Complex Variables

2nd February 2010

Recall:

- We know what e^{x} means when x is a real number.
- What does $e^{i y}$ mean?

Recall:

- We know what e^{x} means when x is a real number.
- What does $e^{i y}$ mean?

Properties:

- $\frac{d}{d z}\left(e^{z}\right)=e^{z}$; follows by differentiation by substitution;
- $\frac{d}{d y}\left(e^{i y}\right)=i e^{i y}$;
$-\frac{d}{d(i y)}\left(e^{i y}\right)=e^{i y}$; follows by differentiation by substitution;
$-\frac{d^{2}}{d y^{2}}\left(e^{i y}\right)=-e^{i y}$;
- $e^{0}=1$.

Differential equations

Let $g(y)=e^{i y}$. We will use differential equations to give another form to $g(y)$.
Have that:

$$
\begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =i \\
g^{\prime \prime}(y) & =-g(y)
\end{aligned}
$$

Differential equations

Let $g(y)=e^{i y}$. We will use differential equations to give another form to $g(y)$.
Have that:

$$
\begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =i \\
g^{\prime \prime}(y) & =-g(y)
\end{aligned}
$$

The last equation has a general solution of the form:

$$
g(y)=A \sin (y)+B \cos (y)
$$

Using the conditions above, we can show that $g(y)=\cos (y)+i \sin (y)$.

Using the conditions above, we can show that $g(y)=\cos (y)+i \sin (y)$. Hence, if we let $z=x+i y$, then

$$
\begin{aligned}
e^{z} & =e^{x+i y} \\
& =e^{x} e^{i y} \\
& =e^{x}(\cos (y)+i \sin (y)) \\
& =e^{x} \cos (y)+i e^{x} \sin (y)
\end{aligned}
$$

What does the graph look like?

We can visualize things in 4D. However, here is a projection. Complex exponential graph

Does the definition work?

Consider the following:

$$
\begin{aligned}
e^{i y_{1}} \cdot e^{i y_{2}}= & \left(\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)\right) \cdot\left(\cos \left(y_{2}\right)+i \sin \left(y_{2}\right)\right) \\
= & \left(\cos \left(y_{1}\right)\right) \cdot\left(\cos \left(y_{2}\right)\right)-\left(\sin \left(y_{1}\right)\right) \cdot\left(\sin \left(y_{2}\right)\right) \\
& +i\left(\left(\sin \left(y_{1}\right)\right) \cdot\left(\cos \left(y_{1}\right)\right)+\left(\sin \left(y_{1}\right)\right) \cdot\left(\cos \left(y_{2}\right)\right)\right) \\
= & \cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right) \\
= & e^{i\left(y_{1}+y_{2}\right)},
\end{aligned}
$$

by the Trigonometric angle sum identities.
Wikipedia explains the angle sum indentities here.

Complex definition

Clearly:

$$
e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}
$$

Consequently, if we let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
e^{z_{1}} \cdot e^{z_{2}}=e^{z_{1}+z_{2}}
$$

Properties for division of complex numbers follows in a similar way.

Trigonometry

Recall that $z=r e^{i \Theta}$, where $r=|z|$ and $\Theta=\arg (z)$.
Thus

$$
\begin{aligned}
\cos (\Theta) & =\Re\left(e^{i \Theta}\right) \\
& =\frac{e^{i \Theta}+e^{-i \Theta}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sin (\Theta) & =\Im\left(e^{i \Theta}\right) \\
& =\frac{e^{i \Theta}-e^{-i \Theta}}{2 i}
\end{aligned}
$$

De Moivre's Formula

Theorem
De Moivre's Formula:

$$
\begin{equation*}
(\cos (\Theta)+i \sin (\Theta))^{n}=\cos (n \Theta)+i \sin (n \Theta) \tag{1}
\end{equation*}
$$

for all $n=1,2,3, \ldots$.

De Moivre's Formula

Theorem
De Moivre's Formula:

$$
\begin{equation*}
(\cos (\Theta)+i \sin (\Theta))^{n}=\cos (n \Theta)+i \sin (n \Theta) \tag{1}
\end{equation*}
$$

for all $n=1,2,3, \ldots$.
Note that integrating powers of sine and powers of consine is hard, unless using integration by substitution. However, inetgrating cosine and sine functions is easy!

To try

Evaluate

- $\left(3\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)\right)\left(4\left(\cos 80^{\circ}+i \sin 80^{\circ}\right)\right) ;$
$-\frac{\left(2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)\right)^{7}}{4\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)^{3}}$;
$-\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{10}$.

Powers \& Roots

Let $z=x+i y$. Then $z^{n}=(x+i y)^{n}$.
We can expand this or use De Moivre's formula, Equation 1 .
Now let $z=r e^{i \Theta}$. Thus $z^{n}=r e^{i n \Theta}$.

Powers \& Roots

Let $z=x+i y$. Then $z^{n}=(x+i y)^{n}$.
We can expand this or use De Moivre's formula, Equation 1 .
Now let $z=r e^{i \Theta}$. Thus $z^{n}=r e^{i n \Theta}$.
Similarly, to solve $\zeta^{m}=z$ it is easier to use De Moivre's formula. So $\zeta=\sqrt[m]{r} e^{\frac{i \theta}{m}}$.

Powers \& Roots

Let $z=x+i y$. Then $z^{n}=(x+i y)^{n}$.
We can expand this or use De Moivre's formula, Equation 1 .
Now let $z=r e^{i \Theta}$. Thus $z^{n}=r e^{i n \Theta}$.
Similarly, to solve $\zeta^{m}=z$ it is easier to use De Moivre's formula.
So $\zeta=\sqrt[m]{r} e^{\frac{i \theta}{m}}$.
Q: What about the other distinct roots?
A: Utilize trigonometry!
Fact
m distinct roots of unity given by $1^{\frac{1}{m}}$:

$$
\begin{aligned}
1^{\frac{1}{m}} & =e^{\frac{i 2 \pi k}{m}} \\
& =\cos \left(\frac{2 \pi k}{m}\right)+i \sin \left(\frac{2 \pi k}{m}\right)
\end{aligned}
$$

for all $k=0,1,2, \ldots, m-1$.
Complex roots of unity link

