## Complex Numbers and Inner Products : Fourier Transform warm-up

Jim Mahoney, Marlboro College, Feb 2011

1. $\quad 7 e^{0.3 i}=x+i y$. Find $x, y$.
2. $\quad 7+0.3 i=R e^{i \theta}$. Find $R, \theta$.
3. $(2+i)(3-i)=$ ?
4. Convert the complex numbers in the last problem to polar form. Show that in the multiplication, the angles add.
5. $(2+3 i)^{(1 / 3)}=$ ?
6. $\cos (1+i)=$ ?
7. $\quad i^{i}=$ ?

Define three vectors as follows :

$$
\begin{aligned}
& \hat{\boldsymbol{e}}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right) \\
& \hat{\boldsymbol{e}}_{2}=\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{\sqrt{2}}\right) \\
& \hat{\boldsymbol{e}}_{3}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)
\end{aligned}
$$

8. Show that these three vectors form an ortho-normal basis. In other words, that each has unit length,
and that they're all perpendicular. (Hint: all of this is done with the inner "dot" product.)
Sketch a picture of where they look like in the traditional $(x, y, z)$ space.
9. Let

$$
\overrightarrow{\boldsymbol{a}}=\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}=(1,2,3)
$$

Find the coordinates of $\overrightarrow{\mathbf{a}}$ in the $\hat{\boldsymbol{e}}$ basis.
That is, find three numbers $a_{1}, a_{2}, a_{3}$ such that

$$
\overrightarrow{\boldsymbol{a}}=a_{1} \hat{\boldsymbol{e}}_{1}+a_{2} \hat{\boldsymbol{e}}_{2}+a_{3} \hat{\boldsymbol{e}}_{3}=\sum a_{i} \hat{\boldsymbol{e}}_{i}
$$

Are we having fun yet?

