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Preface
Consider a stream of symbols such as Ha c b a a d a a d c ...L.  How much information is contained in such a stream?  
One way to approach this question is by imagining that we're receiving these symbols one at a time, and trying to 
guess which symbol will come next based on those alreaady sent.  If, for example, we notice that every time a "q" 
is sent that the next character is always a "u", then sending that "u" doesn't really tell us anything that we don't 
already expect.

Claude Shannon defined a notion of "information entropy" that gives a rigorous version of this approach in his 
classic paper " A mathematical theory of communication".  The purpose here is to summarize and explore some of 
his ideas.

Many discussions of this topic assume that a Markov process generates the sequence of symbols; that is, a set of 
conditional probabilities is given from which the stream is created.  Here we'll also do the reverse, extracting the 
conditional probabilities and appproximations to the entropy from a given finite sequence of symbols.

Definitions
First, here are notations for the alphabet of symbols and sequences of these symbols.

M number of distinct symbols in our alphabet8xi < 8a, b, c, ...< a finite set of symbols, 1 ≤ i ≤ M
x, y, z variables representing symbols from 8xi <
N number of symbols in a sequence SN
SN a b a ... c a a sequence of N symbols from alphabet 8xi < 
S a a b c a ... limit N Ø ¶ of SN  ; Shannon's "stream"

Second, notations for counting symbols, pairs, triples, and n-tuples, and the associated probabilities.  

If the stream is defined by a Markov process, then the probabilities that define that process are the fundamental 
building blocks, not the symbol counts.  In that case, we think of instances of SN  as generated by the probabilities.  
On the other hand, if we are given SN , we can estimate probabilities and conditional probabilities by counting the 
various k-tuples. 

To avoid edge effects in the counting, we'll assume a "periodic boundry condition", which takes  ..., SN , SN , ... 
as the best approximation to S given SN .  In other words, for any finite sequence SN , we find N different k-tuples 
by wrapping around from the end of the string to the beginning.  For example, if SN = Ha b c aL then the 4 pairs are Ha bL, Hb cL, Hc aL, Ha aL , and the 4 triples are Ha b cL, Hb c aL, Hc a aL, Ha a bL.

nHxL number of occurances of symbol x in SN
pHxL = nHxL êN probability of symbol x in SN

nHx yL number of occurances of adjacent pairs or 2-tuples H x y L
pHx yL = nHx yL êN probability of "x y" adjacent pairs (Shannon's pHx, yL)
nHx y zL number of occurances of adjacent triples or 3-tuples Hx y zL
pHx y zL = nHx y zL êN probability of "x y z" adjacent triples
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Now for conditional probability notation and concepts for a sequence Hx y zL.
pHy » xL = pHx yL ê pHxL the probability of  y given the previous symbol x  (Shannon's px HyL )
S
y

 pHy » xL = 1 for a given x, the probability of something coming after it is 1

S
x
pHxL pHy » xL = S

x
pHx yL = pHyL the probability of y is the same as pHsomething yL

pHz » x yL = pHx y zL ê pHx yL the probability of z given the preceding pair Hx yL
Given all that, we can now define a decreasing sequence of approximations to H .

H0 = - S
i=1

M H1 êML log2 H 1 êM L = log2  M zero'th order

H1 = -S
z
pHzL log2 pHzL first order

 H2 = -S
y

 9pHyL S
z

 8 pHz » yL log2 pHz » yL < = second order 

         = - S
y z
pHy zL log2 @pHy zL ê pHyLD

 
H3   = -S

x
 9pHxL S

y
 9pHy » xL S

z
 8pHz » x yL log2  pHz » x yL < = = third order 

         = - S
x y

 9 pHx yL S
z

 8 pHz » x yL log2 pHz » x yL <=
         = - S

x y z
pHx y zL log2 @ pHx y zL ê pHx yLD

         
H = H¶ = lim

kØ¶
Hk information entropy of S

 = bits of information per symbol

H êH0 (bits of info per symbol) / (max info per symbol)

1 - H êH0 redundancy fraction

Finally, if the stream is generated by a Markov process in which the probability of a symbol is determined by the 
preceding k symbols, then H = Hk+1  exactly.  Thus a zero-order Markov stream has H = H1 , a first-order 
Markov stream with each symbol's probability determined by its predecessor has H = H2 , and so on.

2 entropy.nb



Examples

‡ 1.  80, 1< with probabilities 81 ê 2, 1 ê 2<
If the alphabet is just 80, 1<, with independent probabilities

pH0L = pH1L = 1ÅÅÅÅ2 .
Then

H = H1 = - 1ÅÅÅÅ2  log2 H 1ÅÅÅÅ2 L - 1ÅÅÅÅ2  log2 H 1ÅÅÅÅ2 L  = 1,
since this is a 0-order Markov process.  (In other words, the probability of any symbol doesn't depend on any 
previous symbol.)  This implies that  a random string of 1's and 0's has 1 bit of information per symbol.  The 
maximum entropy per symbol is H0 = log2  2 = 1; therefore, the redundancy is 0%.  A stream of equally 
probably random 1's and 0's therefore cannot be compressed without losing information.

‡ 2.  8a, b, c, d< with probabilities 81 ê 2, 1 ê 4, 1 ê 8, 1 ê 8<
This example (and its encoding in section 2ii below) is from Shannon's paper.

Again consider a 0-order Markov process, in which each symbol's probability is indepdent of what's come before, 
this time with

pHaL = 1 ê 2 ,
pHbL = 1 ê 4 ,
pHcL = 1 ê8 ,
pHdL = 1 ê8 .

Then
H = H1 = - 1ÅÅÅÅ2  log2 H 1ÅÅÅÅ2 L - 1ÅÅÅÅ4  log2 H 1ÅÅÅÅ4 L - 1ÅÅÅÅ8  log2 H 1ÅÅÅÅ8 L - 1ÅÅÅÅ8  log2 H 1ÅÅÅÅ8 L = 1ÅÅÅÅ2 + 2ÅÅÅÅ4 + 3ÅÅÅÅ8 + 3ÅÅÅÅ8 =  7ÅÅÅÅ4 = 1.75
H0 =  log2 H4L = 2.0
redundancy = 1 - H êH0 = 1 - 7ê4ÅÅÅÅÅÅÅÅ2 = 1ÅÅÅÅ8 = 0.125

Thus a stream of such symbols carries 1.75 bits of information per symbol, as opposed to 2 bits per symbol if the 
probabilities were all equal.  The redundancy is 1/8; therefore, such a stream could be compressed to 7 ê8 its 
orginal size while still using the same alphabet.

To see this more explicitly, let's look at several binary encodings of these four symbols.

ü 2 i. 8 00 = a, 11 = b, 01 = c, 10 = d <
First let's consider a 2 bit encoding 8a, b, c, d< Ø 800, 11, 01, 10<.  With this encoding the stream of four letters 
turns into a stream of 1's and 0's which consider to be made up of "words" of two (0, 1) symbols.  For example, Hd c b aL would become H10 01 11 00L which consist of four words.

We might guess that since there are twice as many symbols there should be half as much information per symbol,
which would imply that the entropy of these 1's and 0's should turn out to be H = 1.75 ê 2 = 7ÅÅÅÅ8 = 0.875.  So let's
see 

We've already found the 0th order entropy for a 2 symbol encoding.
H0 = log2  2 = 1.

To find the higher order entropies will need the probabilities of various k-tuples of these 0's and 1's.

The probabilities for Ha, b, c, dL and therefore the words are
symbol probability 1st (0,1) 2nd (0,1)
a 1ÅÅÅÅ2 01 02
b 1ÅÅÅÅ4 11 12
c 1ÅÅÅÅ8 01 12
d 1ÅÅÅÅ8 11 02

so, averaging over the 1st and 2nd positions within the words, the probabilities for the individual 0's and 1's are
pH0L = 1ÅÅÅÅ2  pH01 L + 1ÅÅÅÅ2  pH02 L = 1ÅÅÅÅ2  H 1ÅÅÅÅ2 + 0 + 1ÅÅÅÅ8 + 0L + 1ÅÅÅÅ2  H 1ÅÅÅÅ2 + 0 + 0 + 1ÅÅÅÅ8 L = 5ÅÅÅÅ8 ,
pH1L = 1ÅÅÅÅ2  pH11 L + 1ÅÅÅÅ2  pH12 L = 1ÅÅÅÅ2  H 0 + 1ÅÅÅÅ4 + 0 + 1ÅÅÅÅ8 L + 1ÅÅÅÅ2  H 0 + 1ÅÅÅÅ4 + 1ÅÅÅÅ8 + 0L = 3ÅÅÅÅ8

where subscripts like 01 mean a 0 as the 1st symbol in a word.  (Note that with this encoding, the probabilties for 
the individual 0's and 1's are the same in the beginning and end of words.  In other words, pH01 L = pH02 L = pH0L  
and pH11 L = pH12 L = pH1L).
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With these numbers in hand we can calculate the 1st order entropy,

H1 = - 5ÅÅÅÅ8  log2  5ÅÅÅÅ8 - 3ÅÅÅÅ8  log2  3ÅÅÅÅ8  > 0.9544 .

One way to look at the probabilities of of pairs of 0's and 1's is to treat pairs within words differently than those 
across word boundries - after all, the statistics are different for alternating 0's and 1's in this encoding.  

The first symbol in each word doesn't depend on the last symbol of the previous word, so for those first symbols 
the second order entropy is the same as the first order entropy.  

H2 Hfirst symbolL = H1 > 0.9544

For the second symbol in each word, the conditional probabilities of the 2nd given the 1st are calculated as 
follows.

pH02 » 01 L = pH01 02 L ê pH01 L = H 1ÅÅÅÅ2 L ê H 5ÅÅÅÅ8 L = 4ÅÅÅÅ5
pH12 » 01 L = pH01 12 L ê pH01 L = H 1ÅÅÅÅ8 L ê H 5ÅÅÅÅ8 L = 1ÅÅÅÅ5
pH12 » 11 L = pH11 12 L ê pH11 L = H 1ÅÅÅÅ4 L ê H 3ÅÅÅÅ8 L = 2ÅÅÅÅ3
pH02 » 11 L = pH11 02 L ê pH11 L = H 1ÅÅÅÅ8 L ê H 3ÅÅÅÅ8 L = 1ÅÅÅÅ3

Therefore
H2 Hsecond symbolL =

- pH01 L HpH02 » 01 L log2  pH02 » 01 L + pH12 » 01 L log2  pH12 » 01 L L
- pH11 L HpH02 » 11 L log2  pH02 » 11 L + pH11 L pH12 » 11 L log2  pH12 » 11 LL

= - 5ÅÅÅÅ8 H 4ÅÅÅÅ5  log2  4ÅÅÅÅ5 + 1ÅÅÅÅ5  log2  1ÅÅÅÅ5 L - 3ÅÅÅÅ8 H 1ÅÅÅÅ3  log2  1ÅÅÅÅ3 + 2ÅÅÅÅ3  log2  2ÅÅÅÅ3 L
> 0.7956

The average of these two is then
H2 _average = HH2 Hfirst symbol in word L + H2 Hsecond symbol in wordLL ê2
= 1ÅÅÅÅ2  H- 5ÅÅÅÅ8  log2  5ÅÅÅÅ8 - 3ÅÅÅÅ8  log2  3ÅÅÅÅ8 L + 1ÅÅÅÅ2  H- 5ÅÅÅÅ8 H 4ÅÅÅÅ5  log2  4ÅÅÅÅ5 + 1ÅÅÅÅ5  log2  1ÅÅÅÅ5 L - 3ÅÅÅÅ8  H 1ÅÅÅÅ3  log2  1ÅÅÅÅ3 + 2ÅÅÅÅ3  log2  2ÅÅÅÅ3 LL
= 7ÅÅÅÅ8 bits of information per H0, 1L symbol

It isn't quite fair to call this the second order entropy, for we're treating every other bit differently.  Still, it's nice to 
see that the information per symbol is indeed what we expected when we use all the information available.

To find the rigorous second order entropy following Shannon's definition it would be better to treat each symbol 
the same, rather than doing a different calculation for the first and second symbols in each word of two symbols.  
Then since the joint probabilities of symbols at the end of one word and the beginning of the next are just the 
products of the independent single symbol probabilities, we have the following joint probabilities across word 
boundaries.

pH02 01 L = pH02 L pH01 L = 5ÅÅÅÅ8  5ÅÅÅÅ8 = 25ÅÅÅÅÅÅÅ64

pH12 11 L = pH12 L pH11 L = 3ÅÅÅÅ8  3ÅÅÅÅ8 = 9ÅÅÅÅÅÅÅ64

pH02 11 L = pH02 L pH11 L = 5ÅÅÅÅ8  3ÅÅÅÅ8 = 15ÅÅÅÅÅÅÅ64

pH12 01 L = pH12 L pH01 L = 3ÅÅÅÅ8  5ÅÅÅÅ8 = 15ÅÅÅÅÅÅÅ64
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Then the pairwise probabilities ignoring word boundaries are the averages of those within and across words, since 
in choosing a random pair of bits that pair is equally likely to be within one word or straddling a word boundry.

pH0 0L = 1ÅÅÅÅ2  H pH02 01 L + pH01  02 L L = 1ÅÅÅÅ2  H 25ÅÅÅÅÅÅÅ64 + 1ÅÅÅÅ2 L = 57ÅÅÅÅÅÅÅÅÅ128

pH1 1L = 1ÅÅÅÅ2  H pH12 11 L + pH11  12 L L = 1ÅÅÅÅ2  H 9ÅÅÅÅÅÅÅ64 + 1ÅÅÅÅ4 L = 25ÅÅÅÅÅÅÅÅÅ128

pH0 1L = 1ÅÅÅÅ2  H pH02 11 L + pH01  12 L L = 1ÅÅÅÅ2  H 15ÅÅÅÅÅÅÅ64 + 1ÅÅÅÅ8 L = 23ÅÅÅÅÅÅÅÅÅ128

pH1 0L = 1ÅÅÅÅ2  H pH12 01 L + pH11  02 L L = 1ÅÅÅÅ2  H 15ÅÅÅÅÅÅÅ64 + 1ÅÅÅÅ8 L = 23ÅÅÅÅÅÅÅÅÅ128

This implies that
pH0 » 0L = pH0 0L ê pH0L = H 57ÅÅÅÅÅÅÅÅÅ128 L ê H 5ÅÅÅÅ8 L = 57ÅÅÅÅÅÅÅ80

pH1 » 0L = pH0 1L ê pH0L = H 23ÅÅÅÅÅÅÅÅÅ128 L ê H 5ÅÅÅÅ8 L = 23ÅÅÅÅÅÅÅ80

pH1 » 1L = pH1 1L ê pH1L = H 25ÅÅÅÅÅÅÅÅÅ128 L ê H 3ÅÅÅÅ8 L = 25ÅÅÅÅÅÅÅ48

pH0 » 1L = pH1 0L ê pH1L = H 23ÅÅÅÅÅÅÅÅÅ128 L ê H 3ÅÅÅÅ8 L = 23ÅÅÅÅÅÅÅ48

which gives 

H2 =
- pH0L HpH0 » 0L log2  pH0 » 0L + pH1 » 0L log2  pH1 » 0L L - pH1L HpH0 » 1L log2  pH0 » 1L + pH1L pH1 » 1L log2  pH1 » 1LL

= - 5ÅÅÅÅ8 H 57ÅÅÅÅÅÅÅ80  log2  57ÅÅÅÅÅÅÅ80 + 23ÅÅÅÅÅÅÅ80  log2  23ÅÅÅÅÅÅÅ80 L - 3ÅÅÅÅ8 H 23ÅÅÅÅÅÅÅ48  log2  23ÅÅÅÅÅÅÅ48 + 25ÅÅÅÅÅÅÅ48  log2  25ÅÅÅÅÅÅÅ48 L
> 0.9154

Thus for this stream of 0's and 1's we have a decreasing series of approximate values of the entropy  8H0 , H1 , H2 , ...<> 81, 0.9544, 0.9154, ...<, which will asymptotically approach the true entropy H = 0.875.

ü 2 ii. 8 0 = a, 10 = b, 110 = c, 111 = d <
Now consider  a different binary encoding,  8a, b, c, d< Ø 80, 10, 110, 111<.   This variable length  scheme is an
example of Huffman coding, and can be visualized by the following tree.

entropy.nb 5



Since the  words  have  different  lengths,  how can  we tell which  word  a 0 or  1 belongs to when we decode?   The
answer is  that  because the  begining of each word  is unique,  there's  only one  way to decode  the words  correctly.
For example, Ha a b a c b aL encodes to H 0 0 1 0 0 1 1 0 1 0 0L.  To decode this, we start at the left and look at the first
character, which is a 0.  "a" is the only symbol which begins with 0, and so we have the first word, (0).  The next
character is another 0, and so again this must be an "a".  Next is a 1.  Since there isn't any word made up of just 1,
we append the next symbol to get (10), which we see is "b", and so on.  

The number of 0's and 1's it takes to encode a string with N  8a, b, c, d< symbols  is just the number of 0's and 1's
requirerd to code each letter times its expected frequency.  

N80,1< = @ 1 H 1ÅÅÅÅ2 L + 2 H 1ÅÅÅÅ4 L + 3 H 1ÅÅÅÅ8 L + 3 H 1ÅÅÅÅ8 L D N8a,b,c,d< = 1.75 N8a,b,c,d<  

Moreover,  this  string  of  0's  and  1's  really  does  look  entirely  random;  following  the  probabilities  rightwards  and
down the tree diagram makes that pretty clear:   First, the probability of a "0" or ("10", "110", "111") is 50/50,  so
the leftmost symbol has a 50/50 chance of being a zero or a one.  If it was a zero, then the next symbol starts the
same probabalities all over.  If a one, then we have an even chance between "10" or ("110","111"); again, a 50/50
chance of a zero or one in the next position - and so on.

Calculating  the  conditional  probabilities  looking  to  the  left,  the  preceding  digits,  is  tricker  but  gives  the  same
result.   The  trick is  to  start  by  calculating  the  probability  that  a  given  0  or  1  came from an a,  b,  c,  or  d.   These
probabilities are

pH0 from an aL = 1 H 1ÅÅÅÅ2 L ê @ 1 H 1ÅÅÅÅ2 L + 2 H 1ÅÅÅÅ4 L + 3 H 1ÅÅÅÅ8 L + 3 H 1ÅÅÅÅ8 L D
pH0 or 1 from bL = 2 H 1ÅÅÅÅ4 L ê @ 1 H 1ÅÅÅÅ2 L + 2 H 1ÅÅÅÅ4 L + 3 H 1ÅÅÅÅ8 L + 3 H 1ÅÅÅÅ8 L D

and so on.  I'll leave the rest as an exercise.
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ü 2 iii. SN = H a a b a c a ... L or (0 1 0 0 1 0 1 ... ) or ...

To see what this looks like numerically, I've written a perl program.

Turns  out  this isn't  too  hard  to do,  though the  convergence  is  a bit  tricky -  if  we pick too high an order  for  HN ,
then we need some pretty long strings.
Here's the picture of the results; the perl code is in "stream.pl"; pasting it here didn't do a good job keeping the text
formatting.

Workspace
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