
Computational approaches to finding pairs of latin
squares with maximal orthogonality, row
completeness, and diagonal completeness

Sam Auciello

01 May 2013

I. Introduction

The objective of my project was to apply computational search techniques
to the problem described in Crossover designs in the presence of carry-over
effects from two factors by Lewis and Russell.[1] A summary of this problem
follows.

The goal is to find a design for a particular type of experiment that will
minimize particular forms of systematic bias. For our purposes, a design
consists of a pair of latin squares A and B of order n. A latin square of
order n is an n × n grid with each cell filled in with one of n symbols such
that each row and column of the grid contains each symbol exactly once.
Here is an example latin square of order 3:

0 1 2
1 2 0
2 0 1

A (somewhat contrived) example of the sort of experiment that could ben-
efit from these designs follows. We have n types of cheese, n types of wine,
and n impartial judges. We want to determine which combination of one
cheese and one wine the judges like best. With an unlimited supply of each
wine and cheese, each judge could simply try each of the n2 combinations.
Unfortunately we might only have n servings of each cheese and wine, or our
judges may only have time to try n combinations, or it may for some other
reason be prohibitively expensive to have more than n2 trials. We can set
up the experiment with a series of n trials by constructing a pair of order n

1

latin squares A and B. In trial i judge j will try the combination of cheese
Ai,j and wine Bi,j .

By constraining both grids in the design to being latin squares, we make sure
of two things. Firstly, we can be certain that each judge tries each cheese and
each wine once. Secondly, we can be certain that each wine and each cheese
will be tried exactly once in each time slot. This will eliminate systematic
bias from, for example, always trying cheddar last or only having one judge
try Merlot.

In this paper I talk about a property of multisets that I will call redun-
dancy. The redundancy of a multiset is the minimum number of elements
that must be removed from it to make all of its elements distinct.

A latin square A is considered row complete if the multiset of ordered pairs
{(Ai−1,j , Ai,j) | 1 ≤ i < n, 0 ≤ j < n} has a redundancy of 0. That is to say
that each pair of adjacent symbols in the square occurs exactly once. Here
is an example of a row complete latin square of order 4:

0 1 3 2
1 2 0 3
2 3 1 0
3 0 2 1

Note that I am using the convention of starting indices with 0 here and in
the rest of this paper.

An ordered pair of latin squares A and B is considered orthogonal if the
multiset of ordered pairs {(Ai,j , Bi,j) | 0 ≤ i < n, 0 ≤ j < n} has a redun-
dancy of 0. That is to say that each pair of symbols taken from the same
position in each square occurs exactly once in the design. Here is an example
of a pair of orthogonal latin squares of order 3:

0 1 2
1 2 0
2 0 1

0 2 1
1 0 2
2 1 0

Each design is assigned a series of five metrics M0,M1,M2,M3,M4. The five
metrics are as follows:

2

• M0 is the number of places where an orthogonal pair is repeated or the
redundancy of {(Ai,j , Bi,j) | 0 ≤ i < n, 0 ≤ j < n}. We want to mini-
mize this number to maximize the number of wine/cheese combinations
tried.

• M1 is the number of mistakes in row completeness of A or the redun-
dancy of {(Ai,j−1, Ai,j) | 0 ≤ i < n, 1 ≤ j < n}. We want to minimize
this number to eliminate systematic bias that might be introduced by
having the same sequence of two cheeses tried multiple times. For ex-
ample, repeatedly trying cheddar just before havarti could introduce
systematic bias into the evaluation of havarti.

• M2 is the number of mistakes in row completeness of B or the redun-
dancy of {(Bi,j−1, Bi,j) | 0 ≤ i < n, 1 ≤ j < n}. We want to minimize
this number to eliminate systematic bias that might be introduced by
having the same sequence of two wines tried multiple times. For ex-
ample, repeatedly trying Merlot just before Pinot Noir could introduce
systematic bias into the evaluation of Pinot Noir.

• M3 works very much like M1 and M2 except that it looks at the pairs
formed by taking one cell from A and the cell immediately to the right
of it from B. For example, (A1,2, B1,3), or generally (Ai,j , Bi,j+1) such
that 0 ≤ i < n, 0 ≤ j < n − 1. M3 is the number of repeats in these
pairs or the redundancy of {(Ai,j−1, Bi,j) | 0 ≤ i < n, 1 ≤ j < n}. We
want to minimize this number to eliminate systematic bias from, for
example, repeatedly trying cheddar just before Pinot Noir.

• M4 works just like M3 except in the opposite direction. It looks at the
pairs formed by taking one cell from A and the cell immediately to the
left of it from B. For example, (A1,2, B1,1), or generally (Ai,j , Bi,j−1)
such that 0 ≤ i < n, 1 ≤ j < n. M4 is the number of repeats in these
pairs or the redundancy of {(Ai,j , Bi,j−1) | 0 ≤ i < n, 1 ≤ j < n}. We
want to minimize this number to eliminate systematic bias from, for
example, repeatedly trying Merlot just before havarti.

Lewis and Russell’s work was motivated by experiments in the telecommu-
nications industry. In their experiments, what I have been thinking of as
cheese was circuit conditions formed from properties of a pair of telephones
and what I have been thinking of as wine was a combination of several vari-
ables associated with a transmission such as bandwidth, signal gain or loss,
noise level, and coding distortion. Rather than having n judges try a series

3

of n wine/cheese combinations, they had n pairs of subjects conduct a series
of n conversations under different circuit conditions.

A common algorithm for exploring a space of possibilities is called back-
tracking search. It can be used any time that solving a problem can be
represented by a series of decisions with well defined consequences. The basic
structure of the recursive form of the algorithm follows:

Function search():
If a solution has been found:

Return the solution
Otherwise:

Initialize an empty list of solutions
Iterate over the options at this point:

Try this option
If no solution can possibly be found past this point:

Return and empty list
Otherwise:

Call search() and append the result to the list of
solutions

Undo this option
Return the list of solutions

This technique can be used to find combinatorial designs by viewing the
process of filling in the symbols in the design as a series of decisions between
the various symbols that could occupy each space.

There is a phenomenon in combinatorics called combinatorial explosion
where the number of designs at a given order grows very rapidly as a function
of the order. For this reason, my methods use several techniques to reduce
the space that must be searched. One such technique is to find symmetries
that allow sections of the space to be eliminated by showing that those sec-
tions are equivalent to other squares that I am searching for. For example,
permuting the names of the symbols in a square would produce another
equivalent square so my search methods can often safely assume that the
first row of a square is sorted in ascending order because any square I find
for which this isn’t true would be equivalent to one for which it is. Another
technique is to keep track of the best metrics found so far and consider there
to be no possible solutions beyond this point any time our intermediate met-
rics are worse.

4

In this paper I will describe several computational methods for minimizing
the five metrics at various values of n. In these methods I tried first to
minimize the value of 2M0 + M1 + M2, then, given the space of designs
that meet that minimum, find the smallest possible value for both M3 and
M3+M4. The idea behind this is to give row completeness and orthogonality
equal weight and then to consider diagonal completeness as secondary to
that. It is considered that systematic bias from, for example, having cheddar
always follow havarti is likely to be more prominent than systematic bias from
having cheddar always follow Merlot, and it is easy to imagine a scenario in
which having cheddar always follow Merlot is more of a concern than having
Pinot Noir always follow havarti (for example, if cheeses have more of a
lasting taste than wines). The statistical rationale for these metrics is more
thoroughly described in Lewis and Russell.

II. Results

The following table summarizes my findings. For each value of n from 1 to
20, I’ve listed the lowest value I was able to find for 2M0 +M1 +M2, and
among squares with that value, the lowest value for M3 that I was able to
find as well as the lowest value for M3 +M4 that I was able to find. Finally,
I list the method used to find that result. In some cases, the best result
for M3 came from one method and the best result for M3 +M4 came from
another. In these cases the methods are listed separately below. In some
cases the same metrics were found through multiple methods. The squares
themselves are listed with the description of that method with their metrics
in the form M = [M0,M1,M2,M3,M4].

5

n 2M0 +M1 +M2 M3 method M3 +M4 method
1 0 0 A 0 A
2 4 0 A 0 A
3 6 0 A 0 A
4 8 4 A 8 A
5 10 5 C 10 C
6 12 6 B,E 12 B, E
7 14 7 C 14 C
8 16 8 B, C, E 20 B
9 12 25 B 50 B
10 12 25 B 50 B
11 22 0 C 22 C
12 0 12 D, E 60 D
13 26 13 C 26 C
14 28 0 C 56 C
15 30 15 A 45 A
16 0 16 D 64 D
17 34 17 C 34 C
18 36 81 A 162 A
19 38 19 C 38 C
20 0 20 D 140 D

method key:

• A: Lewis and Russell

• B: Row permutations

• C: Directed terraces of cyclic groups

• D: Directed terraces of dihedral groups

• E: Generating arrays

The following table summarizes Lewis and Russell’s results for the purpose
of comparison. Numbers in bold have been improved upon by the methods
described in this paper, numbers with no style have been matched, and
numbers in italic were only found using Lewis and Russell’s method:

6

n 2M0 +M1 +M2 M3 M3 +M4

1 0 0 0
2 4 0 0
3 6 0 0
4 8 4 8
5 10 5 15
6 12 7 14
7 14 14 35
8 16 10 20
9 18 18 36
10 20 27 54
11 22 33 77
12 24 34 68
13 26 39 91
14 28 41 82
15 30 15 45
16 32 70 140
17 34 85 204
18 36 81 162
19 38 114 247
20 40 92 184

III. Methods

The code for the methods listed below is available at on Github at
https://github.com/olleicua/latin-squares. Documentation for the code can
be found there.

Lewis and Russell

Lewis and Russell present two non-computational methods for finding rea-
sonably good designs, one that works at even orders and another that works
at odd orders.[1, section 3]

At even orders they begin by defining the two sequences s = (0, 1, n−1, 2, n−
2, 3, ...n+2

2 , n2) and t = (1, 3, 5, ...t−1, t, 2, 4, ...t−2). The pair of latin squares
A and B are formed by the following formula:

Ai,j = sj + i mod n

Bi,j = sj + ti mod n

7

https://github.com/olleicua/latin-squares

This is a special case of the cyclic directed terrace method below.

Note that mod in these formulas and in the rest of this paper should be in-
terpreted as the operation in computer science that is equivalent to divide by
and take the remainder. So for example, 7 mod 3 = 1. This operation should
be thought of as returning an integer as opposed to an infinite set of integers.

At odd orders Lewis and Russell do the following. Let m = t+1
2 and q =

bm+1
2 c. Construct a sequence s whose even indexed elements are (0,m +

1,m+2, ...n− 1, q) and whose odd indexed elements are (m− 1, ...q+1, q−
1, ...1). Construct sequence t such that ti = si × 2 mod n. The pair of latin
squares A and B are formed by the following formula:

Ai,j = sj + i mod n

Bi,j = tj + i mod n

This is a special case of the row permutations method below.

Their methods are described more thoroughly in their paper, and for the
orders where I was unable to find better results, theirs are recorded here.

Results:

Order n = 15:

0 8 9 7 10 6 11 5 12 3 13 2 14 1 4
1 9 10 8 11 7 12 6 13 4 14 3 0 2 5
2 10 11 9 12 8 13 7 14 5 0 4 1 3 6
3 11 12 10 13 9 14 8 0 6 1 5 2 4 7
4 12 13 11 14 10 0 9 1 7 2 6 3 5 8
5 13 14 12 0 11 1 10 2 8 3 7 4 6 9
6 14 0 13 1 12 2 11 3 9 4 8 5 7 10
7 0 1 14 2 13 3 12 4 10 5 9 6 8 11
8 1 2 0 3 14 4 13 5 11 6 10 7 9 12
9 2 3 1 4 0 5 14 6 12 7 11 8 10 13
10 3 4 2 5 1 6 0 7 13 8 12 9 11 14
11 4 5 3 6 2 7 1 8 14 9 13 10 12 0
12 5 6 4 7 3 8 2 9 0 10 14 11 13 1
13 6 7 5 8 4 9 3 10 1 11 0 12 14 2
14 7 8 6 9 5 10 4 11 2 12 1 13 0 3

8

0 1 3 14 5 12 7 10 9 6 11 4 13 2 8
1 2 4 0 6 13 8 11 10 7 12 5 14 3 9
2 3 5 1 7 14 9 12 11 8 13 6 0 4 10
3 4 6 2 8 0 10 13 12 9 14 7 1 5 11
4 5 7 3 9 1 11 14 13 10 0 8 2 6 12
5 6 8 4 10 2 12 0 14 11 1 9 3 7 13
6 7 9 5 11 3 13 1 0 12 2 10 4 8 14
7 8 10 6 12 4 14 2 1 13 3 11 5 9 0
8 9 11 7 13 5 0 3 2 14 4 12 6 10 1
9 10 12 8 14 6 1 4 3 0 5 13 7 11 2
10 11 13 9 0 7 2 5 4 1 6 14 8 12 3
11 12 14 10 1 8 3 6 5 2 7 0 9 13 4
12 13 0 11 2 9 4 7 6 3 8 1 10 14 5
13 14 1 12 3 10 5 8 7 4 9 2 11 0 6
14 0 2 13 4 11 6 9 8 5 10 3 12 1 7

M = [0, 15, 15, 15, 30]

Order n = 18:

0 1 17 2 16 3 15 4 14 5 13 6 12 7 11 8 10 9
1 2 0 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10
2 3 1 4 0 5 17 6 16 7 15 8 14 9 13 10 12 11
3 4 2 5 1 6 0 7 17 8 16 9 15 10 14 11 13 12
4 5 3 6 2 7 1 8 0 9 17 10 16 11 15 12 14 13
5 6 4 7 3 8 2 9 1 10 0 11 17 12 16 13 15 14
6 7 5 8 4 9 3 10 2 11 1 12 0 13 17 14 16 15
7 8 6 9 5 10 4 11 3 12 2 13 1 14 0 15 17 16
8 9 7 10 6 11 5 12 4 13 3 14 2 15 1 16 0 17
9 10 8 11 7 12 6 13 5 14 4 15 3 16 2 17 1 0
10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 0 2 1
11 12 10 13 9 14 8 15 7 16 6 17 5 0 4 1 3 2
12 13 11 14 10 15 9 16 8 17 7 0 6 1 5 2 4 3
13 14 12 15 11 16 10 17 9 0 8 1 7 2 6 3 5 4
14 15 13 16 12 17 11 0 10 1 9 2 8 3 7 4 6 5
15 16 14 17 13 0 12 1 11 2 10 3 9 4 8 5 7 6
16 17 15 0 14 1 13 2 12 3 11 4 10 5 9 6 8 7
17 0 16 1 15 2 14 3 13 4 12 5 11 6 10 7 9 8

9

0 1 17 2 16 3 15 4 14 5 13 6 12 7 11 8 10 9
2 3 1 4 0 5 17 6 16 7 15 8 14 9 13 10 12 11
4 5 3 6 2 7 1 8 0 9 17 10 16 11 15 12 14 13
6 7 5 8 4 9 3 10 2 11 1 12 0 13 17 14 16 15
8 9 7 10 6 11 5 12 4 13 3 14 2 15 1 16 0 17
10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 0 2 1
12 13 11 14 10 15 9 16 8 17 7 0 6 1 5 2 4 3
14 15 13 16 12 17 11 0 10 1 9 2 8 3 7 4 6 5
16 17 15 0 14 1 13 2 12 3 11 4 10 5 9 6 8 7
17 0 16 1 15 2 14 3 13 4 12 5 11 6 10 7 9 8
1 2 0 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10
3 4 2 5 1 6 0 7 17 8 16 9 15 10 14 11 13 12
5 6 4 7 3 8 2 9 1 10 0 11 17 12 16 13 15 14
7 8 6 9 5 10 4 11 3 12 2 13 1 14 0 15 17 16
9 10 8 11 7 12 6 13 5 14 4 15 3 16 2 17 1 0
11 12 10 13 9 14 8 15 7 16 6 17 5 0 4 1 3 2
13 14 12 15 11 16 10 17 9 0 8 1 7 2 6 3 5 4
15 16 14 17 13 0 12 1 11 2 10 3 9 4 8 5 7 6

M = [18, 0, 0, 81, 81]

Row permutations

The idea behind this method is to search the space of row permutations of
all squares in the space of row complete squares of a given order. To reduce
the size of this space somewhat several symmetries are employed. The first
step is to find the set of all row complete latin squares of order n with the
following properties:

• The first row and first column are in sequential ascending order.

• If any row is swapped with the first one and then the symbols in the
entire square are remapped to make the first property true again, the
resulting square, if different, will come lexicographically after the orig-
inal square. In this case the lexicographic ordering of squares can be
produced by reading symbols down the columns from the upper left
corner to the lower right corner of each square, concatenating these
symbols and putting the resulting numbers in ascending order.

• If the square is reflected across the vertical axis and the symbols are
remapped to make the first property true again, the resulting square,
if different, will come lexicographically after the original square.

These properties assure that even though not all possible row complete
squares are represented, those that are not will be equivalent to one that
is. This means that the entire space of row complete latin squares of that

10

order is being searched.

Once these squares are found, each possible pair of squares A and B is
considered. For each pair, the space of permutations of the rows in B is
searched for a square Bpermuted that produces the best metrics for the pair
(A,Bpermuted). This search process is accelerated by keeping track of the
best metrics found so far and allowing the search to backtrack (by saying
that no solution can be found past this point) if an intermediate result is
worse then the best metrics found so far.

This means that I effectively search the space of all pairs of row complete
latin squares at a given order for the pair with metrics that best match my
criteria.

The space of row complete latin squares at orders 6, 8, 9, and 10 had already
been found by Ian Wanless.[2] I was able to confirm his results at 6, 8, and
9. My program uses his data and completely searches the space of pairs of
row complete latin squares of orders 6, 8, and 9. At order 10, the computer
I was using ran out of memory before giving any output, but I was able to
get some results by limiting my search to pairs of the form (A,Apermuted).

Results:
The results that I got were found in under five minutes. I was ultimately pre-
vented from searching further by hardware limitations. The squares shown
below for orders 6, 8, and 9 are the result of a complete search of the space
of row complete latin squares at those orders and examining every possible
pair. The order 10 results below represent about five minutes of searching
the much larger space of row complete latin squares at order 10 and only
comparing squares to themselves. I would estimate that this search at order
ten might be possible on a better computer in a few days. Because there are
492 row complete squares of order 10 after all of the symmetry considera-
tions,the full search that compares every possible pair could be expected to
take on the order of 491! ≈ 101109 times longer. This is an excellent example
of combinatorial explosion in action. At order 9 the search takes seconds; at
order 10 the search takes longer than we can easily estimate.

At order n = 6 the row permutations method was able to surpass Lewis and
Russell in M3 and M3 +M4.

11

0 1 2 3 4 5
1 3 0 5 2 4
2 0 4 1 5 3
3 5 1 4 0 2
4 2 5 0 3 1
5 4 3 2 1 0

0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
1 3 5 0 2 4
3 0 4 1 5 2
2 5 1 4 0 3

M = [6, 0, 0, 6, 6]

At order n = 8 the row permutations method found a design that surpasses
Lewis and Russell in M3 and another that matches them in M3 +M4.

0 1 2 3 4 5 6 7
1 6 0 7 2 4 3 5
2 0 4 6 5 7 1 3
3 7 6 4 1 0 5 2
4 2 5 1 7 3 0 6
5 4 7 0 3 6 2 1
6 3 1 5 0 2 7 4
7 5 3 2 6 1 4 0

0 1 2 3 4 5 6 7
2 4 3 5 0 7 1 6
4 6 0 2 1 3 7 5
5 2 7 6 3 1 0 4
1 7 4 0 6 2 5 3
6 5 1 4 7 0 3 2
3 0 5 7 2 6 4 1
7 3 6 1 5 4 2 0

M = [8, 0, 0, 8, 16]

0 1 2 3 4 5 6 7
1 3 0 5 2 7 4 6
2 0 4 1 6 3 7 5
3 5 1 7 0 6 2 4
4 2 6 0 7 1 5 3
5 7 3 6 1 4 0 2
6 4 7 2 5 0 3 1
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 3 0 5 2 7 4 6
4 2 6 0 7 1 5 3
5 7 3 6 1 4 0 2
7 6 5 4 3 2 1 0
6 4 7 2 5 0 3 1
3 5 1 7 0 6 2 4
2 0 4 1 6 3 7 5

M = [8, 0, 0, 10, 10]

At order n = 9 the row permutations method found a design that surpasses
Lewis and Russell in 2M0 +M1 +M2.

12

0 1 2 3 4 5 6 7 8
1 3 6 0 8 4 7 2 5
2 8 5 7 6 1 0 4 3
3 0 7 1 5 8 2 6 4
4 6 3 8 1 7 5 0 2
5 2 1 4 0 6 8 3 7
6 5 4 2 7 3 1 8 0
7 4 8 6 2 0 3 5 1
8 7 0 5 3 2 4 1 6

4 6 3 8 1 7 5 0 2
8 7 0 5 3 2 4 1 6
2 8 5 7 6 1 0 4 3
5 2 1 4 0 6 8 3 7
3 0 7 1 5 8 2 6 4
1 3 6 0 8 4 7 2 5
7 4 8 6 2 0 3 5 1
6 5 4 2 7 3 1 8 0
0 1 2 3 4 5 6 7 8

M = [6, 0, 0, 25, 25]

At order n = 10 the row permutations method found a design that surpasses
Lewis and Russell in 2M0 +M1 +M2 without exhausting the space of row
complete latin squares.

0 1 2 3 4 5 6 7 8
1 3 6 0 8 4 7 2 5
2 8 5 7 6 1 0 4 3
3 0 7 1 5 8 2 6 4
4 6 3 8 1 7 5 0 2
5 2 1 4 0 6 8 3 7
6 5 4 2 7 3 1 8 0
7 4 8 6 2 0 3 5 1
8 7 0 5 3 2 4 1 6

4 6 3 8 1 7 5 0 2
8 7 0 5 3 2 4 1 6
2 8 5 7 6 1 0 4 3
5 2 1 4 0 6 8 3 7
3 0 7 1 5 8 2 6 4
1 3 6 0 8 4 7 2 5
7 4 8 6 2 0 3 5 1
6 5 4 2 7 3 1 8 0
0 1 2 3 4 5 6 7 8

M = [6, 0, 0, 25, 25]

Directed terraces of the cyclic group

This method makes use of directed terraces. Directed terraces are de-
fined as follows. Let G be a group of order n. Let a be an arrangement
of the elements of G. Define b to be the sequence of n − 1 elements such
that bi = a−1

i ai+1. If b contains every non-identity element of G then a is a
directed terrace.

This method works slightly differently at even and odd orders. At even
orders, a backtracking search is used to search the space of pairs of di-
rected terraces x and y of the cyclic group of order n that minimize the

13

number of repeats in the multiset {xi − yi mod n | 0 ≤ i < n}. For all even
orders, this minimum number of repeats has been shown to be 1.[3] My
search also tries to minimize the number of repeats in the two multisets
{xi−1 − yi mod n | 1 ≤ i < n} and {xi − yi−1 mod n | 1 ≤ i < n}. It does
this by keeping track of the fewest such repeats found so far and backtrack-
ing whenever the current intermediate result has more repeats.

At odd orders, the same thing is done except that instead of using a pair
of directed terraces, we use a pair of sequences each of which can be con-
strained to only have one mistake preventing them from being a directed
terrace. That is to say that {xi − xi−1 mod n | 1 ≤ i < n} will contain ex-
actly one repeat for each sequence. Additionally {xi − yi mod n | 0 ≤ i < n}
can be constrained to contain zero repeats.

A pair of latin squares A and B can be produced from a pair of directed
terraces (or sequences that approximate directed terraces) x and y using the
following formulas:

Ai,j = xj + i mod n

Bi,j = yj + i mod n

This has the effect of propagating the repeats in the various differences
that were minimized during the search through the square so that the re-
sulting value for M0 can be shown to be n times the number of repeats
in {xi − yi mod n | 0 ≤ i < n} or n at even orders and 0 at odd orders.
The values for M1 and M2 are similarly n times the number of terrace
mistakes in x and y respectively or 0 at even orders and n at odd or-
ders. The values for M3 and M4 will be n times the number of repeats
in {xi−1 − yi mod n | 1 ≤ i < n} and {xi − yi−1 mod n | 1 ≤ i < n} respec-
tively.

This method effectively searches the space of squares that can be generated
in this way. Knowing that 2M0 +M1 +M2 can be constrained to 2 allows
me to substantially reduce the space.
I also used a construction based on this method that produces designs with
M = [0, n, n, n, n] at odd prime orders to find results at orders 13, 17, and
19. The construction is to produce a pair of arrangements x and y that
approximate cyclic directed terraces of order n. First choose number q such
that 0 ≤ q < n. The first two elements of x are 0 then q. Each successive
element of x is the previous element times q mod n. If this process produces

14

fewer then n elements before producing repeats then choose a new value for
q and try again. There will always be a possible value of q that works.[3] y
is then defined to be (0, x3, x4, ...xn−1, x1, x2) and the latin squares are then
produced in the same way above.

Results:

The even ordered results shown below represent 63 hours, 13 minutes, and 55
seconds of running my program. I exhaustively searched the space of pairs
of directed terraces of the cyclic groups of orders 2 through 14. The odd
ordered results represent 35 hours, 30 minutes, and 34 seconds of running
my program. I exhaustively searched the space of pairs of sequences that are
one mistake away from being directed terraces of cyclic groups and produce
orthogonal pairs of latin squares at orders 1 through 11.

At order n = 5 the cyclic directed terrace method found a design that sur-
passes Lewis and Russell in M3 +M4.

0 1 2 4 3
1 2 3 0 4
2 3 4 1 0
3 4 0 2 1
4 0 1 3 2

0 4 3 1 2
1 0 4 2 3
2 1 0 3 4
3 2 1 4 0
4 3 2 0 1

M = [0, 5, 5, 5, 5]

At order n = 7 the cyclic directed terrace method found a design that sur-
passes Lewis and Russell in both M3 and M3 +M4.

0 1 3 2 6 4 5
1 2 4 3 0 5 6
2 3 5 4 1 6 0
3 4 6 5 2 0 1
4 5 0 6 3 1 2
5 6 1 0 4 2 3
6 0 2 1 5 3 4

0 2 6 4 5 1 3
1 3 0 5 6 2 4
2 4 1 6 0 3 5
3 5 2 0 1 4 6
4 6 3 1 2 5 0
5 0 4 2 3 6 1
6 1 5 3 4 0 2

M = [0, 7, 7, 7, 7]

At order n = 8 the cyclic directed terrace method found a design that sur-
passes Lewis and Russell in M3.

15

0 1 7 3 6 5 2 4
1 2 0 4 7 6 3 5
2 3 1 5 0 7 4 6
3 4 2 6 1 0 5 7
4 5 3 7 2 1 6 0
5 6 4 0 3 2 7 1
6 7 5 1 4 3 0 2
7 0 6 2 5 4 1 3

0 6 1 2 7 3 5 4
1 7 2 3 0 4 6 5
2 0 3 4 1 5 7 6
3 1 4 5 2 6 0 7
4 2 5 6 3 7 1 0
5 3 6 7 4 0 2 1
6 4 7 0 5 1 3 2
7 5 0 1 6 2 4 3

M = [8, 0, 0, 8, 16]

At order n = 11 the cyclic directed terrace method found a designs that
surpass Lewis and Russell at both M3 and M3 +M4.

0 1 2 4 3 8 5 9 7 10 6
1 2 3 5 4 9 6 10 8 0 7
2 3 4 6 5 10 7 0 9 1 8
3 4 5 7 6 0 8 1 10 2 9
4 5 6 8 7 1 9 2 0 3 10
5 6 7 9 8 2 10 3 1 4 0
6 7 8 10 9 3 0 4 2 5 1
7 8 9 0 10 4 1 5 3 6 2
8 9 10 1 0 5 2 6 4 7 3
9 10 0 2 1 6 3 7 5 8 4
10 0 1 3 2 7 4 8 6 9 5

0 7 3 6 10 1 2 8 5 4 9
1 8 4 7 0 2 3 9 6 5 10
2 9 5 8 1 3 4 10 7 6 0
3 10 6 9 2 4 5 0 8 7 1
4 0 7 10 3 5 6 1 9 8 2
5 1 8 0 4 6 7 2 10 9 3
6 2 9 1 5 7 8 3 0 10 4
7 3 10 2 6 8 9 4 1 0 5
8 4 0 3 7 9 10 5 2 1 6
9 5 1 4 8 10 0 6 3 2 7
10 6 2 5 9 0 1 7 4 3 8

M = [0, 11, 11, 11, 11]

16

0 1 2 5 4 8 10 6 3 9 7
1 2 3 6 5 9 0 7 4 10 8
2 3 4 7 6 10 1 8 5 0 9
3 4 5 8 7 0 2 9 6 1 10
4 5 6 9 8 1 3 10 7 2 0
5 6 7 10 9 2 4 0 8 3 1
6 7 8 0 10 3 5 1 9 4 2
7 8 9 1 0 4 6 2 10 5 3
8 9 10 2 1 5 7 3 0 6 4
9 10 0 3 2 6 8 4 1 7 5
10 0 1 4 3 7 9 5 2 8 6

0 3 9 2 10 6 4 5 7 1 8
1 4 10 3 0 7 5 6 8 2 9
2 5 0 4 1 8 6 7 9 3 10
3 6 1 5 2 9 7 8 10 4 0
4 7 2 6 3 10 8 9 0 5 1
5 8 3 7 4 0 9 10 1 6 2
6 9 4 8 5 1 10 0 2 7 3
7 10 5 9 6 2 0 1 3 8 4
8 0 6 10 7 3 1 2 4 9 5
9 1 7 0 8 4 2 3 5 10 6
10 2 8 1 9 5 3 4 6 0 7

M = [0, 11, 11, 0, 33]

At order n = 13 the cyclic directed terrace method was used to construct a
design that surpasses Lewis and Russell at both M3 and M3 +M4.

17

0 2 4 8 3 6 12 11 9 5 10 7 1
1 3 5 9 4 7 0 12 10 6 11 8 2
2 4 6 10 5 8 1 0 11 7 12 9 3
3 5 7 11 6 9 2 1 12 8 0 10 4
4 6 8 12 7 10 3 2 0 9 1 11 5
5 7 9 0 8 11 4 3 1 10 2 12 6
6 8 10 1 9 12 5 4 2 11 3 0 7
7 9 11 2 10 0 6 5 3 12 4 1 8
8 10 12 3 11 1 7 6 4 0 5 2 9
9 11 0 4 12 2 8 7 5 1 6 3 10
10 12 1 5 0 3 9 8 6 2 7 4 11
11 0 2 6 1 4 10 9 7 3 8 5 12
12 1 3 7 2 5 11 10 8 4 9 6 0

0 8 3 6 12 11 9 5 10 7 1 2 4
1 9 4 7 0 12 10 6 11 8 2 3 5
2 10 5 8 1 0 11 7 12 9 3 4 6
3 11 6 9 2 1 12 8 0 10 4 5 7
4 12 7 10 3 2 0 9 1 11 5 6 8
5 0 8 11 4 3 1 10 2 12 6 7 9
6 1 9 12 5 4 2 11 3 0 7 8 10
7 2 10 0 6 5 3 12 4 1 8 9 11
8 3 11 1 7 6 4 0 5 2 9 10 12
9 4 12 2 8 7 5 1 6 3 10 11 0
10 5 0 3 9 8 6 2 7 4 11 12 1
11 6 1 4 10 9 7 3 8 5 12 0 2
12 7 2 5 11 10 8 4 9 6 0 1 3

M = [0, 13, 13, 13, 13]

At order n = 14 the cyclic directed terrace method was able to find a designs
that surpass Lewis and Russell at both M3 and M3 +M4.

18

0 1 4 10 3 2 13 8 12 6 11 9 5 7
1 2 5 11 4 3 0 9 13 7 12 10 6 8
2 3 6 12 5 4 1 10 0 8 13 11 7 9
3 4 7 13 6 5 2 11 1 9 0 12 8 10
4 5 8 0 7 6 3 12 2 10 1 13 9 11
5 6 9 1 8 7 4 13 3 11 2 0 10 12
6 7 10 2 9 8 5 0 4 12 3 1 11 13
7 8 11 3 10 9 6 1 5 13 4 2 12 0
8 9 12 4 11 10 7 2 6 0 5 3 13 1
9 10 13 5 12 11 8 3 7 1 6 4 0 2
10 11 0 6 13 12 9 4 8 2 7 5 1 3
11 12 1 7 0 13 10 5 9 3 8 6 2 4
12 13 2 8 1 0 11 6 10 4 9 7 3 5
13 0 3 9 2 1 12 7 11 5 10 8 4 6

0 12 2 1 6 8 9 3 13 10 5 11 4 7
1 13 3 2 7 9 10 4 0 11 6 12 5 8
2 0 4 3 8 10 11 5 1 12 7 13 6 9
3 1 5 4 9 11 12 6 2 13 8 0 7 10
4 2 6 5 10 12 13 7 3 0 9 1 8 11
5 3 7 6 11 13 0 8 4 1 10 2 9 12
6 4 8 7 12 0 1 9 5 2 11 3 10 13
7 5 9 8 13 1 2 10 6 3 12 4 11 0
8 6 10 9 0 2 3 11 7 4 13 5 12 1
9 7 11 10 1 3 4 12 8 5 0 6 13 2
10 8 12 11 2 4 5 13 9 6 1 7 0 3
11 9 13 12 3 5 6 0 10 7 2 8 1 4
12 10 0 13 4 6 7 1 11 8 3 9 2 5
13 11 1 0 5 7 8 2 12 9 4 10 3 6

M = [14, 0, 0, 28, 28]

19

0 1 10 6 3 9 8 13 11 4 12 2 5 7
1 2 11 7 4 10 9 0 12 5 13 3 6 8
2 3 12 8 5 11 10 1 13 6 0 4 7 9
3 4 13 9 6 12 11 2 0 7 1 5 8 10
4 5 0 10 7 13 12 3 1 8 2 6 9 11
5 6 1 11 8 0 13 4 2 9 3 7 10 12
6 7 2 12 9 1 0 5 3 10 4 8 11 13
7 8 3 13 10 2 1 6 4 11 5 9 12 0
8 9 4 0 11 3 2 7 5 12 6 10 13 1
9 10 5 1 12 4 3 8 6 13 7 11 0 2
10 11 6 2 13 5 4 9 7 0 8 12 1 3
11 12 7 3 0 6 5 10 8 1 9 13 2 4
12 13 8 4 1 7 6 11 9 2 10 0 3 5
13 0 9 5 2 8 7 12 10 3 11 1 4 6

0 13 4 11 12 1 5 2 10 6 8 3 9 7
1 0 5 12 13 2 6 3 11 7 9 4 10 8
2 1 6 13 0 3 7 4 12 8 10 5 11 9
3 2 7 0 1 4 8 5 13 9 11 6 12 10
4 3 8 1 2 5 9 6 0 10 12 7 13 11
5 4 9 2 3 6 10 7 1 11 13 8 0 12
6 5 10 3 4 7 11 8 2 12 0 9 1 13
7 6 11 4 5 8 12 9 3 13 1 10 2 0
8 7 12 5 6 9 13 10 4 0 2 11 3 1
9 8 13 6 7 10 0 11 5 1 3 12 4 2
10 9 0 7 8 11 1 12 6 2 4 13 5 3
11 10 1 8 9 12 2 13 7 3 5 0 6 4
12 11 2 9 10 13 3 0 8 4 6 1 7 5
13 12 3 10 11 0 4 1 9 5 7 2 8 6

M = [14, 0, 0, 0, 70]

At order n = 17 the cyclic directed terrace method was used to construct a
design that surpasses Lewis and Russell at both M3 and M3 +M4.

20

0 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
1 4 10 11 14 6 16 12 0 15 9 8 5 13 3 7 2
2 5 11 12 15 7 0 13 1 16 10 9 6 14 4 8 3
3 6 12 13 16 8 1 14 2 0 11 10 7 15 5 9 4
4 7 13 14 0 9 2 15 3 1 12 11 8 16 6 10 5
5 8 14 15 1 10 3 16 4 2 13 12 9 0 7 11 6
6 9 15 16 2 11 4 0 5 3 14 13 10 1 8 12 7
7 10 16 0 3 12 5 1 6 4 15 14 11 2 9 13 8
8 11 0 1 4 13 6 2 7 5 16 15 12 3 10 14 9
9 12 1 2 5 14 7 3 8 6 0 16 13 4 11 15 10
10 13 2 3 6 15 8 4 9 7 1 0 14 5 12 16 11
11 14 3 4 7 16 9 5 10 8 2 1 15 6 13 0 12
12 15 4 5 8 0 10 6 11 9 3 2 16 7 14 1 13
13 16 5 6 9 1 11 7 12 10 4 3 0 8 15 2 14
14 0 6 7 10 2 12 8 13 11 5 4 1 9 16 3 15
15 1 7 8 11 3 13 9 14 12 6 5 2 10 0 4 16
16 2 8 9 12 4 14 10 15 13 7 6 3 11 1 5 0

0 10 13 5 15 11 16 14 8 7 4 12 2 6 1 3 9
1 11 14 6 16 12 0 15 9 8 5 13 3 7 2 4 10
2 12 15 7 0 13 1 16 10 9 6 14 4 8 3 5 11
3 13 16 8 1 14 2 0 11 10 7 15 5 9 4 6 12
4 14 0 9 2 15 3 1 12 11 8 16 6 10 5 7 13
5 15 1 10 3 16 4 2 13 12 9 0 7 11 6 8 14
6 16 2 11 4 0 5 3 14 13 10 1 8 12 7 9 15
7 0 3 12 5 1 6 4 15 14 11 2 9 13 8 10 16
8 1 4 13 6 2 7 5 16 15 12 3 10 14 9 11 0
9 2 5 14 7 3 8 6 0 16 13 4 11 15 10 12 1
10 3 6 15 8 4 9 7 1 0 14 5 12 16 11 13 2
11 4 7 16 9 5 10 8 2 1 15 6 13 0 12 14 3
12 5 8 0 10 6 11 9 3 2 16 7 14 1 13 15 4
13 6 9 1 11 7 12 10 4 3 0 8 15 2 14 16 5
14 7 10 2 12 8 13 11 5 4 1 9 16 3 15 0 6
15 8 11 3 13 9 14 12 6 5 2 10 0 4 16 1 7
16 9 12 4 14 10 15 13 7 6 3 11 1 5 0 2 8

M = [0, 17, 17, 17, 17]

At order n = 19 the cyclic directed terrace method was used to construct a
design that surpasses Lewis and Russell at both M3 and M3 +M4.

21

0 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
1 3 5 9 17 14 8 15 10 0 18 16 12 4 7 13 6 11 2
2 4 6 10 18 15 9 16 11 1 0 17 13 5 8 14 7 12 3
3 5 7 11 0 16 10 17 12 2 1 18 14 6 9 15 8 13 4
4 6 8 12 1 17 11 18 13 3 2 0 15 7 10 16 9 14 5
5 7 9 13 2 18 12 0 14 4 3 1 16 8 11 17 10 15 6
6 8 10 14 3 0 13 1 15 5 4 2 17 9 12 18 11 16 7
7 9 11 15 4 1 14 2 16 6 5 3 18 10 13 0 12 17 8
8 10 12 16 5 2 15 3 17 7 6 4 0 11 14 1 13 18 9
9 11 13 17 6 3 16 4 18 8 7 5 1 12 15 2 14 0 10
10 12 14 18 7 4 17 5 0 9 8 6 2 13 16 3 15 1 11
11 13 15 0 8 5 18 6 1 10 9 7 3 14 17 4 16 2 12
12 14 16 1 9 6 0 7 2 11 10 8 4 15 18 5 17 3 13
13 15 17 2 10 7 1 8 3 12 11 9 5 16 0 6 18 4 14
14 16 18 3 11 8 2 9 4 13 12 10 6 17 1 7 0 5 15
15 17 0 4 12 9 3 10 5 14 13 11 7 18 2 8 1 6 16
16 18 1 5 13 10 4 11 6 15 14 12 8 0 3 9 2 7 17
17 0 2 6 14 11 5 12 7 16 15 13 9 1 4 10 3 8 18
18 1 3 7 15 12 6 13 8 17 16 14 10 2 5 11 4 9 0

0 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1 2 4
1 9 17 14 8 15 10 0 18 16 12 4 7 13 6 11 2 3 5
2 10 18 15 9 16 11 1 0 17 13 5 8 14 7 12 3 4 6
3 11 0 16 10 17 12 2 1 18 14 6 9 15 8 13 4 5 7
4 12 1 17 11 18 13 3 2 0 15 7 10 16 9 14 5 6 8
5 13 2 18 12 0 14 4 3 1 16 8 11 17 10 15 6 7 9
6 14 3 0 13 1 15 5 4 2 17 9 12 18 11 16 7 8 10
7 15 4 1 14 2 16 6 5 3 18 10 13 0 12 17 8 9 11
8 16 5 2 15 3 17 7 6 4 0 11 14 1 13 18 9 10 12
9 17 6 3 16 4 18 8 7 5 1 12 15 2 14 0 10 11 13
10 18 7 4 17 5 0 9 8 6 2 13 16 3 15 1 11 12 14
11 0 8 5 18 6 1 10 9 7 3 14 17 4 16 2 12 13 15
12 1 9 6 0 7 2 11 10 8 4 15 18 5 17 3 13 14 16
13 2 10 7 1 8 3 12 11 9 5 16 0 6 18 4 14 15 17
14 3 11 8 2 9 4 13 12 10 6 17 1 7 0 5 15 16 18
15 4 12 9 3 10 5 14 13 11 7 18 2 8 1 6 16 17 0
16 5 13 10 4 11 6 15 14 12 8 0 3 9 2 7 17 18 1
17 6 14 11 5 12 7 16 15 13 9 1 4 10 3 8 18 0 2
18 7 15 12 6 13 8 17 16 14 10 2 5 11 4 9 0 1 3

M = [0, 19, 19, 19, 19]

Directed terraces of the dihedral group

This method works just like the cyclic directed terrace method except that it
uses terraces based on dihedral groups instead of cyclic groups. The dihedral
group of an even order n is the symmetry group of the two sided regular
polyhedron with n

2 edges. The latin squares and orthogonal differences are
calculated using dihedral multiplication and division rather than modular
arithmetic. This means that the relevant formulas for generating a pair of

22

full latin squares from a pair of directed terraces uses dihedral multiplication
as follows:

Ai,j = xjdi

Bi,j = yjdi

where d is any arrangement of the elements of the dihedral group.
With this method, M0, M1, and M2 can all be constrained to zero at orders
12, 16, and 20.[4] This constraint on M0 allowed for an additional constraint
on the search space. I ran my search at these three orders.

Results:

The results below for orders 12 and 16 represent 24 hours and 17 minutes of
running my program. I exhaustively searched the space of pairs of directed
terraces of the dihedral group of order 12. I stopped the order 16 search early
to make time for the order 20 search which ran for 61 hours, 10 minutes,
and 10 seconds. The order 20 search also didn’t have time to finish. I would
estimate that exhaustively searching the space of pairs of dihedral terraces
of order 16 could have easily taken several weeks. Exhaustively searching
order 20 would have taken much longer.

At order n = 12 the dihedral directed terrace method found a design that
surpasses Lewis and Russell on every metric.

0 2 8 1 6 3 5 9 10 11 7 4
1 11 5 0 7 10 8 4 3 2 6 9
2 4 10 3 8 5 7 11 0 1 9 6
3 1 7 2 9 0 10 6 5 4 8 11
4 6 0 5 10 7 9 1 2 3 11 8
5 3 9 4 11 2 0 8 7 6 10 1
6 8 2 7 0 9 11 3 4 5 1 10
7 5 11 6 1 4 2 10 9 8 0 3
8 10 4 9 2 11 1 5 6 7 3 0
9 7 1 8 3 6 4 0 11 10 2 5
10 0 6 11 4 1 3 7 8 9 5 2
11 9 3 10 5 8 6 2 1 0 4 7

23

0 5 4 3 7 1 11 2 9 6 10 8
1 8 9 10 6 0 2 11 4 7 3 5
2 7 6 5 9 3 1 4 11 8 0 10
3 10 11 0 8 2 4 1 6 9 5 7
4 9 8 7 11 5 3 6 1 10 2 0
5 0 1 2 10 4 6 3 8 11 7 9
6 11 10 9 1 7 5 8 3 0 4 2
7 2 3 4 0 6 8 5 10 1 9 11
8 1 0 11 3 9 7 10 5 2 6 4
9 4 5 6 2 8 10 7 0 3 11 1
10 3 2 1 5 11 9 0 7 4 8 6
11 6 7 8 4 10 0 9 2 5 1 3

M = [0, 0, 0, 12, 48]

At order n = 16 the dihedral directed terrace method found designs that
surpass Lewis and Russell on every metric without searching the entire space.

0 1 2 5 7 13 6 15 4 10 14 3 11 9 12 8
1 0 15 12 10 4 11 2 13 7 3 14 6 8 5 9
2 3 4 7 9 15 8 1 6 12 0 5 13 11 14 10
3 2 1 14 12 6 13 4 15 9 5 0 8 10 7 11
4 5 6 9 11 1 10 3 8 14 2 7 15 13 0 12
5 4 3 0 14 8 15 6 1 11 7 2 10 12 9 13
6 7 8 11 13 3 12 5 10 0 4 9 1 15 2 14
7 6 5 2 0 10 1 8 3 13 9 4 12 14 11 15
8 9 10 13 15 5 14 7 12 2 6 11 3 1 4 0
9 8 7 4 2 12 3 10 5 15 11 6 14 0 13 1
10 11 12 15 1 7 0 9 14 4 8 13 5 3 6 2
11 10 9 6 4 14 5 12 7 1 13 8 0 2 15 3
12 13 14 1 3 9 2 11 0 6 10 15 7 5 8 4
13 12 11 8 6 0 7 14 9 3 15 10 2 4 1 5
14 15 0 3 5 11 4 13 2 8 12 1 9 7 10 6
15 14 13 10 8 2 9 0 11 5 1 12 4 6 3 7

24

0 11 12 6 14 10 1 8 5 2 3 15 13 7 9 4
1 6 5 11 3 7 0 9 12 15 14 2 4 10 8 13
2 13 14 8 0 12 3 10 7 4 5 1 15 9 11 6
3 8 7 13 5 9 2 11 14 1 0 4 6 12 10 15
4 15 0 10 2 14 5 12 9 6 7 3 1 11 13 8
5 10 9 15 7 11 4 13 0 3 2 6 8 14 12 1
6 1 2 12 4 0 7 14 11 8 9 5 3 13 15 10
7 12 11 1 9 13 6 15 2 5 4 8 10 0 14 3
8 3 4 14 6 2 9 0 13 10 11 7 5 15 1 12
9 14 13 3 11 15 8 1 4 7 6 10 12 2 0 5
10 5 6 0 8 4 11 2 15 12 13 9 7 1 3 14
11 0 15 5 13 1 10 3 6 9 8 12 14 4 2 7
12 7 8 2 10 6 13 4 1 14 15 11 9 3 5 0
13 2 1 7 15 3 12 5 8 11 10 14 0 6 4 9
14 9 10 4 12 8 15 6 3 0 1 13 11 5 7 2
15 4 3 9 1 5 14 7 10 13 12 0 2 8 6 11

M = [0, 0, 0, 16, 112]

0 1 2 10 6 15 13 8 14 9 12 3 5 11 7 4
1 0 15 7 11 2 4 9 3 8 5 14 12 6 10 13
2 3 4 12 8 1 15 10 0 11 14 5 7 13 9 6
3 2 1 9 13 4 6 11 5 10 7 0 14 8 12 15
4 5 6 14 10 3 1 12 2 13 0 7 9 15 11 8
5 4 3 11 15 6 8 13 7 12 9 2 0 10 14 1
6 7 8 0 12 5 3 14 4 15 2 9 11 1 13 10
7 6 5 13 1 8 10 15 9 14 11 4 2 12 0 3
8 9 10 2 14 7 5 0 6 1 4 11 13 3 15 12
9 8 7 15 3 10 12 1 11 0 13 6 4 14 2 5
10 11 12 4 0 9 7 2 8 3 6 13 15 5 1 14
11 10 9 1 5 12 14 3 13 2 15 8 6 0 4 7
12 13 14 6 2 11 9 4 10 5 8 15 1 7 3 0
13 12 11 3 7 14 0 5 15 4 1 10 8 2 6 9
14 15 0 8 4 13 11 6 12 7 10 1 3 9 5 2
15 14 13 5 9 0 2 7 1 6 3 12 10 4 8 11

25

0 14 15 12 1 6 3 7 5 11 4 13 9 10 2 8
1 3 2 5 0 11 14 10 12 6 13 4 8 7 15 9
2 0 1 14 3 8 5 9 7 13 6 15 11 12 4 10
3 5 4 7 2 13 0 12 14 8 15 6 10 9 1 11
4 2 3 0 5 10 7 11 9 15 8 1 13 14 6 12
5 7 6 9 4 15 2 14 0 10 1 8 12 11 3 13
6 4 5 2 7 12 9 13 11 1 10 3 15 0 8 14
7 9 8 11 6 1 4 0 2 12 3 10 14 13 5 15
8 6 7 4 9 14 11 15 13 3 12 5 1 2 10 0
9 11 10 13 8 3 6 2 4 14 5 12 0 15 7 1
10 8 9 6 11 0 13 1 15 5 14 7 3 4 12 2
11 13 12 15 10 5 8 4 6 0 7 14 2 1 9 3
12 10 11 8 13 2 15 3 1 7 0 9 5 6 14 4
13 15 14 1 12 7 10 6 8 2 9 0 4 3 11 5
14 12 13 10 15 4 1 5 3 9 2 11 7 8 0 6
15 1 0 3 14 9 12 8 10 4 11 2 6 5 13 7

M = [0, 0, 0, 32, 32]

At order n = 20 the dihedral directed terrace method found designs that
surpasses Lewis and Russell on every metric without searching the entire
space.

0 1 2 4 7 3 5 12 19 13 17 9 18 10 15 6 16 11 14 8
1 0 19 17 14 18 16 9 2 8 4 12 3 11 6 15 5 10 7 13
2 3 4 6 9 5 7 14 1 15 19 11 0 12 17 8 18 13 16 10
3 2 1 19 16 0 18 11 4 10 6 14 5 13 8 17 7 12 9 15
4 5 6 8 11 7 9 16 3 17 1 13 2 14 19 10 0 15 18 12
5 4 3 1 18 2 0 13 6 12 8 16 7 15 10 19 9 14 11 17
6 7 8 10 13 9 11 18 5 19 3 15 4 16 1 12 2 17 0 14
7 6 5 3 0 4 2 15 8 14 10 18 9 17 12 1 11 16 13 19
8 9 10 12 15 11 13 0 7 1 5 17 6 18 3 14 4 19 2 16
9 8 7 5 2 6 4 17 10 16 12 0 11 19 14 3 13 18 15 1
10 11 12 14 17 13 15 2 9 3 7 19 8 0 5 16 6 1 4 18
11 10 9 7 4 8 6 19 12 18 14 2 13 1 16 5 15 0 17 3
12 13 14 16 19 15 17 4 11 5 9 1 10 2 7 18 8 3 6 0
13 12 11 9 6 10 8 1 14 0 16 4 15 3 18 7 17 2 19 5
14 15 16 18 1 17 19 6 13 7 11 3 12 4 9 0 10 5 8 2
15 14 13 11 8 12 10 3 16 2 18 6 17 5 0 9 19 4 1 7
16 17 18 0 3 19 1 8 15 9 13 5 14 6 11 2 12 7 10 4
17 16 15 13 10 14 12 5 18 4 0 8 19 7 2 11 1 6 3 9
18 19 0 2 5 1 3 10 17 11 15 7 16 8 13 4 14 9 12 6
19 18 17 15 12 16 14 7 0 6 2 10 1 9 4 13 3 8 5 11

26

0 16 15 10 8 2 9 14 11 18 6 17 7 4 5 3 19 13 1 12
1 5 6 11 13 19 12 7 10 3 15 4 14 17 16 18 2 8 0 9
2 18 17 12 10 4 11 16 13 0 8 19 9 6 7 5 1 15 3 14
3 7 8 13 15 1 14 9 12 5 17 6 16 19 18 0 4 10 2 11
4 0 19 14 12 6 13 18 15 2 10 1 11 8 9 7 3 17 5 16
5 9 10 15 17 3 16 11 14 7 19 8 18 1 0 2 6 12 4 13
6 2 1 16 14 8 15 0 17 4 12 3 13 10 11 9 5 19 7 18
7 11 12 17 19 5 18 13 16 9 1 10 0 3 2 4 8 14 6 15
8 4 3 18 16 10 17 2 19 6 14 5 15 12 13 11 7 1 9 0
9 13 14 19 1 7 0 15 18 11 3 12 2 5 4 6 10 16 8 17
10 6 5 0 18 12 19 4 1 8 16 7 17 14 15 13 9 3 11 2
11 15 16 1 3 9 2 17 0 13 5 14 4 7 6 8 12 18 10 19
12 8 7 2 0 14 1 6 3 10 18 9 19 16 17 15 11 5 13 4
13 17 18 3 5 11 4 19 2 15 7 16 6 9 8 10 14 0 12 1
14 10 9 4 2 16 3 8 5 12 0 11 1 18 19 17 13 7 15 6
15 19 0 5 7 13 6 1 4 17 9 18 8 11 10 12 16 2 14 3
16 12 11 6 4 18 5 10 7 14 2 13 3 0 1 19 15 9 17 8
17 1 2 7 9 15 8 3 6 19 11 0 10 13 12 14 18 4 16 5
18 14 13 8 6 0 7 12 9 16 4 15 5 2 3 1 17 11 19 10
19 3 4 9 11 17 10 5 8 1 13 2 12 15 14 16 0 6 18 7

M = [0, 0, 0, 20, 140]

0 1 2 4 7 3 5 13 17 10 18 8 19 14 11 16 9 15 6 12
1 0 19 17 14 18 16 8 4 11 3 13 2 7 10 5 12 6 15 9
2 3 4 6 9 5 7 15 19 12 0 10 1 16 13 18 11 17 8 14
3 2 1 19 16 0 18 10 6 13 5 15 4 9 12 7 14 8 17 11
4 5 6 8 11 7 9 17 1 14 2 12 3 18 15 0 13 19 10 16
5 4 3 1 18 2 0 12 8 15 7 17 6 11 14 9 16 10 19 13
6 7 8 10 13 9 11 19 3 16 4 14 5 0 17 2 15 1 12 18
7 6 5 3 0 4 2 14 10 17 9 19 8 13 16 11 18 12 1 15
8 9 10 12 15 11 13 1 5 18 6 16 7 2 19 4 17 3 14 0
9 8 7 5 2 6 4 16 12 19 11 1 10 15 18 13 0 14 3 17
10 11 12 14 17 13 15 3 7 0 8 18 9 4 1 6 19 5 16 2
11 10 9 7 4 8 6 18 14 1 13 3 12 17 0 15 2 16 5 19
12 13 14 16 19 15 17 5 9 2 10 0 11 6 3 8 1 7 18 4
13 12 11 9 6 10 8 0 16 3 15 5 14 19 2 17 4 18 7 1
14 15 16 18 1 17 19 7 11 4 12 2 13 8 5 10 3 9 0 6
15 14 13 11 8 12 10 2 18 5 17 7 16 1 4 19 6 0 9 3
16 17 18 0 3 19 1 9 13 6 14 4 15 10 7 12 5 11 2 8
17 16 15 13 10 14 12 4 0 7 19 9 18 3 6 1 8 2 11 5
18 19 0 2 5 1 3 11 15 8 16 6 17 12 9 14 7 13 4 10
19 18 17 15 12 16 14 6 2 9 1 11 0 5 8 3 10 4 13 7

27

0 12 16 5 14 1 15 18 19 6 9 13 11 17 7 2 10 8 3 4
1 9 5 16 7 0 6 3 2 15 12 8 10 4 14 19 11 13 18 17
2 14 18 7 16 3 17 0 1 8 11 15 13 19 9 4 12 10 5 6
3 11 7 18 9 2 8 5 4 17 14 10 12 6 16 1 13 15 0 19
4 16 0 9 18 5 19 2 3 10 13 17 15 1 11 6 14 12 7 8
5 13 9 0 11 4 10 7 6 19 16 12 14 8 18 3 15 17 2 1
6 18 2 11 0 7 1 4 5 12 15 19 17 3 13 8 16 14 9 10
7 15 11 2 13 6 12 9 8 1 18 14 16 10 0 5 17 19 4 3
8 0 4 13 2 9 3 6 7 14 17 1 19 5 15 10 18 16 11 12
9 17 13 4 15 8 14 11 10 3 0 16 18 12 2 7 19 1 6 5
10 2 6 15 4 11 5 8 9 16 19 3 1 7 17 12 0 18 13 14
11 19 15 6 17 10 16 13 12 5 2 18 0 14 4 9 1 3 8 7
12 4 8 17 6 13 7 10 11 18 1 5 3 9 19 14 2 0 15 16
13 1 17 8 19 12 18 15 14 7 4 0 2 16 6 11 3 5 10 9
14 6 10 19 8 15 9 12 13 0 3 7 5 11 1 16 4 2 17 18
15 3 19 10 1 14 0 17 16 9 6 2 4 18 8 13 5 7 12 11
16 8 12 1 10 17 11 14 15 2 5 9 7 13 3 18 6 4 19 0
17 5 1 12 3 16 2 19 18 11 8 4 6 0 10 15 7 9 14 13
18 10 14 3 12 19 13 16 17 4 7 11 9 15 5 0 8 6 1 2
19 7 3 14 5 18 4 1 0 13 10 6 8 2 12 17 9 11 16 15

M = [0, 0, 0, 60, 80]

Generating Arrays

A generating array a grid of pairs with particular properties that allow
a row complete latin square to be extrapolated from it. Specifically, a gen-
erating array R is an r × n grid of pairs (x, y) where n is divisible by r,
0 ≤ x < r, and 0 ≤ y < r

n . Each horizontally adjacent pair (a, b) of pairs
in the array can be assigned a difference (ax − bx mod r, ay, by). The array
should be constrained such that each possible such difference occurs exactly
once and each column contains exactly one of each possible value for y. A
row complete latin square A can be filled in using the formula:

Ai,j = Ri mod r,j mod
r

n

For example consider the following 3× 9 generating array:

(0, 0) (0, 1) (1, 1) (2, 0) (1, 0) (0, 2) (2, 1) (1, 2) (2, 2)
(0, 1) (0, 2) (0, 0) (1, 1) (2, 2) (1, 0) (1, 2) (2, 1) (2, 0)
(0, 2) (1, 0) (2, 2) (1, 2) (1, 1) (0, 1) (2, 0) (0, 0) (2, 1)

The difference between, for example, R0,2 and R0,3 would be calculated as
(1, 1) − (2, 0) = (1 − 2 mod 3, 1, 0) = (2, 1, 0). This generating array could
be used to construct the following row complete latin square:

28

0 1 4 6 3 2 7 5 8
1 2 0 4 8 3 5 7 6
2 3 8 5 4 1 6 0 7
3 4 7 0 6 5 1 8 2
4 5 3 7 2 6 8 1 0
5 6 2 8 7 4 0 3 1
6 7 1 3 0 8 4 2 5
7 8 6 1 5 0 2 4 3
8 0 5 2 1 7 3 6 4

As with the directed terrace methods, repeats in pair differences for adjacent
orthogonal and diagonal pairs in a pair of generating arrays are propagated
through the resulting square. For example given a pair of 3 × 9 generating
arrays R and S, if the multiset of differences

{(Ri,j,x − Si,j,x mod 3, Ri,j,y, Si,j,y) | 0 ≤ i < 3, 0 ≤ j < 9}
has a redundancy of 2 then the resulting pair of latin squares will have

M0 = 6.

Generating arrays can be used to construct row complete latin squares at all
odd composite orders.[3]
I exhaustively searched the space of pairs of 2 × n and 3 × n generating
arrays at orders 2 through 11 keeping track of the pair differences relevant
to M0, M3, and M4 and backtracking whenever the metrics were worse then
a previously found result. I was also able to begin the 2× 12 search.

Unfortunately, none of the results I found with this method were better than
results found with other methods although it is worth noting that I was able
to find some designs at order 12 with M0 = 0. This means that it is possible
to construct pairs of orthogonal row complete latin squares from generating
arrays. With more computational resources, this could be a useful approach
at orders 12, 14, and 15. Order 15 is of particular interest because Lewis and
Russell’s results at 15 had no row complete squares. One of the generating
array pairs I found at order 12 which produces an orthogonal pair follows:

(0, 0) (0, 1) (2, 0) (1, 0) (3, 0) (2, 1) (5, 0) (1, 1) (4, 1) (3, 1) (5, 1) (4, 0)
(0, 1) (0, 0) (4, 1) (5, 1) (3, 1) (4, 0) (1, 1) (5, 0) (2, 0) (3, 0) (1, 0) (2, 1)

(0, 0) (4, 1) (1, 1) (4, 0) (3, 1) (1, 0) (2, 1) (0, 1) (5, 1) (5, 0) (3, 0) (2, 0)
(0, 1) (2, 0) (5, 0) (2, 1) (3, 0) (5, 1) (4, 0) (0, 0) (1, 0) (1, 1) (3, 1) (4, 1)

29

IV. Conclusion

I have looked at and implemented a variety of computational approaches
to this problem. Several improvements to Lewis and Russell’s results have
been found. The two methods that gave the most promising results were the
row permutations method and the dihedral directed terrace method. Both
of these methods have somewhat limited potential to produce further useful
results. The dihedral directed terrace method is limited to orders n such
that n ≥ 12 and n

4 ∈ Z.[4] The row permutations method is limited by the
set of row complete latin squares it searches. At low orders it can be possible
to effectively search the entire space of row complete squares. It should be
noted however, that the method both Ian Wanless and myself used to reduce
this space found 2 squares at order 6, 12 each at orders 8 and 9, and 492 at
order 10. There are no known row complete latin squares of order 11 and
the space is far to large to exhaustively search. It can only be presumed that
a lot more exist at higher orders where this method would thus be far less
tractable.

One way of using the row permutations method at higher orders might be
to use row complete squares found using other methods. This has the dis-
advantage of constraining the search to squares with a particular type of
structure which could severely limit the improvements that might be made.
The generating array method shows particular promise here. I was able to
match the M0 = 0 result from the dihedral directed terrace method at order
12 which by itself suggests that the generating array method is promising. I
also was able to match my results from the full row permutations method us-
ing a single square A from a generating array at order 9 (It has, been shown
that all row complete squares at order 9 can be constructed from generat-
ing arrays[5, Roman-k and Tuscan-k squares p.14]) and searching the space
of designs (A,Apermutated). I also tried this at order 15 but was unable to
get any useful results due to the constraints of available time and hardware.
There are definitely designs at order 15 from generating arrays but none that
I was able to find had a low enough value for M0 to make the charts. It is
also likely that with more time and better hardware (or perhaps exploring
ways of parallelizing the search) results at higher orders would be attainable
using the cyclic directed terrace method.

It might also be interesting to try some searches where both M0 and M1 or
M2 are allowed to be greater than zero to see if this might allow 2M0+M1+
M2 to fall below 2n. Another interesting direction to go might be to try

30

other search methods like simulated annealing. There are many other possi-
bilities that could be explored and my project was only able to scratch the
surface but it was a great opportunity to apply computer science to an in-
teresting combinatorics problem with real world applications and experience
combinatorial explosion first hand.

References

[1] S. M. Lewis and K.G. Russell
Crossover designs in the presence of carry-over effects from two factors
Appl. Statist. (1998)
47, Part 3, pp.379-391

[2] Data on Complete and Row-Complete Latin squares
http ://users.monash.edu.au/ iwanless/data/RCLS/
Ian Wanless,
accessed April 2013.

[3] Personal communication with Matt Ollis
2012-2013.

[4] Personal correspondence between Matt Ollis and Ian Wanless
communicated by Matt Ollis, 2012-2013.

[5] Ambrose Sterr,
Computerized mathematics and the mathematics of computation
Plan of Concentration
Marlboro College, 2007.

31

