Languages Fxam

Sam Auciello

20 March 2013

Question 1:

As a way to demonstrate your understanding of programming ideas,
discuss the concepts behind following programming buzz words across

at least three languages that you’re familiar with that allow different
programming styles, perhaps C, Python, and a Lisp.

(a) First organize the terms into groups of concepts, showing which
are variations of the same concept or idea across or within
languages, or closely related concepts, or opposites.

(b) Then for each of these concept groups, discuss the ideas behind
that group, and give concrete code snips across these languages
to illustrate them.

Be clear that I *don’t* want you to just define each of these words;
instead, I want you to use them as the starting point for a
conversation with examples about some of the fundamential notions of
how programming languages work, and how those notions vary from
language to language.

In alphabetic order, the words are

APT
argument
array
bind
callback
class

closure
collection
comment
concurrent
compiled
data structure
dynamic
exception
fork
function
functional
global

hash
immutable
imperitive
inheritance
interface
interpreted
iterate
lexical

link

list

lazy

lexical

macro

method

name
namespace
object
overload
parse

scope

package
pattern

pass by reference
pass by value
pointer
recursion
side effect
stack overflow

static

symbol
syntactic sugar
thread

test

throw

type

variable

vector

Control flow

Programming languages need mechanisms for designating which instructions
are executed when. The most common forms this takes are conditionals and
iteration. Conditionals are used to determine whether a section of code
should execute and iteration is used to execute code multiple times. Control
flow can also take the form of functions and function calls. Functions can
be thought of like mathematical functions that map a set of inputs onto a
set of outputs but in the context of control flow it is usually best to think of
them as pieces of code that can be broken out and reused. It is often useful
to use functions to break up code even when a given function will only be
called once in the execution of the program simply because thinking in terms
of smaller reusable, general purpose functions makes code easier to read and
much easier to modify later. Compare the following two solutions to the
same problem in Ruby:

print "what is your email address? "
email = gets.strip
if /.+@.+\..+/.match email
puts "your email is #{emaill}"
else
puts "that isn’t an email"
end

and

def getEmail
print "what is your email address? "
return gets.strip

end

def validateEmail email
return /.+@.+\..+/.match email
end

email = getEmail
if validateEmail email

puts "your email is #{emaill}"
else

puts "that isn’t an email"
end

For something this simple the first is probably best but if any of the steps
gets significantly more complex (for example we could imagine wanting to
check that the email address ends in a real top-level domain) then the second
style starts to become much nicer to work with.

Another way of breaking code out into smaller modular pieces is macros.
Macro can refer to different things in different contexts but a macro generally
is a way of making a sort of meta statement to the language of the form
“when I say X what I really mean is Y”. For example C macros can be
used to intstruct the compiler to rewrite sections of code before the rest of
compilation begins:

#define SWAP(a, b) (a)~=(b);(b)~=(a);(a)"=(b);

if (swap_needed(x, y)) {
SWAP(x, y)
}

The compiler simply replaces the macro call in the source code with the
code to be substituted in. In this case the code is far more legible if it
simply says swap then if it spelled out the swapping process. This could of
course have been done with a function call but in C a macro can sometimes
have performance benefits in these cases because each function call requires
additional memory allocation.

In lisp macros work somewhat differently. A lisp macro can be used to
define a completely new syntax and unlike C macros which use a completely
separate language to define them, lisp macros are written in lisp. Lisp macros
also allow you to control when code is evaluated. In a normal function call
in Common Lisp like

(defun foo (x) (+ 1 x))
(foo (x 2 4))

the arguments of the function are evaluated before the funciton call.
So in the above example all that the function foo sees is the result of the
multiplication: 8. Inside of a lisp macro, you can control exactly when things
are evaluated for example:

(defmacro foo (x)
¢ (progn
, (when (eq ’* (car x))
‘(format t "argument was a multiplication"))

(+1,x)))

The ¢ symbol tells the Common Lisp interpreter that what follows shouldn’t
be evaluated right away except for the inner pieces preceded by ,. This macro
takes an unevaluated expression x and returns the code to add one to the
result of the expression being evaluated preceded by a print statement re-
porting that the expression began with an asterisk if it did. A more practical
example of a macro might be a debugging statment:

(defmacro debug (x) ‘(format t ""a: a" ’,x ,x))
(setq foo 1)

(debug foo) ; FOO: 1

Because the macro can control exactly when it’s arguments are evaluated
it has access the unevaluated form of the argument and can, in this case,
print it out as a label. Delaying evaluation in this way is sometimes called
lazy evaluation. In some languages, like Haskell, all evaluation is delayed as
long as possible.

Another useful form of control flow is exception handling. Exception han-
dling allows programs to handle problem situations gracefully. For example
in Python:

def func_that_cant_handle_zero(arg):
if arg ==
raise Exception("Everything is terrible!")
return "normal results"

try:
func_that_cant_handle_zero(0)

except Exception:
print "bad things happened"

Even though our function recieved input that it didn’t know what to do
with, we can account for the problem using a try/except statement rather
than simply crash the program.

It many programming environments it is desireable and possible to have
multiple lines of code running at the same time. This is called concurrency.
One way of doing this is with a fork. A fork statement tells the currently
running process to split into separate processes that have no straightfor-
ward way of communicating with one another and have access to all of the
information that the parent process had prior to that point. One major ad-
vantage of this approach is that forked processes can have access to copies of
the same data structures which they can then manipulate without worrying
about how it effects the other process. Another common way of handling
concurrency is called threads. Threads allow sections of code to be run at
the same time within the same program. They can be much faster than forks
because they don’t require everything the process has access to to be dupli-
cated and the have the advantage of sharing access to the same data (not just
duplicates). They also have the disadvantage of sharing access to the same
data. It becomes important to worry about the precise order inwhich things
can happen and being very careful not to make any assumptions about what
has happened already in another thread.

Assignment

Programs often keep track of many different sorts of data at once. It is
vitally useful to be able to map different pieces of data to helpful names so
that the data can be referred to later. Languages have many ways of doing
this. The most common is simple variable assignement where some bit of
data called a value gets bound to a variable name:

Ruby or Python

name = "value"

// JavaScript

var name = "value"
// C

char* name = "value"
;5 Scheme

(define name ’value)

The var in JavaScript is optional but without it the variable is treated
as global which is usually wrong (more on that shortly). The char* in
C specifies the type of variable. In this case a pointer to a character (the
asterisk designates a pointer). In C strings are stored as sequencial characters
terminated by the NULL character >\0’ and stored in variables as a pointers
to the first character. The ’> in Scheme designates that following symbol
shouldn’t be evaluated. In this case both name and value are symbols and
second is bound to the first so that the first evaluates to the second.

Variable assignment can also take the form of argument passing. In this
case the names are specified when a function is defined and the values are
specified when the function is called:

// C

void my_function(int x, int y) {
printf("x is %d and y is %d\n", x, y);

}

void main() {
my_function(2, 3); // x is 2 and y is 3
}

;5 Scheme
(define (my-function x y)
(format #t "x is "a and y is "a" x y))

(my-function 2 3) ; x is 2 and y is 3

In both cases the arguments are treated just as bound variables for the
purpose of that function call. The ints in C are required and specify the
type of the argument which, because C is statically typed must be known
beforehand. The special form of define seen here in Scheme is syntactic
sugar for:

(define my-function (lambda (x y)
(format #t "x is "a and y is "a" x y)))

In this case my-function is a symbol that is being bound to this lambda
function.

In larger projects it is often necessary to limit which names are accessible
in which contexts. These contexts are called scopes or namespaces. Scopes

are often nested so that names from the outer scope are accessible from the
inner scope but names from the inner scope are hidden from the outer scope.
For example in JavaScript:

var foo = 1, bar = 2;

(function() { // functions form scopes in JavaScript
var foo = 3, baz = 4;
console.log(foo, bar, baz); // 3 2 4

HO

console.log(foo, bar); // 1 2

console.log(baz); // ReferenceError: baz is not defined

If a JavaScript variable is set (e.g. foo = 1) without being initialized
with the var keyword then it is put in the outermost global namespace.
This is bad because it means that forgetting the word var in one place can
cause variables to have unexpected values anywhere in your code. Not all
languages define scopes this way. In Ruby method scopes don’t nest this
way (functions in ruby are called methods):

foo =1
def bar
print foo
end
foo() # NameError: undefined local variable or method ‘foo’

def foo
bar = 2
end
foo()
bar # NameError: undefined local variable or method ‘bar’

Insted of having nested function scopes, ruby has nested class and objects
scopes. Ruby makes use of th @ sigil to denote instance and class variables
S0:

class Foo
@@bar = 1 # these are class variables
@0qux
def baz
print @@bar
QQ@qux =7

Il
N

end
def snap
print @@qux
end
end
Foo.snap() # 2
Foo.baz() # 1
Foo.snap() # 7

Ruby also uses the \$ sigil to denote global variables. I find Ruby’s
approach to scope to be really nice. It assumes that all varaibles are only
needed in the local scope unless a sigil specifies otherwise.

Sometimes it is useful to have a lot of names/value associations wrapped
up in a specific isolated context that can be passed around as a data struc-
ture. This is precisely what a hash is; a set of key/value pairs that is treated
as a single value. In Python it is called a Dictionary and in JavaScript it is
synonymous with object.

Types

Computer programs handle and use data and data typically requires struc-
ture. Types are a way of classifying data so that the program knows how to
interpret it. For example, in C, the series of four bytes:

00000000 11011110 11011110 1100110

could represent the integer 7303014 or the string >foo’. Types typically
come in two categories. Atomic types like integers and booleans are just
simply a data of that type. Structured types like arrays, instances, and
hashes can contain other types of data. For example, you could have an
array of booleans, a hash mapping strings to numbers, or even an array of
arrays of hashes. Low level languages like C allow you to interact directly
with the actual machine representations of these types in memory which has
the advandage of allowing you to fully control the way that data is stored
in memory. This also requires you to keep track of the way that the data
is stored in memory. High level languages like Ruby often have complex
dynamic structures for storing arbitrary data. For example, anywhere you
can put a value in Ruby, you can put a value of any type and the language
will figure out how to represent that in memory wihtout you needing to worry
about it.

x = 10
is just as valid as
x = [10, 20, ["foo", true, nill]

This makes Ruby a dynamically typed language. Dynamically typed
languages have the advantage of flexibility. This flexibility can however cause
bugs if for example a function is was designed to take an integer as an
argument but instead is passed a null value. Considder the following in
Ruby and in Java:

// Ruby
def doMath x

return 10 * (x + 2) - (x / 3)
end

numbers = {
:one => 1,
ttwo => 2,
:three => 3,
:four => 4,
:five => 5

doMath numbers[:six]

// Java

public int doMath(int x) {
return 10 * (x + 2) - (x / 3);

}

public void main() {
Map<string, int> numbers = new HashMap<string, int>();
numbers.set("one", 1);
numbers.set("two", 2);
numbers.set ("three", 3);
numbers.set("four", 4);
numbers.set ("five", 5);

doMath (numbers.get ("six"));

10

In Ruby you would get a relatively unhelpful error message about there
being no ‘+’ method for nil. In Java you would actually get an error
message for the .get() call when no entry is found for ’six’ but even if
you simply called domath(null) you would get a compile time error about
the wrong type being passed. This is what is meant when Java is referred to
as type safe. The programmer has to specify the type of everything but the
result is that the program won’t compile unless all of the types are correct.
The result is that there are fewer bugs and more reduntant text in the code.

Object-oriented Programming

There are several ways to think about object-oriented programming. One
way is to think of classes as user defined types. Many languages embrace
this idea. For example in Ruby, the built-in types are, themselves classes
which can be modified just as easily as user defined ones:

class Integer
def double; selfx*2; end
end

puts 10.double # prints "20"

This is called a monkey patch or sometimes, “duck punching”. Python
allows for a similar programming pattern but unlike Ruby, Python won’t let
you directly modify the built-in types instead requiring that a new class be
defined that inherits from the built-in type:

class MyInt(int):
def double(self):
return selfx*2

print MyInt(10).double() # prints "20"

Inheritance here allows a subclass to take on all of the characteristics
of it’s superclass (methods, properties etc.) and then redefine or add new
ones. An instance of the MyInt class here behaves in all ways just like a
normal Python integer except that it also has a double method. When
a method from the superclass is redefined this way it’s sometimes called
overloading. In Python all objects inherit from the default object which
defines some methods like __repr__ which is called when the string is printed
out. Overloading allows Python classes to have custom representations:

11

class Foo:
pass

class Bar:
def __repr__(self):
return "[BAR INSTANCE]"

print Foo() # <__main__.Foo instance at 0x100c658c0>
print Bar() # [BAR INSTANCE]

JavaScript has a fairly unusual approach to objects. Most modern script-
ing languages have some form of key/value association type. Ruby and Perl
call them hashes, PHP calls them associative arrays, and Python calls them
dictionaries. Javascript simply calls them objects. The can be created as
literals like in Python or Ruby:

Python

x = { "foo": 1, "bar": 2 }

Ruby

x = { "foo" => 1, "bar" => 2 }
// JavaScript

var x = { foo: 1, bar: 2 }

Unlike Python or Ruby, JavaScript uses prototypal ineritance as opposed
to classical inheritance. With classical inheritance classes can inherit from
other classes and objects can be instances of classes. With prototypal inher-
itance objects simply inherit from other objects. For example:

Ruby
class Person
attr_accessor :first_name, :last_name
def initialize *args
Ofirst_name, Q@last_name = args
end
def full_name
"#{@first_name} #{@last_name}"
end
end

joe = Person.new "Joe", "Smith"
puts joe.full_name # Joe Smith

12

// JavaScript
var defaultPerson = {
full_name: function() {

return this.first_name + " " + this.last_name;
b
s
var joe = Object.create(defaultPerson);
joe.first_name = "Joe";
joe.last_name = "Smith;

console.log(joe.full _name());

The Object.create() call here returns a new object that inherits from
the passed object. Because the object simply inheritted from another object
the properties of that object can later be changed.

Funcitonal Programming

Functionaly programming is about writing functions that have no sides ef-
fects. This means that each function only interacts with the rest of the
program via arguments passed in and return values. Such functions can
be seen as mathematical functions that map a set of inputs onto a set of
outputs.

Where an imperative program is a sequence of instructions to be followed
in order, a functional program is a collection of well defined transformations
built up from one another with a final outer function that transforms the
program’s input into the program’s output. One of the greatest advantages
of this approach is that small well defined functions are much easier to test
and debug than large unweildy ones. Python’s doctests can be very helpful
for these sorts of tests:

def addOne(x):

Example:
>>> addOne(2)
3

return x + 1

It is common for recursion to be used in place of iteration in functional
languages. For example, given the problem of determining whether a list
contains a given element in Python one might do the following:

13

def contains(list, element):
for e in list:
if e == element:
return True
return False

Whereas in Scheme, it would be more common to see:

(define (contains 1 element)
(cond
((null? 1) #f)
((= element (car 1)) #t)
(#t (contains (cdr 1) element))))

Callbacks are also a very common pattern in functional programmming.
The idea behind a callback is that a function can take another function as
one of it’s arguments and call that function when it’s done. Often passing
the results of the first function to the second instead of returning them.
Node.js uses this technique to guarantee that input and output operations
are non-blocking. For example considder the common use case of querying a
database for some data and sending it to the user as JSON. In a traditional
web server environment like PHP, the process would be frozen while the
database was processing the request:

// PHP

$sql = "SELECT stuff FROM tables";

$query_result = db_query($sql); // execution is stopped here
echo json_encode($query_result);

// go back to serving other requests
In Node.js this problem is solved using callbacks:

// Node.js

var sql = ’SELECT stuff FROM tables’;

db_query(sql, function(query_result) {
serve_request (JSON.stringify(query_result));

3

// go back to serving other requests

14

Because the db_query() function returns immediately, serving other
requests can resume immediately. Behind the scenes, Node.js has a pool
of threads that it uses to handle the actual database querying. Because
JavaScript functions have closures the callback will have access to the scope
inwhich it was defined which makes Node.js work particularly well.

APIs

An api, or application interface is an interface to a section of code. The api
hides irrelevant implementation details so that the progammer can focus on
the parts that matter. For example in a Ruby program, if I need to sort a
list of numbers I don’t need to know what sorting algoritm is being used. I
merely need to know how to interface to the built-in library that does sorting.

implementation
class Array
def sorted?
(size - 1).times do |il
return false if self[i] > self[i + 1]
end
return true
end
def sort
result = shuffle
return result if result.sorted?
return sort
end
end

api
numbers = [60, 99, 61, 26, 82, 19, 44, 76, 29, 23]
sorted = numbers.sort

I don’t need to see the implementation to know how to use it. All I
need to know how to use it is that Arrays have a .sort method that takes
no arguments and returns a sorted copy of the Array. These pieces of in-
formation are the api. In this case it may also be worth knowing that the
builtin quicksort implementation has been overloaded with the factorial time
bogosort algorithm since this will be much slower than expected.

Apis are most useful in general purpose libraries. For example, the
node.js package optimist is a useful library for parsing command line ar-

15

guments. If you needed to know how it worked in order to use it then it
would hardly be worth using it at all as you could simply make your own.
Instead it provides an api for it’s use. It can then be treated like a black
box. As long as you know which methods to call with which arguments and
what they will do, you can ignore the details of how.

A more complex example of an api is the Google Maps API. Google
Maps is a big, fully featured web application for using maps. The inner
workings of the application are controled by Google but they expose the
API as a system by which web developers can embed maps on web pages
and manipulate them in JavaScript. The web developer needed understand
all of the implementation details of the map application as long as they
understand how to use the mechanisms provided to manipulate the resulting
maps.

Question 2:

Write six programs implementing solutions to the following two
problems across the three languages with different styles.
(These may be the same three from question 1, but don’t need
to be.)

In each case, include docs and tests appropriate to the style of that
language, including explicitly what verision of what language you ran,
in what environment, what steps compiled and/or ran the code, and what
the input and output looked like.

Use these programs to illustrate some different currently popular
programming paradigms, as well as your mastery of the vernacular

within these programming language communities.

As a postscipt, discuss which languages you found well suited
to which problem, and why.

The two problems are
A) the perfect squares crossword puzzle

Replace the * below with twentyfive base 10 digits to form a
crossword-like array of thirteen 3-digit perfect squares, with each

16

B)

3-digit number reading across or down. (121 = 11°2 for example is
a 3-digit perfect square.)

* * % % * k% *
* % % * % % * k%
* * % % * k% *

family tree

Write a program to generate a visual family tree from a .csv (comma
separated value) file of people.

Each line in the file should represent a person, and include at
least (name, father, mother, date born, date died). The data format
is up to you, but should be (a) well defined, and (b) allow for
multiple people with the same name. Generate some (fake) data to
run your code on, which includes at least 10 people across at least

3 generations.

The family tree should be either ascii art or easily displayed

image (e.g. .png, .pdf, .svg, .html, ...) as you choose. You may
use an external graphics library appropriate to the language; if

so as usual quote your sources explicitly.

Square Crosswords

I very quickly found an answer to problem by inspection assuming squares
can occur multiple times in the solution. My solution relies on palindromic
squares to create a highly symetrical solution using 112, 122, and 222

1 121 121 1
484 484 484
4 484 484 4

I decided to try answering the more difficult quesiton of whether this can
be solved using each square at most once. I was able to find the following
solution using a recursive search in ruby:

$ cd crosswords
$ ruby recursive_search.rb
841

17

484
144
169
441
961
625
256
225
676
576
729
196

I transcceribed this by hand to the folowing:

8 169 225 1
484 625 729
1 441 676 6

My ruby code makes use of Ruby classes to create scopes that fully
encapsulate the calculation. This isn’t really necessary for an application
with so few moving parts but it seemed like the natural thing to do in
classical object-oriented language like Ruby. This particular script has two
major flaws. Firstly, the logic of when a given square is allowed to fit in a
particular space is coded in ad hoc manner which is excessively verbose and
somewhat hard to read as well as being inellegant and non-general. Secondly,
not having any of the structure of the puzzle built into the program there
was no obvious way to translate the solution from the form it is stored in
(an array of strings in an arbitrary order) to the crossword format it appears
in above. Seeing as by this point it was clearly a flawed first pass, I did the
translation by hand and moved on to a better approach in Hot Cocoa Lisp.

My Hot Cocoa Lisp program has a hardcoded list of spaces that will need
to contain a digit from two different squares. It then uses this information to
automatically constrain the search. This makes it more general and legible
than the previous iteration but it still leaves no clear way to translate the
output to crossword form.

$ hcl recursive_search.hcl

$ node recursive_search.js

[’841°, ’484°>, *144°>, °169°, °441°, ’961’, ’625°, ’256°, ’225’,
Y6767, 5767, 7297, 196’]

18

I wrote the final version in C and used a somewhat object oriented ap-
proach involving structs to organize the puzzle. In this version I kept track of
the solution in a 3x11 grid of digits to make sure the output could straight-
forwardly be made to look like a crossword. I then hardcoded 13 space
structs each of which contains the coordinates of the three digits in that
space and a bit map denoting which of those digits will have been filled in
before this space is assigned a square.

$ gcc -Wall recursive_search.c -o recursive_search
$./recursive_search

8 169 225 1

484 625 729

1 441 676 6

Family Trees

I wrote a ruby script called gen csv.rb that generates a random family and
stores it in people.csv:

$ cd family_trees

$ ruby gen_csv.rb

$ cat people.csv
id,first_name,last_name,father,mother,born,died
0,Christy, Jackson,7,8,1928,2010
1,Stacey,Taylor,5,6,1942,-1
2,Claudia, Jackson,1,0,1973,-1
3,Jason,Taylor,1,0,2005,-1
4,April, Jackson,1,0,1986,-1
5,Martha,Taylor,9,10,1903,1971
6,Thelma,Bass,-1,-1,1904,1965
7,Fred,Jackson,-1,-1,1888,1948
8,Joann,Beck,-1,-1,1897,1987
9,Wade,Taylor,17,18,1865,1926
10,Zachary,Currie,-1,-1,1871,1943
11,Patricia, Jackson,7,8,1935,2002
12,Anna,Haynes,-1,-1,1924,2013
13,Gail,Haynes,12,11,1991,-1

14 ,Valerie,Currie,9,10,1912,1996
15,Dan,Haynes,11,12,1997,-1
16,Pamela,Bass,6,5,1938,1990

19

17 ,Regina,Taylor,21,22,1829,1886
18,Sylvia,Jacobs,-1,-1,1829,1927
19,Barbara,Newton,-1,-1,1926,-1
20, Jeanne,Bass,19,16,1989, -1
21,Lewis,Taylor,-1,-1,1789,1840
22 ,Mark,Simon,27,28,1796,1858
23,Max,Taylor,17,18,1876,1967
24,Frederick,Taylor,1,0,1985,-1
25, Johnny,Currie,10,9,1911,1974
26 ,Renee,Bass,19,16,1973,-1

27 ,Katie,Simon,29,30,1757,1842
28,Joyce,Bond,-1,-1,1760,1844
29, Justin,Simon,-1,-1,1724,1786
30,Victor,Schneider,-1,-1,1718,1785

The first tree generating program I wrote was in Ruby. I used a simple
scripting approach to generate a graphviz file and complile it to a .png file
using dot.

$ ruby display_tree.rb
$ dot -Tpng tree.graphviz > tree.png

This approach seemed too easy so I decided to try making an ascii version
in C. Unfortunately intelligently rendering a complex directed graph in two
dimensions turns out to be a fairly non-trivial algorithmic problem and it
seemed like an poor use of my time to learn and re-write the dot algorithm
(or even worse invent my own) so instead I made a console based family tree
explorer:

$ gcc -Wall display_tree.c -o display_tree
$./display_tree

Christy Jackson (1928 - 2010)

Mother: Joann Beck (1897 - 1987)
Father: Fred Jackson (1888 - 1948)
Spouce: Stacey Taylor (1942 - present)
Children:

Frederick Taylor (1985 - present)
April Jackson (1986 - present)

20

Jason Taylor (2005 - present)
Claudia Jackson (1973 - present)

warning: this program uses gets(), which is unsafe.
Enter a relative to navigate to (mother, father, spouce, child_n): father

Fred Jackson (1888 - 1948)

Mother: N/A

Father: N/A

Spouce: Joann Beck (1897 - 1987)
Children:

Patricia Jackson (1935 - 2002)
Christy Jackson (1928 - 2010)

Enter a relative to navigate to (mother, father, spouce, child_n): spouce
Joann Beck (1897 - 1987)

Mother: N/A

Father: N/A

Spouce: Fred Jackson (1888 - 1948)
Children:

Patricia Jackson (1935 - 2002)
Christy Jackson (1928 - 2010)

Enter a relative to navigate to (mother, father, spouce, child_n): child_0
Patricia Jackson (1935 - 2002)

Mother: Joann Beck (1897 - 1987)

Father: Fred Jackson (1888 - 1948)

Spouce: Anna Haynes (1924 - 2013)

Children:

Dan Haynes (1997 - present)

Gail Haynes (1991 - present)

Enter a relative to navigate to (mother, father, spouce, child_n): mother

Joann Beck (1897 - 1987)

21

Mother: N/A

Father: N/A

Spouce: Fred Jackson (1888 - 1948)
Children:

Patricia Jackson (1935 - 2002)
Christy Jackson (1928 - 2010)

Enter a relative to navigate to (mother, father, spouce, child_n): child_1
Christy Jackson (1928 - 2010)

Mother: Joann Beck (1897 - 1987)
Father: Fred Jackson (1888 - 1948)
Spouce: Stacey Taylor (1942 - present)
Children:

Frederick Taylor (1985 - present)
April Jackson (1986 - present)

Jason Taylor (2005 - present)

Claudia Jackson (1973 - present)

Enter a relative to navigate to (mother, father, spouce, child_n): child_3
Claudia Jackson (1973 - present)

Mother: Christy Jackson (1928 - 2010)
Father: Stacey Taylor (1942 - present)

Enter a relative to navigate to (mother, father, spouce, child_n): quit

For my third version I simply re-wrote the tree explorer in Hot Cocoa
Lisp with a more functional style.

$ hcl display_tree.hcl
$ node display_tree.js

Christy Jackson (1928 - 2010)

Mother: Joann Beck (1897 - 1987)
Father: Fred Jackson (1888 - 1948)

22

Spouce: Stacey Taylor (1942 - present)
Children:

Claudia Jackson (1973 - present)

Jason Taylor (2005 - present)

April Jackson (1986 - present)
Frederick Taylor (1985 - present)

Enter a relative to navigate to (mother, father, spouce, child_n): quit

Question 3:

Discuss the strengths and weaknesses of these programming languages as
you see them. What sorts of problems or situations are good fits to
these languages, and why? Which do you personally like, and why? Be
specific, giving examples that justify your comparisons and
conclusions. (This may well cover some ground you’ve already discussed
in the previous two problems. If so, you don’t have to repeat any of
that, just refer back to it and bring up anything that you feel hasn’t
yet been brought forward.)

I feel that Python works quite well as a teaching language; even if for no
other reason than that it forces new programmers to properly indent their
code. It also has a better selection of good libraries to do INSERT THING
COMPUTERS DO HERE than most modern scripting languages, making it
a good choice for a lot of practical applications. In general I get tired of the
little problems with Python. The one that irks me the most lately is the limit-
ted nature of lamdas. This email: http://mail.python.org/pipermail /python-
dev/2006-February /060621.html from Python’s designer Guido van Rossum
explains why he has no intension of changing this. He begins by claiming
that there is no reasonable way to make the syntax work. This is clearly
ridiculous:

lambda(argl, arg2):
statement one
statement two

It basically seems to boil down to him not wanting Python to be like
lisp. I don’t know what he thinks makes Python better than lisp but either
way I find that the more I program the more I want to be programming
functionally and the less I like Python.

23

http://mail.python.org/pipermail/python-dev/2006-February/060621.html
http://mail.python.org/pipermail/python-dev/2006-February/060621.html

I rather like Ruby for object-oriented programming and general scripting.
The block passing structure has a way of making simple tasks simpler and
more complex tasks surprisingly manageable. It can be very terse which
I like because it means less extraneous typing and more expressive power.
The way that Ruby treats objects seems very much like the way Java treats
objects to me. The two largest differences between the two languages seem
to be a) that Java is strongly typed and Ruby is duck typed, and b) that
Ruby is much newer and has a lot more helpful features. The biggest flaw
I see with Ruby is that it doesn’t really have functions. It has methods
which are necessarily attached to classes and objects (and if you embrace
this then the language can be quite powerful). It has code blocks which
can be passed to functions but aren’t really functions in that they can’t be
treated as values. It has procs and lambdas that effectively are functions
but they are so far removed from the normal use case that their syntax is
obscure and forgettable.

I find Lisp-like languages to have a syntax particularly conducive to func-
tional programming. Since every piece of the language has a consistent syn-
tax it’s very easy to think in terms of function calls (in a way everything
is). In some ways the entire point of monads is that every deterministic
operation (inside a computer or otherwise) is just a transformation from one
state of the universe to the other.

24

