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1 Introduction

Themes so far in the class have included certainty and persuasion. In this
section of the class we’ll study some probability theory and how this can be
used, and misused, in arguments. The first job is to understand the basics
of probability; these notes are written to try and achieve this.

Going back to the origins of this course, and also the origins of probability
theory, we consider the mathematics of dice behaviour. What do we expect to
happen? Can we judge how likely a particular outcome is? What strategies
arise from dice-based play? How do we evaluate these strategies? We’ll
consider these questions in the particular context of the game Pig (described
in Secton 3). Of course, the lessons learnt have far wider application. In
particular, I hope the tools we develop will help when designing your own
games, when evaluating arguments that use probability and, of course, when
indulging in the noblest of mathematical pursuits: scamming money out of
those less numerate than you.

∗These notes are adapted from a similar set written for the Games Theorists Play
tutorial last semester. Those original notes are more concerned with dice in games and
include some more theory and examples in the context of the game Heroscape. I’m happy
to share a copy of the original notes with anyone who is interested.

1



I’ll soft-pedal the formal proofs in favour of a practical understanding: while
a more formal approach is valuable for many reasons the principle goal for
us is to play with the concepts. Before getting stuck into Pig, let’s look at
five fundamental rules of probability from which the rest of our discussion
will flow.

2 Five basic rules

An event is a precisely defined potential outcome in a given situation. Exam-
ples include getting a 6 when rolling a single standard die, rolling a double
on a pair of dice and getting at least three heads when tossing ten coins at
once. We talk of the “probabilities” of events; the five rules capture what it
is we mean by this. We denote the probability of an event X by P (X).

Rule 1 For any event X we have 0 ≤ P (X) ≤ 1. If P (X) = 0 then the
event is impossible; if P (X) = 1 then the event is certain.

This rule simply says that probability operates on a scale from zero to one,
with zero probability meaning that the event cannot happen and a probability
of one meaning that the event is certain.

Example 1 Roll a standard die and let X be the outcome. Then we have
P (X = 7) = 0 and P (X ≤ 6) = 1. Nothing profound here: it’s impossible
to roll a 7 on regular die; it’s certain that you’ll roll at most a 6. You knew
this already, but it’s good to see the notation in action in familiar situations.

Our next rule gives meaning to probabilities that lie between zero and one.

Rule 2 If there are n equally likely outcomes then the probability of any one
outcome is 1

n
.

2



Example 2 Roll a standard die and let X be the outcome. Also, abbreviate
P (X = 1) by P (1) and so on. We have

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =
1

6
.

Similarly,

P (X is even) = P (X is odd) =
1

2
.

The “equally likely” condition is important here. When rolling two dice the
probability of a total of 3 is different to that of rolling a total of 7. Rules 4
and 5 will lead to an understanding of this situation.

Rule 3 says “something happens”:

Rule 3 The sum of the probabilities all of the different possible basic out-
comes is 1.

Example 3 Roll that standard die again. We have:

P (1) + P (2) + P (3) + P (4) + P (5) + P (6) = 1.

Rule 3 suggests that we can add up probabilities. For example, let E be the
event that we roll at least one 6 when we roll two dice in turn. We might
hope that:

P (E) =
1

6
+

1

6
=

1

3
.

Taking this hope further, let F be the event that we roll at least one 6 when
we roll seven dice in turn.

P (F ) =
1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
=

7

6
> 1.

Oops. What went wrong? The problem is that we gave undue weight to the
situation in which more than one die comes up with a 6. The probability
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Table 1: Outcomes when rolling two dice

1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

P (E) that we get a six at least once on two dice needs to be smaller: con-
sulting Table 1 we see that P (E) = 11

36
. Only 11 of the “basic outcomes”

include a 6, not the 12 we’d expect from our näıve hope.

However, all is not lost. From this unsuccessful addition-of-probabilities ex-
periment we can salvage Rule 4 that tells when we can add probabilities.
Call two events mutually exclusive if they cannot happen simultaneously. So,
rolling a 3 and rolling a 4 are mutually exclusive events when rolling a stan-
dard die, whereas when rolling two dice in turn rolling a 6 on the first and
rolling a 6 on the second are not mutually exclusive as both can happen.

Rule 4 If X and Y are mutually exclusive events then P (X or Y ) = P (X)+
P (Y ).

Example 4 Let’s roll two dice again with Rule 4 to hand. Again, let E be
the event that we roll at least one six. We can divide E into three mutually
exclusive possibilities:

• A: we roll a 6 on the first die but not the second,

• B: we roll a 6 on the second die but not the first,

• C: we roll a 6 on both dice.
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Table 1 tells us the probability of each of these events. P (A) = 5
36

, P (B) = 5
36

and P (C) = 1
36

and Rule 4 then gives

P (E) = P (A) + P (B) + P (C) =
5

36
+

5

36
+

1

36
=

11

36

which we know to be the correct answer.

Fired up with enthusiasm, one may now consider P (F ) as defined above:
what is the probability that we roll at least one 6 when we roll seven dice in
turn. More general questions are now also answerable: what is the probability
that we roll at least four 6s when we roll ten dice? At least fourteen 6s when
we roll twenty-three dice? And so on. While these are theoretically within
reach with our current toolkit, some more results will make the job much
easier.

Before Rule 5, here is an immediate consequence of the rules we’ve seen so
far, where “not X” is the event that X does not happen:

Corollary 1 For any event X, we have P (X) + P (not X) = 1.

This corollary will frequently be useful.

Example 5 Corollary 1 gives us a more efficient way to solve the problem
of Example 4. Let D be “not E”: the event that we do not roll at least one 6.
Put differently, D is the event that we roll no sixes. Now P (D) can be read
from the table as 25

36
and we have

P (E) = 1− P (D) = 1− 25

36
=

11

36

as required.

Maybe there was not such a saving in effort with this example, but in con-
junction with Rule 5 this technique will bring many more problems within
range.
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One more definition before Rule 5. Two events X and Y are independent
if whether or not X occurs has no bearing on P (Y ). Whether a 6 is rolled
on each of two dice are independent events. The probability of a 6 on the
second die is 1

6
regardless of the outcome on the first die.1

Rule 5 If X and Y are independent then P (X and Y ) = P (X)× P (Y ).

For the final time, let’s look at the probability of at least one 6 during
successive die rolls.

Example 6 Rule 5 allows us to perform these calculations without recourse
to the tabulation of all of the outcomes when two dice are rolled. This holds
out (justified) hope that we can move towards more complex situations such
as the seven dice example. Consider D as defined above. Knowing that
P (not 6) = 1− 1

6
= 5

6
when rolling a single die, we calculate that

P (D) =
5

6
× 5

6
=

25

36

and may proceed as in the previous example.

Example 7 Now let’s return to P (F ). What is the probability that at least
one 6 is rolled when seven dice are rolled in turn? While it is possible to
enumerate the possibilities and calculate their various probabilities, we more
efficiently use the technique of the last example. Let G be the probability that
we roll no 6s on the seven dice. Rule 5 gives

P (G) =
5

6
× 5

6
× 5

6
× 5

6
× 5

6
× 5

6
× 5

6
= 0.279

and now P (F ) = 1− P (G) = 0.721 by Corollary 1. In other words, there is
about a 72% chance of rolling at least one 6 when rolling seven dice.

1Note: this is a departure from the usual presentation of probability theory. Most
authors present the more fundamental notion of “conditional probability” and work up to
independence as a consequence.
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That completes our grounding in probability. Not all questions are yet an-
swerable (or, at least, easily answerable): the probability that we roll at least
four 6s when we roll ten dice, for example, needs a little more theory to be
tractable.

Before continuing to the particular setting of Pig, here are a few exercises
for you to practise the techniques of this section.

Exercises

1. What is the probability of rolling a number less than 5 on a single die?

2. Roll two dice. What is the probability of each of the following events?

a. Rolling a total of exactly 5?
b. Rolling a total of at most 5?
c. Rolling a double?
d. Rolling exactly one 4?
e. Rolling at least one 4?
f. Rolling at least one 4 or at least one 5?

3. What is the probability of rolling at least one 6 when you roll four dice?
When rolling ten dice? How many dice do you need to roll to have at least
a 90% chance of rolling a 6? A 99% chance?

4. In one of the earliest published works on the theory of probability Galileo
investigated a claim common among gamblers of the time that when rolling
three dice a total of 10 arose more commonly than a total of 9. Were the
gamblers correct? [1]
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3 Pig

Before Pig here’s a much simpler game. Honest Bob tosses a coin. If it’s a
head you win $10, if it’s a tail you lose. Honest Bob is charging $8 to play,
do you take him up on the offer? How about if he was charging $2? $5? If
you answered “no”, “yes”, “maybe” (in that order) then you already have
an intuitive grasp of “expected values”.

Let X1, X2, . . . , Xn be the n possible (mutually exclusive) outcomes in some
situation. Let v1, v2, . . . , vn be the values that each of the outcomes is worth
to us respectively. We then define the expected value of the game, E(G), by

E(G) = v1P (X1) + v2P (X2) + · · ·+ vnP (Xn).

In words, we’ve multiplied the probability of each event by its value and
added it all up.

Let’s go back to Honest Bob to get a sense of what this expected value thingy
does. Let X1 be heads and X2 be tails. Then, in the first example, v1 = 2
because if heads is the outcome we win $2 ($10 winnings minus the $8 to
play). Similarly, v2 = −8. Now,

E(G) = (2× 0.5) + (−8× 0.5) = 1− 4 = −3

(the 0.5s are the probabilities of tossing a head or a tail). An expected value
of −$3 means that, over the long term, if you keep playing the game, you’ll
lose about $3 per game on average. Of course, there is no one game in which
you lose exactly $3: sometimes you’ll come $2 to the good; other times you’ll
lose $8. However, if you play a bajillion times you can expect to be about
three bajillion dollars down when you’re done.

Running the same analysis on the other two versions of the game, we find
that the expected value is $3 for the $2-to-play game and $0 for the $5-to-play
game. So, at $2-to-play we make a profit in the long-term. At $5-to-play we
break even. Expected values give us a sense of the best choice to make if we
are in the situation of making the same choice again and again. Often, the
same choice is the best in the instance when you just make that choice once.
Given one go at Honest Bob’s game, the “no”, “yes”, “maybe” approach to
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the three options dictated by the expected value calculations is probably the
way to go for individual games too.

The tension between expected values that tell you the best choice with respect
to return in the long-run and more immediate concerns is—in a theory of mine
formed during the tutorial last semester that inspired this class—a crucial
aspect of generating meaningful play in dice games.

So, our rule-of-thumb will be that a positive expected value is good and a
negative expected value is bad. In situations with more options, the higher
the expected value the better. With that in mind, let’s turn to Pig. Quoting
Salen and Zimmerman [3, p. 182] quoting Knizia [2], here are the rules of
Pig:

Object: The aim of the game is to avoid rolling 1s and to be the first player who reaches 100 points or

more.

Play: One player begins, then play progresses clockwise. On your turn, throw the die:

· if you roll a 1, you lose a turn and do not score.

· if you roll any other number, you receive the corresponding points.

As long as you receive points you can throw again, and again. Announce your accumulated points so that

everyone can easily follow your turn. You may throw as often as you wish. Your turn ends in one of two

ways:

· If you decide to finish your turn before you roll a 1, score your accumulated points on the notepad. These

points are now safe for the rest of the game.

· If you roll a 1, you lose your turn and your accumulated points.

Record all scores on the notepad and keep running totals for each player. The first player to reach 100

points or more is the winner.

Will expected value considerations let us recreate the Pig strategy that Salen
and Zimmerman [3, p. 183] report that Knizia calculates as best for Pig?
That is, stop rolling once you’ve amassed 20 or more points in a turn.

At any point within a turn there are two options: roll or do not roll (“stick”).
We’ll denote them R and S respectively. Suppose you have k points at this
point. We’ll write E(R|k) for the expected value of strategy R given that we
have k points and E(S|k) for the non-rolling analogue.
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Example 8 Suppose we have 12 points so far this turn and we must choose
whether to roll or stick. What are the expected values for each strategy?
Sticking is easy to calculate. If we stick then we bank our points: E(S|12) =
12. Now suppose that we roll. The probability of a 1 is 1

6
and in this case we

lose our 12 points, a value of 0. The probability of a 2 is 1
6

and this gives us
14 points; the probability of a 3 is 1

6
and this moves us to 15; and so on.

E(R|12) = (0×1

6
)+(14×1

6
)+(15×1

6
)+(16×1

6
)+(17×1

6
)+(18×1

6
) = 13.333.

As 13.333 > 12 our expected value is maximised if we roll again.

Example 9 Suppose now that we have 30 points on the turn. E(S|30) = 30
and running the numbers as before we find that E(R|30) = 27.5. In this case
we are better off sticking.

We could continue in the vein of these two examples and zero in on the precise
number at which the cut-off between rolling and sticking occurs. However,
we can be a little more efficient. Let c be that cut-off number. When we
have c points during a turn the expected value will be the same whether we
roll or stick (why?). That is, E(R|c) = E(S|c). Therefore

(0×1

6
)+((c+2)×1

6
)+((c+3)×1

6
)+((c+4)×1

6
)+((c+5)×1

6
)+((c+6)×1

6
) = c.

Simplifying the left hand side, this reduces to

5c + 20

6
= c

and hence c = 20. Exactly what Knizia prescribes!

Here is where we meet that tension between expected values and best move
again. Early on when there are many moves to go and the goal is to get points
on the board as quickly and reliably as possible, following the stick-on-20-
and-higher rule will be the best strategy. However, if your opponent has
99 maybe it’s worth taking more risks; if you’re comfortably ahead, maybe
taking fewer risks is a better strategy.
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Exercises

1. Mathematics for fun and profit. Choose a non-cubic Platonic solid (all
of which are commonly used for dice; D4, D8, D12 and D20 are the nerdy
names for them). You can play Pig with your choice of die. Perform a similar
analysis to that in this section for the “D6”; borrow your chosen die from
Eric; win money and/or favours from your friends.

2. Consider these alternative pig dice:
a. A six-sided die with sides 1, 1, 5, 5, 6, 6,
b. A six-sided die with sides 1, 1, 1, 1, 12, 36,
c. A twelve-sided die with sides 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5.
For each of these dice analyse the expected values as we did for a regular die.
Given the choice against a player using a standard die, which one would you
choose?

3. Wild Boar is played as follows: Each player selects a die from the choice
of varied dice (one die is a standard six-sider; some have different numbers
of sides; they tend to have different values on each side; at least one has
a negative number on at least one side). Once each player has a die, they
follow the rules of Pig with each player using his/her own die. Design some
fair dice to go in the bag. Why are they fair? Is it possible to have a fair die
in which one side has the number 100? Which range of dice as the choices do
you think will lead to the most meaningful play? [Dice are regularly made in
the shape of the Platonic solids, making 4, 6, 8, 12 and 20 siders all common.
However, by using “spinners” (or computers) rather than dice, it is easy to
have something that acts like a 51-sided die (or any other number). Feel free
to experiment with strange numbers of sides in this exercise.]

4. Building on the previous two exercises, design a Pig-like game in which
players use different dice at different points of the game.
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4 Where to now?

Real life is more complicated than Pig (you may already have realised this).
However, I maintain that some of the tools and insights that we now have can
be used to better understand real-life issues. Over the next week we’ll look at
instances of probability used in argument, and at how a better understanding
of probability can help us avoid some flaws in reasoning.
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