
Fourier Notes
On discrete and continuous Fourier analysis, or how to add up waves to get anything you like.

Jim Mahoney, Marlboro College, Fall 1999

Discrete Fourier Series
Let xnbe coordinates on a uniform grid with spacing Dx over a length L = N Dx, e.g.

(1)
xn = n Dx , where 0 < n £ N and

Dx =
L

N.

Likewise, let ynbe a discrete set of points defined on the grid, Yn = f HxnL, like this.

Figure 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x

y

y1

y2

y3

y4

y5
y6 y7 y8

y9

y10

We would like to express this function f as a sum of waves - sin and cosine functions, or complex exponentials.

The longest wavelength Λ we will allow is L, the length of the x interval, since that will always give us solutions

which are periodic in L. Essentially that means we are only considering functions such that f Hx + LL = f HxL. (For

some problems, such as a rope which is fixed at both ends, one chooses instead
Λ

2
= L; however, that is not what

we are doing here.)

 Longest wavelength.

The shortest wavelength is 2 Dx, which corresponds to an oscillation up and down as fast as possible on the grid,

like this.

 ... Shortest wavelength.

Choosing the other possible wavelengths to match the other available grid spacings (3 Dx, 4 Dx, ...), we find

N

2
discrete wavelengths. Since we also have two independent phases (either sin and cosine or positive and

negative complex exponentials), the total number of discrete waves is just N, the same as the number of

independent y values. More on this in a moment.

It is convenient to label each wave by its wavenumber k =
2 Π

Λ
with a spacing Dk =

2 Π

L
. Then the possible values

of k are

The longest wavelength Λ we will allow is L, the length of the x interval, since that will always give us solutions

which are periodic in L. Essentially that means we are only considering functions such that f Hx + LL = f HxL. (For

some problems, such as a rope which is fixed at both ends, one chooses instead
Λ

2
= L; however, that is not what

we are doing here.)

 Longest wavelength.

The shortest wavelength is 2 Dx, which corresponds to an oscillation up and down as fast as possible on the grid,

like this.

 ... Shortest wavelength.

Choosing the other possible wavelengths to match the other available grid spacings (3 Dx, 4 Dx, ...), we find

N

2
discrete wavelengths. Since we also have two independent phases (either sin and cosine or positive and

negative complex exponentials), the total number of discrete waves is just N, the same as the number of

independent y values. More on this in a moment.

It is convenient to label each wave by its wavenumber k =
2 Π

Λ
with a spacing Dk =

2 Π

L
. Then the possible values

of k are

(2)

kj =
2 Π

Λj

= j Dk = j
2 Π

L
= j

2 Π

N Dx
, where -

N

2
< j £

N

2
and

Dk =
2 Π

L
.

Let's look at the number of xnand k jvalues a bit more closely and count the number of independent quantities. In

the first place, since f HxL is periodic, y0is the same as yN ; therefore, we only need n = 0, 1, 2, ..., N - 1. Second,

the highest possible frequency is kmax =
Π

Dx
=

NΠ

L
has only one phase, not two. That is because it is not possible

to shift sideways by a half cycle at that frequency; the grid spacing is not small enough. Thus j =
N

2
and

j = -
N

2
refer to the same wave. This would appear to imply that there are only N-1 different values of k j.

However, there is one more value of k which we have not yet mentioned : k = 0, which allows us to include a

"zero frequency" or "DC offset" term.

Furthermore, since x is periodic, we could have instead chosen x symmetric about x = 0 with

(3)
xn = n Dx , where - N �2 < n £ N �2 ,

which is the way we'll usually write these limits. But equation (1) is just as correct, since xN = x0and

x-N�2 = xN�2.

With those details out of the way, we're now ready to define our discrete Fourier transform :

Please note that different authors put the factors of N and 2 Π in different places; check your conventions before

plugging into someone else's equations. I'm choosing conventions which (a) make the transition to the integral

forms clear, and (b) are commonly seen among physicists. (Note that engineers tend to use the symbal " j" for

-1 , rather than "i", and also tend to use f (frequency in units of cycles/sec) rather than the physicist's k or Ω

(radians/meter or radians/sec).

(4)

2 fourier_notes.nb

(4)

Yn = â
j=-N�2+1

N�2

Cj ei kj xn
Dk

2 Π

Cj = â
n=-N�2+1

N�2

Yn e-i kj xn Dx

The symmetry of these two equations is quite striking. Essentially what we have is a discrete description of the

function f in terms of N coefficients, which we can choose as either the numbers Ynor Cj, which specify f in

terms of x coordinate values or sinusoidal waves.

By inserting our definitions of xn, Dx, kj, and Dk, we can also write this as

(5)

Yn =
1

L
â

j=-N�2+1

N�2

Cj e2 P i Hj nL�N

Cj =
L

N
â

n=-N�2+1

N�2

Yn e-2 P i Hj nL� N .

If we then also re-define the Fourier coefficients to include the length L,

(6)Gj = Cj � L

we get this even simpler form,

(7)

Yn = â
j=-N�2+1

N�2

Gj e2 P i Hj nL�N

Gj =
1

N
â

n=1

N

Yn e-2 P i Hj nL�N,

which is the kind of expression that actually gets coded into computer programs. It turns out that there's a

partiuclarly fast algorithm for calculating this when N is a power of 2, called the "Fast Fourier Transform".

Are these two really inverses of each other? To check, substitute one inside the other - without forgetting that

the sum is over a dummy variable. Replacing, for example, j with j ' in the first expression, and substituting into

the second gives

fourier_notes.nb 3

Gj =
? 1

N
â

n=1

N

â
j’=-N�2+1

N�2

Gj’ e2 P i Hj’ nL�N e-2 P i Hj nL�N

which should be an identify if all this is really working. Well, of course it is. To see this, swap the order of the

summation signs, putting everything that depends on n on the inside. Then

Gj =
? 1

N
â

j’=-N�2+1

N�2

Gj’ â
n=1

N

e2 P i Hj’-jL n�N

The part in the parenthesis is 0 if j ¹ j ', since in that case we have the sum of complex numbers spaced equally

around the unit circle, which all cancel out. On the other hand, if j = j ', then it's just N, since we're adding N

copies of e0which is 1. So our result checks.

Gj =
? 1

N
â

j’=-N�2+1

N�2

Gj’ N ∆j-j’ = Gj .

An Example
So now that we have the discrete formulas, let's do an example. A typical one is the "hat" function,

f HxL = : B for - a £ x £ a

0 otherwise
:

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

To discretize this, let's set set values like shown in this picture, with B = 1, Dx = 0.1, N = 60, a = 1.0. Applying

the formulas above gives the following Fourier Transform:

4 fourier_notes.nb

Here the purple shows the original function Yn while the red and orange show the real and imaginary parts of the

Fourier components C j, that is, the amplitude of the various sinusoids which when added up give the purple

curve. Cool, eh? As the purple Y gets wider, the red C gets narrower, and vice-versa.

You can in fact do this sum analytically - but I'll leave that up to you to try. (Hint: the imaginary part of the

complex exponential cancels out becuase it's odd, while the even parts add up in a series which you can sum

with the same formula you use to sum power series sums like 1/2 + 1/4 + 1/8 + ...).

Linear Algebra
Now all that's well and good, but what's going on and where did those formulas come from anyway? I'm glad

you asked. We're actually looking at a change of basis here, in just exactly the same way that the co-ordinate

description of a vector changes when you rotate your co-ordinate system. Once we have the equations for that

kind of transformation, we'll see that in fact they look just like the ones we just wrote down - and in fact that

explains why the Fourier Transform and Inverse Fourier Transform look alike, becuase they're both "rotations"

(forward and back) to a new basis.

So let's say we have a vector r
×

= @x, y, zD in the i
`
, j

`
 , k

`
 basis, which we would like to write in terms of a new

basis, say e1
`

, e2
`

, e3
`

. In other words, we want to find a1, a2, a3 such that r
×

= a1 e1
`

+ a2 e2
`

+ a1 e3
`

. How do we

get the a's? Well if the e's are orthonormal - that is, if their dot product is 1 with themself and 0 with each other

- then it turns out to be pretty easy: we just dot both sides with each e in turn, like this:

(8)

r
×

= x i
`

+ y j
`

+ z k
`

e1
`

× r
×

= e1
`

× I x i
`

+ y j
`

+ z k
` M =

fourier_notes.nb 5

(8)

e1
`

× r
×

= e1
`

× I x i
`

+ y j
`

+ z k
` M =

e1
`

× I a1 e1
`

+ a2 e2
`

+ a1 e3
` M = a1 e1

`
×e1

`
+ a2 0 + a3 0 = a1

or

a1 = x e1
`

× i
`
 + y e1

`
× j

`
 + z e1

`
× k

`

How does this apply to the Fourier Series? Quite simply: the original vector is our set of number @Yn D that

describe the function, and the new basis vectors (as written in the x basis) are the sinusoids ei k x. Thus the

formula for the Fourier C j 's is just the same as the last line in equation (8) above ; the complex exponentials are

the basis dot products, there's a sum over the various components in the original basis, and we get out one

coefficient of the vector in the new basis.

(This needs to be fleshed out.)

All right, now on to what this looks like for continuous functions.

Continuous Fourier Integral
Well, the short version is that it's just the same as equation (4) in the limit where dx ® 0 and L ® ¥. The

equations look like this.

(9)

Y HxL = à
-¥

+¥

C HkL ei k x dk

2 Π

C HkL = à
-¥

+¥

Y HxL e-i k x dx

Here the Fourier Coefficients CHkL give the (complex) amplitude of a continuous range of possible sinusoidal

functions, each with wavenumber k, which when added together give the original function YHxL.

A common variation on this theme is a mixed continuous/discrete case, in which typically YHxL is continuous

over a finite range of x values with a fixed boundry condition (i.e. a string). This kind of situation leads to a

discrete set of Fourier Coefficients C j which typically give the modes of vibration of the string. Since this case

is well covered in most texts (including ours), I'll leave it out here.

More Examples
One particularly useful function is the Dirac Delta function ∆HxL ...
 - end -

Scratch Space

<< DiscreteMath`KroneckerDelta`

6 fourier_notes.nb

j = 0;

Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

N

j = 1; Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

0

j =.; Sum@ Exp@2 Pi I j k � ND, 8k, 1, N<D

E
2 I j Π

N I-1 + EI j ΠM I1 + EI j ΠM

-1 + E
I j Π

N 1 + E
I j Π

N

a = H1 � NL Sum@ G@jD Exp@2 Pi I j nD, 8j, -N � 2 + 1, N � 2<D

Ú
j=-

N

2
+1

N

2 G@jD Exp@2 Π I j nD

N

Sum@ a Exp@ -2 Pi I j nD , 8n, 1, N<D

â
n=1

N

a Exp@-2 Π I j nD

â
n=1

N

H H1 � NL Sum@ G@jD Exp@2 Pi I j nD, 8j, -N � 2 + 1, N � 2<D L

Exp@-2 Π I j' nD

â
n=1

N
Ú

j=-
N

2
+1

N

2 G@jD Exp@2 Π I j nD Exp@-2 Π I j¢ nD

N

Doesn' t seem that Mathematica can convert

this sum of sums into a single sum by itself H! ? L
Disappointing.

dx = L � N

L

N

fourier_notes.nb 7

dk = 2 Pi � L

2 Π

L

HN � 2L HdkL

N Π

L

dk dx

2 Π

N

sigma plot

sigma@x_D := H1 + Sign@a - xDL H1 + Sign@a + xDL �4

Plot@sigma@xD �. a -> 1, 8x, -3, 3<, PlotStyle -> Thickness@0.01DD

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

� Graphics �

à yn vs xnplot

xNums = TableA9j, xj=, 8j, 1, 10<E

881, x1<, 82, x2<, 83, x3<, 84, x4<, 85, x5<,
86, x6<, 87, x7<, 88, x8<, 89, x9<, 810, x10<<

yNums = TableA9Sin@.3 + j * 0.2D, yj=, 8j, 1, 10<E

8 fourier_notes.nb

yText = Table@
8Text@yNums@@j, 2DD, 8xNums@@j, 1DD, yNums@@j, 1DD<D<, 8j, 1, 10< D

Show@Graphics@yTextD, PlotRange -> 880, 10<, 80, 1.2<<,

Axes -> 8True, True<, Ticks -> 8xNums, None<, AxesLabel -> 8x, y<D

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x

y

y1

y2

y3

y4

y5
y6 y7 y8

y9

y10

Plot@Sin@xD, 8x, 0, 2 Pi<, Ticks -> False, D

� Graphics �

ListPlot@Level@Table@81, -1<, 810<D, 82<D, Ticks ® False, Joined ® TrueD

� Graphics �

t = Table@81, 2<, 820<D

881, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<,
81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<,
81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<, 81, 2<<

fourier_notes.nb 9

t@@1DD

81, 2<

Level@t, 82<D

81, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2<

--- end of scratch -- -

10 fourier_notes.nb

