
Adventures in C Programming

Noah Bedford

May 5, 2013

1



Things I’ve learned this semester:
• The ternary if operator has the format

variable = condition? value_if_true : value_if_false

• A pointer is an address in memory

• C’s errors are cryptic

• How to do mutually recursive functions

I liked how these things worked:
C is much faster than Python (the only other language I’ve spent much time with)
The XOR swap (x = x ^ y, y = x ^ y, x = x ^ y) is a very clever way to not
store anything in memory while swapping two variables. I like the way the ternary
if operator works.

I would have done this differently:
If I were Dennis Ritchie I would have put in tail recursion, duct-typing, closures,
objects, the ability to declare arrays without having to specify how much memory
they use, etc. To be fair, when he was writing the language, all of this either didn’t
exist or was super new, and the memory thing means that C would be higher level,
so it’s a lot like any sort of time travel question– maybe implementing C that way
would have ruined modern programming.

My favourite programs from this semester:
Here’s my program for computing factorials:

1 #include <stdio.h>
2

3 int main(void){
4 int input, output;
5 scanf("%d", &input);

2



6 int factorial(input){
7 if (input == 1){
8 return 1;
9 }

10 else {
11 return input * factorial(input - 1);
12 }
13 }
14 output = factorial(input);
15 printf("%d\n", output);
16 return 0;
17 }

Here’s my program which approximates e (it doesn’t use a bignum library):

1 #include <stdio.h>
2 // compute e using limn→∞ (1 + 1

n
)n

3 float mypow(float x, int y){
4 if (y == 0){
5 return 1;
6 }
7 if (y == 1){
8 return x;
9 }

10 else {
11 return x * mypow(x, y - 1);
12 }
13 }
14

15 float e(float n){
16 return mypow((1+1/n),n);
17 }
18

19 int main(){
20 float n = 1000;
21 printf("%f\n",e(n));
22 return 0;
23 }

3



The hardest thing I did:
I learned how to use basic functions of libGMP (a big number library). It was
difficult because it’s documented mostly by listing its functions and what arguments
they take and not with any explanation. Here’s a short example program:

1 // stores ≈ π and ≈
√
π using GMP

2 #include <stdio.h>
3 #include <gmp.h>
4

5 int main(){
6 mpf_t pie;
7 mpf_t sqrtpie;
8 mpf_set_default_prec(1000); // set default precision to 1000 bits
9 mpf_init(pie);

10 mpf_init(sqrtpie);
11 mpf_set_str(pie, "3.14159265358979323846264338327950288419716939937510582097494459230", 10); // set a signed int in base 10 to a str
12 gmp_printf ("%.40Ff\n", pie);
13 //mpf_out_str(NULL, 10, 40, pie); // give me 40 digits of a base 10 string of a number
14 mpf_sqrt (sqrtpie, pie);
15 gmp_printf ("%.40Ff\n", sqrtpie); // Turns out gmp_printf is way easier
16 return 0;
17 }

4


