Complex Variables

- Algebra
- Complex conjugate
- Distance between two complex numbers
- Triangle inequality

Complex Variables

- Sets of numbers:
- Let C be the set of all complex numbers
- Let N be the set of all natural numbers.
- Let Q be the set of all rational numbers.
- Let R be the set of all real numbers.
- Let Z be the set of all integers.

Complex Variables

- Closure:
- Any 2 numbers from a set together with some operation remain in the set.
- What sets are closed under what operations?
- Addition; Subtraction;
- Multiplication; Division (excluding 0).

Complex Variables

- Closure:
- Any 2 numbers from a set together with some operation remain in the set.
- What sets are closed under what operations?
- Addition; Subtraction;
- Multiplication; Division (excluding 0).
- Algebraically closed: Roots of a polynomial in one variable with integer (or equivalently rational) coefficients.

Complex Variables

- Complex numbers:
- Roots of polynomial equations in one variable with integer (or equivalently) rational coefficients.

Complex Variables

- Complex numbers:
- Roots of polynomial equations in one variable with integer (or equivalently) rational coefficients.
- Alternate view: Define i such that $i^{2}=-1$

We then define complex numbers as follows:

$$
\{a+b i: a, b \in \mathbb{R}\}
$$

Complex Variables

- USE ALGEBRA!!
- Let a, b, c and d be real numbers.
- (a+bi)+(c+di)=a+c+(b+d)i
- (a+bi)-(c+di)=a-c+(b-d)i
- For multiplication:
- $(a+b i)^{*}(c+d i)=a c+a d i+b c i+b d i \wedge 2$

$$
=(a c-b d)+(a d+b c) i \text { since } i^{\wedge} 2=-1 .
$$

Complex Variables

Example:

- Let $z_{1}=1+2 i$ and $z_{2}=-3-5 i$.
- $\mathrm{Z}_{1}+\mathrm{Z}_{2}=-2-3 \mathrm{i}$
- $z_{1}-z_{2}=4+7 i$

$$
\begin{aligned}
z_{1} \cdot z_{2} & =(1+2 i) \cdot(-3-5 i) \\
& =-3-5 i-6-10 i^{2} \\
& =7-11 i
\end{aligned}
$$

Complex Variables

- To try:
- Let $z_{1}=2+5 i, z_{2}=6-8 i$.

Work out the following:

$$
z_{1}+z_{2} ; \quad z_{1}-z_{2} \quad z_{1} \cdot z_{2}
$$

Complex Variables

- Definition

Let $z=a+b i$ be a complex number. It's complex conjugate is the number $\bar{z}=a-b i$
Note:

$$
\begin{aligned}
z \cdot \bar{z} & =(a+b i) \cdot(a-b i) \\
& =a^{2}-a b i+a b i-b^{2} i^{2} \\
& =a^{2}+b^{2}
\end{aligned}
$$

Since $\mathrm{i}^{\wedge} 2=-1$.

Complex Variables

- Example:
- $1+i$ is the complex conjugate of $1-i$
- $-3-2 i$ is the comlpex conjugate of $-3+2 i$.

Complex Variables

- Note that we have multiplied two complex numbers to get a real number!
- We use complex conjugates in the division of complex numbers. The aim is to get rid of the terms involving i in the denominator

$$
\frac{a+b i}{c+d i}
$$

Complex Variables

- General Rule: Using i^2=-1.

$$
\begin{aligned}
\frac{(a+b i)}{(c+d i)} & =\frac{(a+b i)}{(c+d i)} \frac{(c-d i)}{(c-d i)} \\
& =\frac{a c-a d i+b c i-b d i^{2}}{c^{2}+d^{2}} \\
& =\frac{(a c-b d)+(b c-a d) i}{c^{2}+d^{2}}
\end{aligned}
$$

Complex Variables

- Example:

$$
\begin{aligned}
\frac{(1+2 i)}{(-3-5 i)} & =\frac{(1+2 i)}{(-3-5 i)} \frac{(-3+5 i)}{(-3+5 i)} \\
& =\frac{-3+5 i-6 i+10 i^{2}}{9+25} \\
& =\frac{-13-i}{34}
\end{aligned}
$$

Complex Variables

- To Try:
- What is $(2+5 i) /(6-8 i)$?
- Pauls Online Notes on Conjugate and Modulus

