) = e iy ; follows by di�erentiation by substitution;

I d2

dy2
(e iy ) = −e iy ;

I e0 = 1.
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Di�erential equations

Let g(y) = e iy . We will use di�erential equations to give another

form to g(y).
Have that:

g(0) = 1;

g ′(0) = i ;

g ′′(y) = −g(y).

The last equation has a general solution of the form:

g(y) = A sin(y) + B cos(y).
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e
z

Using the conditions above, we can show that

g(y) = cos(y) + i sin(y).

Hence, if we let z = x + iy , then

ez = ex+iy

= exe iy

= ex (cos(y) + i sin(y))

= ex cos(y) + iex sin(y)
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What does the graph look like?

We can visualize things in 4D. However, here is a projection.

Complex exponential graph

http://www.youtube.com/watch?v=6dcghhQVvNI


Does the de�nition work?

Consider the following:

e iy1 · e iy2 = (cos(y1) + i sin(y1)) · (cos(y2) + i sin(y2))

= (cos(y1)) · (cos(y2))− (sin(y1)) · (sin(y2))

+i ((sin(y1)) · (cos(y1)) + (sin(y1)) · (cos(y2)))

= cos(y1 + y2) + i sin(y1 + y2)

= e i(y1+y2),

by the Trigonometric angle sum identities.

Wikipedia explains the angle sum indentities here.

http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities


Complex de�nition

Clearly:

ex1 · ex2 = ex1+x2

Consequently, if we let z1 = x1 + iy1 and z2 = x2 + iy2, then

ez1 · ez2 = ez1+z2 .

Properties for division of complex numbers follows in a similar way.



Trigonometry

Recall that z = re iΘ, where r = |z | and Θ = arg(z).
Thus

cos(Θ) = <(e iΘ)

=
e iΘ + e−iΘ

2

and

sin(Θ) = =(e iΘ)

=
e iΘ − e−iΘ

2i
.



De Moivre's Formula

Theorem

De Moivre's Formula:

(cos(Θ) + i sin(Θ))n = cos(nΘ) + i sin(nΘ), (1)

for all n = 1, 2, 3, . . ..

Note that integrating powers of sine and powers of consine is hard,

unless using integration by substitution. However, inetgrating

cosine and sine functions is easy!
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To try

Evaluate

I (3 (cos 40◦ + i sin 40◦)) (4 (cos 80◦ + i sin 80◦));

I (2(cos 15◦+i sin 15◦))7

4(cos 45◦+i sin 45◦)3
;

I
(
1+
√
3i

1−
√
3i

)10

.



Powers & Roots

Let z = x + iy . Then zn = (x + iy)n.
We can expand this or use De Moivre's formula, Equation 1.

Now let z = re iΘ. Thus zn = re inΘ.

Similarly, to solve ζm = z it is easier to use De Moivre's formula.

So ζ = m
√
re

iΘ
m .

Q: What about the other distinct roots?

A: Utilize trigonometry!

Fact

m distinct roots of unity given by 1
1

m :

1
1

m = e
i2πk
m

= cos

(
2πk

m

)
+ i sin

(
2πk

m

)
,

for all k = 0, 1, 2, . . . ,m − 1.
Complex roots of unity link

http://www.katjaas.nl/rootsofunity/rootsofunity.html
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