Algorithms Exam

Sam Auciello

25 February 2013

Question 1:

Pick any two of the following three problems to analyze:
(i) sorting a list of numbers

(ii) the partition problem: given a multiset (a set-like construction
that allows multiple copies of the same thing) of integers, is there
a way to partition it into two parts such that the sum of integers in
each part is the same?

(iii) The convex hull problem: given a set of points (x[il, yl[il),
find that list of points that’s on the extreme outer "edge", which
form a convex polygon containing all the other points.

For each of the two problems that you choose, pick an algorithm to
examine and answer the following questions. (In order of decreasing
impressiveness, you may choose a good one that you already know and
understand, invent one, or search the literate. In any case, be
explicit about where your algorithm came from, and explain it
clearly.)

(a) Describe what you expect the 0() run time to be for the
algorithms, and explain why and and on explictly what type of
problems (e.g. worse case, average case, etc).

(b) Implement and test the algorithms in a language of your choice.
(Do *not* use built-in or library routines for e.g. sorting.)

(c) Run your code on various size data sets that you generate,
recording the number of steps (however you choose to define that) the
algorithms take to run. Show explicitly with a plot of the data from
this "numerical experiment" that the 0() behavior is as expected.

I chose to look at problems (i) and (ii).

Sorting

I’'ve implemented from memory the following three O(nlogn) sorting algo-
rithms in C:

e Quicksort (in place)
e Mergesort

e Heapsort

Quicksort

Quicksort starts by arbitrarily choosing an element of the list and calling
it the pivot. It then swaps the other elements of the list around the pivot
until all elements less than the pivot are before the pivot and all elements
greater than the pivot are after the pivot. It then recursively calls quicksort
on the sublists before the pivot and after the pivot. The base case is lists of
length less than 2 which are necessarily already sorted. My implementation
operates in place and just for fun uses the XOR swap trick that is probably
optimized away by the compiler anyway to make it theoretically extra in-
place. Since each number must be visited approximately once in each level
of recursion (in different branches) and there are logn levels of recursion
because the size is approximately divided in two at each level, the algorithm
should run in O(nlogn) time.

Mergesort

Mergesort starts by dividing the list into two equally sized sublists and re-
cursively calling mergesort on each of them. It then merges the two sorted
lists together by taking the lower of the first elements of each list until both
lists are empty. As with quicksort the base case is lists of length less than
2. As with quicksort, each number must be visited once in each level of
recursion and there are logn levels of recursion so the algorithm should also
run in O(nlogn) time.

Heapsort

unlike mergesort and quicksort, heapsort is not recursive. Heapsort makes
use of a datastructure called a heap which is a binary tree in which each
node is greater than or equal to it’s parent. Adding an element to a heap is
a logn operation because the new element must be added at the bottom of
the tree and might need to be compared to (and possibly swapped with) each
of its ancestors all the way up the tree to find a valid placement. Removing
the smallest element of a heap is similarly a log n operation because the root
element must be swapped to the bottom and then the new root needs to be
compared to (and possibly swapped with) it’s decendants until if finds a valid
placement. Heapsort simply takes the initial list and inserts each element
into a heap then produces the sorted list by taking the smallest number
from the heap until it is empty. Since we need two logn operations for each
element of the list the algorithm should run in O(nlogn) time. There is
an efficient way to store a heap in as an array; the values from the tree are
simply read out top to bottom left to right into the array. The parent of a
node in the array is at the index L%J where ¢ is the index of the node and
the children of a node are at 2 + 1 and 2¢ + 2 respectively. According to
wikipedia, it is also possible to run heapsort in place by storing the in this
manner in the same place as the initial list. In my implementation I used a
separate scratch array to store the heap.

Numerical experiment

My code can be tested with:

$ cd sorting
$ gcc -Wall test.c -o test && ./test

I've sumarized the results below:

size: 10
n*log_2(n): 30
quicksort: 23
mergesort: 34
heapsort: 15

size: 20
n*xlog_2(n): 80
quicksort: 59

mergesort: 88
heapsort: 61

size: 30
n*xlog_2(n): 120
quicksort: 143
mergesort: 148
heapsort: 110

size: 40
nxlog_2(n): 200
quicksort: 245
mergesort: 216
heapsort: 161

size: 50
n*xlog_2(n): 250
quicksort: 283
mergesort: 286
heapsort: 212

These numbers should be regarded as approximate due to my somwhat arbi-
trary choice of where to increment the counter. All three algorithms clearly
grow with proportion to nlogn.

The Partition Problem

I’ve implemented two versions of a brute force solution to this problem, one
in C and and one in Ruby.

In C

My solution in C simply enumerates the powerset of the input multiset until
it either reaches the end or finds a solution. It does this in a particularly
concise manner by taking advantage of the isomorphism between the pow-
erset of a multiset of size n and the binary expansions of the set of integers
that satisfy 0 <4 < 2™. My program simply enumerates the integers from 0
to 2", checks to see if the partitioning resulting from that integer has equal
sums and returns that integer if it does.

My algorithm should run in O(2") time since it is literally enumerating

the powerset. It has the additinal disadvantage of being limited to input
multisets no bigger than the log of the largest integer that can be trivially
stored in my architecture. In this case 63 since my implementation requires
the integer to be signed to allow negative numbers to signify no partitioning
having been found. I’ve run my code on the prepared lists of orders 5, 10, 20,
and 50. I specifically used a mix of lists that can and cannot be partitioned
to give a better sense of the algorithms behavior. As one might expect, the
algorithm runs significantly faster when it finds a solution:

$ cd partitions

$ gcc -Wall brute.c -o brute && ./brute
[53, 24, 20, 81, 90 1]

[63, 81] [24, 20, 90]

2°n:32

steps:10

[569, 54, 88, 86, 64]
no partitioning exists
2°n:32

steps:32

[53, 65, 74, 44, 66, 1, 92, 34, 42, 57]

[63, b5, 74, 1, 34, 42] [44, 66, 92, 57]
2°n:1024

steps:424

[2, 81, 10, 66, 50, 43, 22, 80, 89, 67]
no partitioning exists

2°n:1024

steps:1024

[o, 0, 13, 0, 36, 40, 23, 38, 38, 25, 53, 37, 85, 10, 51, 1, 74, 71, 33,
34]

[13, 36, 40, 38, 38, 25, 53, 37, 611 [0, O, O, 23, 85, 10, 1, 74, 71,
33, 34 1]

2°n:1048576

steps:20405

[87, 68, 97, 55, 26, 48, 62, 48, 43, 80, 75, 13, 25, 62, 76, 39, 3, 80,
37, 71

no partitioning exists
2°n:1048576
steps:1048576

[67, 78, 63, 45, b5, 13, 7, 75, 37, 84, 68, 68, 54, 4, 9, 90, 70, 58, 39,
1, 19, 13, 33, 59, 88, 14, 98, 83, 69, 17, 87, 61, 81, 21, 64, 19, 8,
71, 6, 34, 88, 8, 17, 69, 57, 94, 47, 57, 4, 65]

[67, 78, 63, 45, 55, 13, 7, 75, 37, 84, 68, 68, 54, 9, 90, 70, 58, 39,
19, 33, 88, 981 [4, 1, 13, 59, 14, 83, 69, 17, 87, 61, 81, 21, 64, 19,
8, 71, 6, 34, 88, 8, 17, 69, 57, 94, 47, 57, 4, 65 1]

27n:1125899906842624

steps:89645056

In ruby

My solution in ruby uses a less technically efficient recursive backtracking
search and simply stores the partitioned state using two smaller lists. It
makes up for these inefficiencies with two improvements. First it sorts the
intial list so that larger numbers will be tried first and then it checks the
sums of the two smaller lists at each step. If the difference between the two
smaller sums is greater than the sum of the remaining unassigned numbers
then there is no solution below this point and the search can backtrack. I
used a ruby monkey patch to allow arrays of numbers to keep track of their
sums internally as numbers are moved between them to avoid the overhead
of recalculating the sum each time. Because it is a backtracking search that
goes to a maximum depth of n with a branching ratio of 2 it should run in
O(2") time. Numerical exeriment indicates that my improvement is cutting
this down significantly. My recursive search function is being called roughly

n n . . .
between % and 120—0 times even when no solution is found:

$ ruby brute.rb

size: 5

2°n: 32

[561, 778, 931, 344, 719] can not be partitioned
steps: 13

[1561, 278, 115, 396, 512] can not be partitioned
steps: 9

[122, 962, 821, 662, 414] can not be partitioned
steps: 9

[863, 941, 245, 256, 296] can not be partitioned

steps: 13

[670, 315, 177,
steps: 5

size: 10

2°n: 1024

[284, 544, 463,
steps: 113

[461, 695, 579,
steps: 263

[306, 321, 873,
steps: 255

[514, 758, 276,
steps: 105

[469, 871, 605,
[966, 691, 605,
steps: 131

size: 20

2°n: 1048576

915, 997] can not be partitioned

649, 761,

443, 284,

572, 999,

603, 938,

731, 691,
544, 68]

120, 501, 484, 92, 41] can not be partitioned

624, 871, 319, 517, 874] can not be partitioned
358, 569, 619, 597, 957] can not be partitioned
219, 840, 622, 36, 120] can not be partitioned

68, 610, 966, 544, 193] can be partitioned as
[871, 731, 610, 469, 193]

[61, 764, 989, 36, 791, 271, 456, 274, 61, 672, 948, 82, 677, 605, 554,
314, 816, 949, 714, 225] can not be partitioned

steps: 37827
[644, 129, 214,

119, 378,

552, 705, 539, 611, 943, 222, 340, 173, 32,

312, 911, 689, 526, 330, 568] can not be partitioned

steps: 61741

[834, 16, 154, 318, 901, 645, 506, 751, 496, 865, 733, 935, 779, 293,

376, 949, 220,
steps: 64287
[618, 725, 998,
548, 659, 953,
steps: 179453
[485, 710, 299,
783, 256, 318,
steps: 87827
size: 25
2°n: 33554432

626, 269,

999, 520,
422, 712,

615, 412,
465, 791,

641] can not be partitioned

260, 409, 663, 731, 424, 889, 580, 582, 620,
951] can not be partitioned

151, 630, 333, 373, 195, 78, 887, 920, 666,
766 1 can not be partitioned

[68, 767, 397, 164, 873, 994, 135, 246, 708, 329, 172, 612, 352, 370,
820, 841, 31, 36, 722, 477, 961, 18, 85, 66, 285] can not be partitioned

steps: 618285
[482, 566, 270, 370, 714, 643, 337, 340, 939, 112, 943, 367, 199, 789,

320, 19, 727, 390, 440, 607, 323, 216, 878, 987, 721] can not be partitioned
steps: 1715443
[48, 552, 458, 16, 207, 749, 248, 359, 265, 505, 393, 731, 941, 981, 562,
266, 476, 555, 671, 501, 504, 909, 188, 953, 929] can not be partitioned
steps: 1300743
[395, 165, 443, 767, 513, 590, 613, 518, 514, 70, 328, 887, 679, 135,

979, 939, 149, 83, 990, 669, 545, 521, 409, 772, 924] can not be partitioned
steps: 1687875
[953, 176, 401, 934, 954, 961, 744, 133, 154, 729, 539, 536, 951, 136,

489, 493, 925, 208, 699, 955, 555, 255, 671, 736, 399] can be partitioned as
[961, 955, 954, 953, 951, 934, 925, 401, 176, 133 1 [744, 736, 729, 699,

671, 555, 539, 536, 493, 489, 399, 255, 208, 154, 136]
steps: 260

Question 2:

In a language of your choice, illustrate a depth-first and
breadth-first tree search, preferably using a stack and a queue,
for a small "sliding block" puzzle.

A sample search might be to get from

start finish
213 123
546 456
78 . 78 .
where the "." is the empty square; the two possible first moves

slide either the 6 or the 8 to bottom right corner.

Is one sort of search better than the other for this problem?

I've implemented both versions of the search in Hot Cocoa Lisp. Breadth
first search is the clear winner finding an efficient solution in under 2 seconds:

$ cd sliding_blocks

$ time node breadth_first.js

solution found! [5,2,1,4,3,0,1,2,5,4,3,0,1,4,5,8]

node breadth_first.js 1.76s user 0.11s system 997 cpu 1.883 total

The depth first version took longer than I wanted to wait but I gave it the
simpler position

which can quickly be solved with [3,4,1,2,5,8] and got the result:

$ node depth_first.js
solution found! [3,6,7,8,5,4,7,8,5,4,7,8,5,4,3,6,7,8,5,4,7,8,
5,4,7,8,5,4,3,6,7,8,5,4,7,8,5,4,7,8,5,4,1,2,5,8]

The algorithm is quite simple and I've abstracted it out into sliding _blocks/search.hcl.
A simple test of my sliding block puzzle api can be found in sliding _blocks/manual_ solution.hcl:

node manual_solution.js
13
46
8 .

= ~N 01N A
N
w

(¢2]
N

ol
(e}

Question 3:

Explain in your own words what exactly is meant by "P" and "NP" as
complexity classes in computer science, why this is such an important
question, and what is and isn’t known about them. Give explicit
examples of problems that are in each of these classes, and explain

why the known algorithms have behaviors consistent with your P and NP
descriptions. You may use external sources if you need to - and if so
be clear which ones you used, of course - but the point here is to
convey to us your understanding, not to just summarize a wikipedia
article.

In complexity theory, P stands for polynomial and refers to the class of prob-
lems which can be solved within polynomial time. NP stands from non-
deterministically polynomial and refers to the class of problems for which
a given solution to the problem can be verified in polynomial time. The
question of whether or not P = N P is simply that of whether or not all non-
deterministically polynomial problems can be solved in polynomial time. It
has been proven that that if any of the class of NP problems are in P then
they all are and it is typically conjectured that P #% N P. There are many
problems of practical significance that are known to be in NP but for which
there are no known algorithms for solving them in polynomial time. If it
were shown that P = NP it would mean that we have much more efficient
solutions than we have so far found to many problems that have been looked
at extensively. Two examples of NP problems follow.

The hamiltonian cycle problem

Given a graph determine whether there exists a path that starts a given node
and by following edges touches each node in the graph exactly once before
returning to the original node. This problem is clearly in NP because given
a solution to the problem one need only traverse the given path once (in
O(n) time) to determine whether it is in-fact a solution. A simple algorithm
for finding such a solution is a backtracking search which follows edges look-
ing for a valid path. Since each node could in principle have as many as
n — 1 edges this search has a branching ratio of order n and a depth of n
thus the algorithm runs in O(n) time. An even simpler algorithm would be
to enumerate the permutations of the nodes and then chech whether a path
exists for that ordering. This would run in O(n!) time.

The boolean satisfiability problem Given a formula involving ands, ors,
nots, parentheses, and variables that contain unspecified boolean values,
determine whether an possible assignement of true or false to each of the
variables exists such that the formula evaluates to true. The problem is in
N P because given an efficient boolean logic system a solution can be verified
in a single pass. The simplest algorithm for finding a solution is probably to
simply enumerate the possible true/false assignements which are isomorphic

10

to the powerset of the set of variables and thus requires O(2") time.

I used wikipedia to refresh my memory about these two problems.

Question 4:

Explain what a "hash table" is, and what it’s 0() behavior looks

like. Implement one and use it to make a histogram of a word counts in
a large text file. The details (collision algorithm, hash function,
programming language) are up to you.

A hash table is a particular implementation of a key value store data struc-
ture (i.e. python’s dictionaries, php’s associative arrays, or javascript’s ob-
jects). The hash table makes use of a hash function which is a function that
is designed to deterministically map keys to seemingly random indices. The
hash function should have the property that any two similar keys map to
different indices. The hash table simply stores key/value pairs in a sparse
array at the index determined by the hash function. Because the hash func-
tion is deterministic retreiving the key value pair is as simple as running the
key throught the hash function and jumping to the resulting index. There is
no need to look through the entire list for the pair we need. This meens hash
tables make read and write operations O(1) with respect to the number of
elements in the hash.

I've implemented a hash table in C. It handles hash collisions by keeping
key/value pairs in “buckets” which form linked lists at each index. To find a
given pair, my program hashes the given key and finds the associated index
then follows the linked list it finds there until it finds a “bucket” with the
given key of reaches a null bucket (which would mean the pair is not in the
hash). Because I'm statically allocating only 256 buckets (for the simple
reason that my hash function is particularly straight-forward with one byte
indices) read/write operations should be O(1) when there are around 256
keys and with larger numbers of keys the complexity will approach O(n) for
a linked list divided by a constant factor of 256. For some reason on my
MacBook, I get segfaults when I try to read files over a certain size in C so
I'm just using the first chapter of Moby Dick:

11

$ cd hash
$ gcc -Wall words.c -o words && ./words moby_chl

I've also made general test of the hash table api that can be run with:

$ gcc -Wall test.c -o test && ./test

Question 5:

Discuss the the connections between and ideas behind between a
lossless compression algorithm (your choice which) and information
entropy. Using a large text file (perhaps the same one from the
previous problem), calculate an approximation to the information
entropy. Find how much that file can be compressed, using a standard
compression tool (or one you’ve implemented, but that’s not required)
and discuss how that is related to the entropy. Repeat for a file of
random text, and explain how the those results compare.

Information entropy is basically a measure of how random a set of data ap-
pears to be. Lossless compression relies on patterns in a file which can be
represented more succinctly for example a series of fifteen xs can be rep-
resented by some encoding of the number 15 and the character z. If a file
has the maximum amount of entropy for a file of its size then, by definition,
it contains no patterns and cannot be compressed. The less entropy the file
contains the more it can be compressed. Shannon’s definition of entropy uses
a number between 0 and 1 which should be equal to the optimal theoretical
compression ratio.

I've generated a file of random bytes of the same size as the first chapter
of Moby Dick and I've created a short script in ruby to calculate the entropy
of both files:

$ cd entropy
$ ruby entropy.rb moby_chl
0.55706724002445

$ ruby entropy.rb random
0.998049624345567

12

I refreshed my memory of the formula for entropy using the discussion at:
http:/ /stackoverflow.com/questions/990477 /how-to-calculate-the-entropy-of-
a-file.

I also used gzip to determine the practical compression ratios of the files:
$ 1s -1

-rw-r--r-- 1 olleicua staff 12243 Feb 25 20:57 moby_chl
-rw-r--r-- 1 olleicua staff 12243 Feb 25 21:02 random

$ gzip moby_chl
$ gzip random
$ 1s -1

-rw-r--r-- 1 olleicua staff 5893 Feb 25 20:57 moby_chl.gz
-rw-r--r-- 1 olleicua staff 12278 Feb 25 21:02 random.gz

$ ruby -e "p 5893.0 / 12243.0"
0.481336273789104

$ ruby -e "p 12278.0 / 12243.0"
1.00285877644368

The observed compression ratio for the first chapter of Moby Dick is probably
lower for the simple reason that gzip looks for patterns spanning multiple
characters and my entropy calulation only looke at single characters. A more
thorough calculation would have also looked at groupings of consecutive
characters of sizes up to the size of the file. The compression ratio for the
random text is probably greater than on for the simple reason that gzip was
unable to compress it at all but did add headers to specify things like file
length, type of encoding used, and checksum.

13

http://stackoverflow.com/questions/990477/how-to-calculate-the-entropy-of-a-file
http://stackoverflow.com/questions/990477/how-to-calculate-the-entropy-of-a-file

