
Fourier Notes
On discrete and continuous Fourier analysis, or how to add up waves to get anything you like.

Jim Mahoney, Marlboro College, Fall 1999

Discrete Fourier Series
Let xnbe coordinates on a uniform grid with spacing Dx over a length L = N Dx,  e.g. 

(1)
xn = n Dx , where 0 < n £ N and

Dx =
L

N.

Likewise, let ynbe a discrete set of points defined on the grid,  Yn = f HxnL, like this.

Figure 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x

y

y1

y2

y3

y4

y5
y6 y7 y8

y9

y10

We would like to express this function f  as a sum of waves -  sin and cosine functions, or complex exponentials.  

The longest wavelength Λ we will allow is L, the length of the x interval, since that will always give us solutions

which are periodic in L.  Essentially that means we are only considering functions such that f Hx + LL = f HxL.  (For

some problems, such as a rope which is fixed at both ends, one chooses instead 
Λ

2
= L; however, that is not what

we are doing here.)  

  Longest wavelength.

The shortest wavelength is 2 Dx, which corresponds to an oscillation up and down as fast as possible on the grid,

like this.

 ... Shortest wavelength.

Choosing  the  other  possible  wavelengths  to  match  the  other  available  grid  spacings  (3 Dx,  4 Dx,  ...),  we  find

N

2
discrete  wavelengths.   Since  we  also  have  two  independent  phases  (either  sin  and  cosine  or  positive  and

negative  complex  exponentials),  the  total  number  of  discrete  waves  is  just   N,  the  same  as  the  number  of

independent y values.  More on this in a moment.

It is convenient to label each wave by its wavenumber k =
2 Π

Λ
with a spacing Dk =

2 Π

L
.  Then the possible values

of k are
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2 Π
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with a spacing Dk =

2 Π

L
.  Then the possible values

of k are

(2)

kj =
2 Π

Λj

= j Dk = j
2 Π

L
= j

2 Π

N Dx
, where -

N

2
< j £

N

2
and

Dk =
2 Π

L
.

Let's look at the number of xnand k jvalues a bit more closely and count the number of independent quantities.  In

the first place, since f HxL is periodic, y0is the same as yN ; therefore, we only need n = 0, 1, 2, ..., N - 1.  Second,

the highest possible frequency is kmax =
Π

Dx
=

NΠ

L
has only one phase, not two.  That is because it is not possible

to  shift  sideways  by  a  half  cycle  at  that  frequency;  the  grid  spacing  is  not  small  enough.   Thus  j =
N

2
and

j = -
N

2
refer  to  the  same  wave.   This  would  appear  to  imply  that  there  are  only  N-1  different  values  of  k j.

However,  there is  one more value of k  which we have not yet  mentioned :  k = 0, which allows us to include a

"zero frequency" or "DC offset" term.

Furthermore, since x is periodic, we could have instead chosen x symmetric about x = 0 with 

(3)
xn = n Dx , where - N �2 < n £ N �2 ,

which  is  the  way  we'll  usually  write  these  limits.   But  equation  (1)  is  just  as  correct,  since  xN = x0and

x-N�2 = xN�2. 

With those details out of the way, we're now ready to define our discrete Fourier transform :

Please note that different authors put the factors of N  and 2 Π in different places; check your conventions before

plugging into someone else's equations.  I'm choosing conventions which (a) make the transition to the integral

forms clear, and (b) are commonly seen among physicists.  (Note that engineers tend to use the symbal " j" for

-1 , rather than "i", and also tend to use f  (frequency in units of cycles/sec) rather than the physicist's k or Ω

(radians/meter or radians/sec).

(4)
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(4)

Yn = â
j=-N�2+1

N�2

Cj ei kj xn
Dk

2 Π

Cj = â
n=-N�2+1

N�2

Yn e-i kj xn Dx

The symmetry of these two equations is quite striking.  Essentially what we have is a discrete description of the

function f  in terms of N coefficients,  which we can choose as either the numbers Ynor Cj,  which specify f  in

terms of x coordinate values or sinusoidal waves.  

By inserting our definitions of xn, Dx, kj, and Dk, we can also write this as 

(5)

Yn =
1

L
â

j=-N�2+1

N�2

Cj e2 P i Hj nL�N

Cj =
L

N
â

n=-N�2+1

N�2

Yn e-2 P i Hj nL� N .

If we then also re-define the Fourier coefficients to include the length L, 

(6)Gj = Cj � L

we get this even simpler form,

(7)

Yn = â
j=-N�2+1

N�2

Gj e2 P i Hj nL�N

Gj =
1

N
â

n=1

N

Yn e-2 P i Hj nL�N,

which  is  the  kind  of  expression  that  actually  gets  coded  into  computer  programs.   It  turns  out  that  there's  a

partiuclarly fast algorithm for calculating this when N is a power of 2, called the "Fast Fourier Transform".

Are these two really inverses of each other?  To check, substitute one inside the other - without forgetting that

the sum is over a dummy variable.  Replacing, for example, j with j ' in the first expression, and substituting into

the second gives
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Gj =
? 1

N
â

n=1

N

â
j’=-N�2+1

N�2

Gj’ e2 P i Hj’ nL�N e-2 P i Hj nL�N

which should be an identify if all this is really working.  Well, of course it is.  To see this, swap the order of the

summation signs, putting everything that depends on n on the inside.  Then

Gj =
? 1

N
â

j’=-N�2+1

N�2

Gj’ â
n=1

N

e2 P i Hj’-jL n�N

The part in the parenthesis is 0 if j ¹ j ', since in that case we have the sum of complex numbers spaced equally

around the unit  circle,  which all  cancel out.   On the other hand, if  j = j ',  then it's  just N,  since we're adding N

copies of e0which is 1.   So our result checks.

Gj =
? 1

N
â

j’=-N�2+1

N�2

Gj’ N ∆j-j’ = Gj .

An Example
So now that we have the discrete formulas, let's do an example.  A typical one is the "hat" function, 

f HxL = : B for - a £ x £ a

0 otherwise
:
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1

To discretize this, let's set set values like shown in this picture, with B = 1, Dx = 0.1, N = 60, a = 1.0.  Applying

the formulas above gives the following Fourier Transform:
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Here the purple shows the original function Yn  while the red and orange show the real and imaginary parts of the

Fourier  components  C j,  that  is,  the  amplitude  of  the  various  sinusoids  which  when  added  up  give  the  purple

curve.  Cool, eh?  As the purple Y  gets wider, the red C gets narrower, and vice-versa.  

You can in  fact  do this  sum analytically  -  but  I'll  leave that  up to  you to  try.   (Hint:  the  imaginary part  of  the

complex  exponential  cancels  out  becuase  it's  odd,  while  the  even  parts  add  up  in  a  series  which  you  can  sum

with the same formula you use to sum power series sums like  1/2 + 1/4 + 1/8 + ... ).

Linear Algebra
Now all that's well and good, but what's going on and where did those formulas come from anyway?  I'm glad

you asked.   We're actually looking at  a  change of basis here,  in just  exactly the same way that  the co-ordinate

description of a vector changes when you rotate your co-ordinate system.  Once we have the equations for that

kind of  transformation,  we'll  see  that  in  fact  they look just  like  the  ones we just  wrote  down -  and in  fact  that

explains why the Fourier Transform and Inverse Fourier Transform look alike, becuase they're both "rotations"

(forward and back) to a new basis.

So let's say we have a vector r
×

= @x, y, zD in the i
`
, j

`
 , k

`
 basis, which we would like to write in terms of a new

basis, say e1
`

, e2
`

, e3
`

.  In other words, we want to find a1, a2, a3  such that r
×

= a1 e1
`

+ a2 e2
`

+ a1 e3
`

.  How do we

get the a's?  Well if the e's are orthonormal - that is, if their dot product is 1 with themself and  0 with each other

- then it turns out to be pretty easy: we just dot both sides with each e in turn, like this:

(8)

r
×

= x i
`

+ y j
`

+ z k
`

e1
`

× r
×

= e1
`

× I x i
`

+ y j
`

+ z k
` M =
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(8)

e1
`

× r
×

= e1
`

× I x i
`

+ y j
`

+ z k
` M =

e1
`

× I a1 e1
`

+ a2 e2
`

+ a1 e3
` M = a1 e1

`
×e1

`
+ a2 0 + a3 0 = a1

or

a1 = x e1
`

× i
`
 + y e1

`
× j

`
 + z e1

`
× k

`
 

How  does  this  apply  to  the  Fourier  Series?   Quite  simply:  the  original  vector  is  our  set  of  number  @Yn D  that

describe  the  function,  and  the  new  basis  vectors  (as  written  in  the  x  basis)  are  the  sinusoids  ei k x.  Thus  the

formula for the Fourier C j 's is just the same as the last line in equation (8) above ; the complex exponentials are

the  basis  dot  products,  there's  a  sum  over  the  various  components  in  the  original  basis,  and  we  get  out  one

coefficient of the vector in the new basis.

(This needs to be fleshed out.)

All right, now on to what this looks like for continuous functions.

Continuous Fourier Integral
Well,  the  short  version  is  that  it's  just  the  same  as  equation  (4)  in  the  limit  where  dx ® 0 and L ® ¥.   The

equations look like this.

(9)

Y HxL = à
-¥

+¥

C HkL ei k x dk

2 Π

C HkL = à
-¥

+¥

Y HxL e-i k x dx

Here  the  Fourier  Coefficients  CHkL  give  the  (complex)  amplitude  of  a  continuous  range  of  possible  sinusoidal

functions, each with wavenumber k, which when added together give the original function YHxL. 

A  common  variation  on  this  theme  is  a  mixed  continuous/discrete  case,  in  which  typically  YHxL  is  continuous

over  a  finite  range of  x  values  with  a  fixed boundry condition  (i.e.  a  string).   This  kind of  situation leads  to  a

discrete set of Fourier Coefficients C j  which typically give the modes of vibration of the string.  Since this case

is well covered in most texts (including ours), I'll leave it out here.

More Examples
One particularly useful function is the Dirac Delta function ∆HxL ...
 - end - 

Scratch Space

<< DiscreteMath`KroneckerDelta`
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j = 0;

Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

N

j = 1; Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

0

j =.; Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

E
2 I j Π

N I-1 + EI j ΠM I1 + EI j ΠM

-1 + E
I j Π

N 1 + E
I j Π

N

a = H1 � NL Sum@ G@jD Exp@2 Pi I j nD, 8j, -N � 2 + 1, N � 2<D

Ú
j=-

N

2
+1

N

2 G@jD Exp@2 Π I j nD

N

Sum@ a Exp@ -2 Pi I j nD , 8n, 1, N<D

â
n=1

N

a Exp@-2 Π I j nD

â
n=1

N

H H1 � NL Sum@ G@jD Exp@2 Pi I j nD, 8j, -N � 2 + 1, N � 2<D L

Exp@-2 Π I j' nD

â
n=1

N 1

N
â

j=-
N

2
+1

N

2

G@jD Exp@2 Π I j nD Exp@-2 Π I j¢ nD

Doesn' t seem that Mathematica can convert

this sum of sums into a single sum by itself H! ? L
Disappointing.

dx = L � N

L

N
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dk = 2 Pi � L

2 Π

L

HN � 2L HdkL

N Π

L

dk dx

2 Π

N

sigma plot

sigma@x_D := H1 + Sign@a - xDL H1 + Sign@a + xDL �4

Plot@sigma@xD �. a -> 1, 8x, -3, 3<, PlotStyle -> Thickness@0.01DD

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

� Graphics �

à yn vs xnplot

xNums = TableA9j, xj=, 8j, 1, 10<E

881, x1<, 82, x2<, 83, x3<, 84, x4<, 85, x5<,
86, x6<, 87, x7<, 88, x8<, 89, x9<, 810, x10<<

yNums = TableA9Sin@.3 + j * 0.2D, yj=, 8j, 1, 10<E
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yText = Table@
8Text@yNums@@j, 2DD, 8xNums@@j, 1DD, yNums@@j, 1DD<D<, 8j, 1, 10< D

Show@Graphics@yTextD, PlotRange -> 880, 10<, 80, 1.2<<,

Axes -> 8True, True<, Ticks -> 8xNums, None<, AxesLabel -> 8x, y<D

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x

y

y1

y2

y3

y4

y5
y6 y7 y8

y9

y10

Plot@Sin@xD, 8x, 0, 2 Pi<, Ticks -> False, D

� Graphics �

ListPlot@Level@Table@81, -1<, 810<D, 82<D, Ticks ® False, Joined ® TrueD

� Graphics �

t = Table@81, 2<, 820<D

881, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<,
81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<,
81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<<
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t@@1DD

81, 2<

Level@t, 82<D

81, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2<

--- end of scratch -- -
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