Internet Exam

Sam Auciello

23 April 2013

Question 1:

(a) Assume that a computer in the Marlboro computer lab has

just been initialized. It has its network configured, but

has otherwise not been used. Explain what packets and protocols
would be exchanged were someone try to visit (a) cs.marlboro.edu
or (b) mit.edu with a browser. Be explicit, and use this
scenario to explain as many of the fundamental layers and
services as you can.

(b) Illustrate your answer to the first part with actual
packet captures from wireshark or a similar tool in an
analogous situation.

cs.marlboro.edu:

1. The lab computer does a DNS (domain name system) query to one
of the local campus DNS servers at 10.1.2.2, 10.1.2.17, or 10.2.0.2.
This query uses ethernet protocol to communicate with the router in
the lab and the IP (internet protocol) layer to direct the packet to
whichever DNS server is being used on port 53. It then uses UDP
(user datagram protocol) as the transport layer to send request for the
IP address associated with cs.marlboro.edu.

2. Noting that the request came from within campus network, the DNS
server responds with a CS’s local IP address: 10.1.2.19

3. The lab computer next sends an HT'TP (hyper-text transfer protocol)
request, again using ethernet to communicate with a router and IP
to direct the packet to CS (using the recently discoverred IP address)
on port 80. This time it uses TCP (transmission control protocol) to

establish and maintain connection where both parties keep track of
what has been sent and recieved so that any data that gets lost or
arrives out of sequence can be re-requested. At the application layer,
an HTTP request like the following is made:

GET / HTTP/1.1

Host: cs.marlboro.edu

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_8_3) AppleWebKit/536.:
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/%;9=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding gzip, deflate

DNT: 1

Connection: keep-alive

4. CS sends an HTTP response like the following:

Connection: Keep-Alive

Content-Type: text/html; charset=IS0-8859-1
Date: Mon, 22 Apr 2013 17:04:12 GMT
Keep-Alive: timeout=15, max=50

Server: Apache

Transfer-Encoding: chunked

Followed by an HTML (hyper-text markup language) document de-
scribing the page. In this case the document contains references to
three other resources:

e /home/home$_{\mathrm{style}}$.css
e /images/mc-logo.gif

e /images/cs$_m$$_{\mathrm{edu}}$.png

mit.edu

1. The lab computer does a DNS query to one of the local campus DNS
servers at 10.1.2.2, 10.1.2.17, or 10.2.0.2. This query uses ethernet
protocol to communicate with the router in the lab and the IP layer
to direct the packet to whichever DNS server is being used on port
53. It then uses UDP as the transport layer to send request for the IP
address associated with mit.edu.

2. The DNS server responds with its cached mit.edu IP address: 18.9.22.69

3. The lab computer next sends an HT'TP request, using IP to direct the
packet to mit.edu (using the recently discoverred IP address) on port
80. The packet’s path is much more complicated this time as it leaves
the campus and goes as far as New York before getting to Cambridge.
It uses TCP to establish and maintain connection where both parties
keep track of what has been sent and recieved so that any data that
gets lost or arrives out of sequence can be re-requested.

4. mit.edu sends an HTTP response not unlike that of CS followed by an
HTML (hyper-text markup language) document describing the page.
In this case the document contains references to 22 other resources.
15 of these resources are also at mit.edu and can be retrieved using
the same connection. 3 of them are at web.mit.edu which is an alias
for WWW.MIT.EDU.EDGEKEY.NET which is in turn an alias for
e7086.b.akamaiedge. NET which has the IP address 23.6.134.151. A
new TCP connection is started to retrieve them. The remaining four re-
sources from ajax.googleapis.com (an alias for googleapis.l.google.com
who’s IP address is 173.194.73.95), google-analytics.com (which has
five ip addresses: 74.125.226.209, 74.125.226.210, 74.125.226.211, 74.125.226.212,
and 74.125.226.208), ssl.gstatic.com (who’s ip address is 74.125.226.239),
and dnn506yrbagrg.cloudfront.net (who'’s ip address is 54.240.190.146).
It’s worth noting that the the resource from ajax.googleapis.com is
jquery and whenever this computer visits any web page in the future
that links to the jquery hosted at ajax.googleapis.com, the lab com-
puter will be able to refer to the cached copy it gets from this request
and avoid needing to repeat the request.

wireshark:

My packet captures are included in the packets directory. They were
made using the filter dst host 10.1.2.19 or src host10.1.2.19| for cs.marlboro.edu
and dst host 18.9.22.69 or srchost 18.9.22.69| for mit.edu.

Question 2:

Design a SQL database schema for an online go server,
including games, players, obvservers, and whatever else
seems appropriate. Use this situation to explain the notions
of database normalization, many-to-many, many-to-one,

and one-to-one relations.

Construct an explicity schema for your design in a SQL system of your
choice, populate it with some sample data, and illustrate how it could
be accessed with a few representative typical interactiomns.

My Schema for the server I constructed for the following example was
fairly simple. It consists of two tables connected by two many-to-one re-
lations. Rails automatically generates a schema file db/schema.rb. Mine
follows:

ActiveRecord: :Schema.define(:version => 20130417185645) do

create_table "games", :force => true do |tl

t.text "moves"
t.datetime "created_at", :null => false
t.datetime "updated_at", :null => false
t.integer '"white_player_id"
t.integer "black_player_id"

end

create_table "users", :force => true do |t]
t.string "username"
t.datetime "created_at", :null => false
t.datetime "updated_at", :null => false

end

end

The white$_{\mathrm{player}}$$_{\mathrm{id}}$ and black$_{\mathrm{player}}$$_{\mathrn
fields in the games table are foreign keys to the users table forming two
many-to-one relations which in this case means that a given game has only
one white player and one black player while a given user can be the black or
white player in many games. This information could have been equivalently
kept with a schema like the following:

ActiveRecord: :Schema.define(:version => 20130417185645) do

create_table "games", :force => true do |t]
t.text "moves"
t.datetime "created_at", :null => false

t.datetime "updated_at", :null => false
t.string "white_player_username"

t.datetime "white_player_created_at", :null => false
t.datetime "white_player_updated_at", :null => false
t.string "black_player_username"

t.datetime "black_player_created_at", :null => false
t.datetime "black_player_updated_at", :null => false

end
end

The reason for an additional table is what is called database normaliza-
tion. Normalization is process of organizing a database schema so that no
information is repeated in multiple places. In the above schema information
about individual users would be repeated for each game that user played.
The advantage of not repeating this information is two-fold. First it makes
the data storage more efficient in the long run. Second, if anything should
need to change (even if no reason to change it can be foreseen) only needing
to change it in one place is a huge boon.

It would also have been possible implement observers in my database by
having a many-to-many relation between these two tables using an additional
table like the following:

create_table "observations", :force => true do |t]
t.datetime "created_at", :null => false
t.datetime "updated_at", :null => false

t.integer '"user_id"
t.integer '"game_id"
end

This would be a many-to-many relation because a given user could ob-
serve many games and a given game could be observed by many users. Many-
to-many relations always involve a separate lookup table like this.

One-to-one relations are generally less common. They are implemented
the same way as many-to-one relations except that a given record from the
table without the foreign key is only meant to be associated with a single
record from the table with the foreign key. This can be enforced in most
database systems by making the foreign key field unique. This is fairly rare

because usually it is simpler (and therefore preferable) to add all of the fields
from one of the tables in the one-to-one relation to the other.

The rails interactive console provides a programatic interface to the
database. The following creates a pair of players and a pair of games:

> sam = User.new :username => "Sam"

=> #<User id: nil, username: "Sam", created_at: nil, updated_at: nil>

> jim = User.new :username => "Jim"

=> #<User id: nil, username: "Jim", created_at: nil, updated_at: nil>

> sam.save

=> true

> jim.save

=> true

> g = Game.new :white_player => sam, :black_player => jim

=> #<Game id: nil, moves: nil, created_at: nil, updated_at: nil,
white_player_id: 1, black_player_id: 2>

> g.save

=> true

> g = Game.new :white_player => jim, :black_player => sam

=> #<Game id: nil, moves: nil, created_at: nil, updated_at: nil,
white_player_id: 2, black_player_id: 1>

> g.save

=> true

This is equivalent to the sql:

INSERT INTO users (username) VALUES ("Sam"), ("Jim");
INSERT INTO games (white_player_id, black_player_id) VALUES (1, 2), (2, 1);

The data can later be accessed with something like:

> sam = User.find_by_username "Sam"

=> #<User id: 1, username: "Sam", created_at: "2013-04-19 04:43:39",
updated_at: "2013-04-19 04:43:39">

> g = sam.games

=> [#<Game id: 13, moves: nil, created_at: "2013-04-19 04:44:22",
updated_at: "2013-04-19 04:44:22", white_player_id: 1,
black_player_id: 2>,

#<Game id: 14, moves: nil, created_at: "2013-04-19 04:44:37",
updated_at: "2013-04-19 04:44:37", white_player_id: 2,

black_player_id: 1>]
> jim = sam.games[0] .black_player
=> #<User id: 2, username: "Jim", created_at: "2013-04-19 04:43:42",
updated_at: "2013-04-19 04:43:42">

This is equivalent to the sql:

sqlite> SELECT * FROM users WHERE username = "Sam";
11Sam|2013-04-19 04:43:39.4895862013-04-19 04:43:39.489586

sqlite> SELECT * FROM users, games WHERE
users.username = "Sam" AND
(users.id = games.white_player_id OR
users.id = games.black_player_id);
1|Sam|2013-04-19 04:43:39.489586]2013-04-19 04:43:39.489586|13] |
2013-04-19 04:44:22.647385|2013-04-19 04:44:22.647385|1]|2
1|Sam|2013-04-19 04:43:39.489586]2013-04-19 04:43:39.489586|14] |
2013-04-19 04:44:37.718101]12013-04-19 04:44:37.718101|2|1

sqlite> SELECT * FROM users WHERE id = 2;
2|Jim|2013-04-19 04:43:42.240019]2013-04-19 04:43:42.240019

Question 3:

Implement a prototype at least part of the go server from the previous
question with a technology stack of your choice. You don’t need to do
the go game and graphics itself (though you can if you want); instead,
consider mainly the fundamental data model, views, controller, and
user interactions of the web pages and the database that you’d expect
for any standard web app.

Explain your choices of technology, and use this example to
demonstrate your familiarity with current optioms.

Deploy the app in an environment of your choice. (You may use this as
a chance to discuss web servers and their configuration, but that
isn’t the main point.)

I've implemented a go server using Ruby on Rails. I chose the framework
mostly because I will be using it for work a lot soon and it seemed like a

good excuse to refamiliarize myself with it. I also find Rails to be an ideal
choice for rapid prototyping for two reasons. Firstly, it was designed to fas-
cilitate rapid developement with plenty of helpful command line scripts that
automatically generate code and a fully-featured MVC system that makes
the most common things as easy as possible. Secondly, the ammount of me-
mentum behind the rails community ensures that things are supported and
work most of the time meaning that prototyping is less likely to devolve into
debugging or working around an issue with the framework or re-inventing the
wheel where features are missing. Rails has a philosophy of convention before
configuration. The means that many of the APIs in the framework assume
a certain default behavior (like that the bar method of the FooController
class will be mapped to the template found at app/views/foo/bar.html.erb).
There are generally ways to override these default behaviors but you still
need to know the conventions before you can do anything. This can make
learning Rails a bit daunting but it really pays off with rapid prototyping. I
also considdered using a Node.js framework like Tower.js as that would give
me an excuse to use Hot Cocoa Lisp but that would have required me to
learn a new framework and seemed outside the scope of the exam. I did get
a chance to write a short piece of client side code in Hot Cocoa Lisp.

I've deployed the app using heroku. It can be found at http://go-
server.herokuapp.com. I chose Heroku because for a simple demo like this
where I don’t really need much bandwidth or processing power anyway, their
free option is quite reasonable and deployment is as easy as setting up and
pushing a git repository to the right place. I ran into a slight issue because
I was using sqlite3 in development Heroku doesn’t support sqlite and I had
to set it up to us pgdb in production.

The app itself is incredible simple. Users “log in” by supplying a name
for themself. If the name corresponds to a user in the database then they
are authenticated as that user (so pretending to be somebody else is pretty
easy). If the user doesn’t exist yet then a new one is created. This means
that if you forget or misspell your username you might have issues using the
app. Anyone can create a game at which point they are assigned a random
color. If a game is missing one or more player it will be listed as open and
any player will be able to join as the missing color. Players can make moves
when it is their turn by clicking on the intersections of the board or clicking
‘pass’. There is nothing to stop a player from going on an intersection that
has already been played on (the stone will simply be replaced with one of
this player’s color). There is no logic for removing captured stones and there

http://go-server.herokuapp.com
http://go-server.herokuapp.com

is no score estimation or even a concept of winning. A game is considdered
finished when both players have passed successively.

Question 4:

Using the go server from the previous question, discuss the possible
security issues in such an installation, including at least user
authentication, cookies, sql injection, cross-site scripting, denial
of service attacks, and whatever else strikes your fancy. Be as
specific as you can.

The simplest class security issues withmy go server are intentional om-
misions. I didn’t bother to implement user authentication or the rules of
go so anyone could trivially impersonate another player, place a stone on a
non-empty square, or violate the Ko rule. Slightly less obvious issues could
crop up if, for example I failed to create a server-side check that it was the
current user’s turn before making a move, or that a game had an opening be-
fore somebody tried to join it. Without these checks someone could trivially
spoof the relevant HT'TP request to make two moves in a row or supplant
one of the players in a game they weren’t involved in.

Another important class of security issues is called cross-site scripting.
This is when a user submits some form of content that intended to be au-
tomatically displayed as HTML and includes some JavaScript. Since this
JavaScript will be executed by anyone visiting the page, it can easily access
their cookies allowing the attacker to impersonate them. Effectively ellimi-
nating this sort of attack requires that only a limitted set of html tags and
properties be allow in user submitted content to make sure that JavaScript
cannot be included. My Installation dodges this but not having user submit-
ted content. A related but importantly different security issue is cross-site
request forgery. This is when a user that is authenticated with one website
visits a completely different site the second site causes their browser to make
a request that requires the users authentication on the first site. For exam-
ple, if Alice is logged into her bank account looks at a conversation on an
open forum, it is possible for Eve to have placed an image tag on the forum
page that instead of pointing to an image, points the URL of a request on
Alice’s bank website. The bank website could protect Alice from this sort
of attack using a CSRF token. The basic strategy is to generate a random
number with any request for a web form and put that number in a hidden
input tag in the form. Then when the form is submitted the server can ignore

the request and give an error message if the token submitted doesn’t match
the one given out in the first place. Ruby on Rails implements this by de-
fault for all forms. This means you can feel secure in knowing that visitting
websites besides go-server.herokuapp.com won’t allow malicious websites to
make moves for you in your go games.

Another very important class of security issues is SQL injection. This
is when a user submits data via a form which is intended to be stored in a
database but the user submits SQL code instead which allows them to gain
control of your database. The archetypal example is entering something like
> ;DROP TABLE users;-- enterred into a for that is being processed on the
server by something like:

sql = "SELECT * FROM users WHERE name = ’" + user_submitted_data + "’;"
result = db_query(sql);

The sql request becomes SELECT * FROM users WHERE name = ‘;DROP
TABLE users;— ‘;| and all data in the users table is lost. The approriate solu-
tion to this is to sanitize user inputs so that things like quotes and semicolons
are escaped and the user submitted text is treated as it was intended to be.
An even better approach in most practical is to use a well tested framework
or library for all database access that does this sanitization for you. This
saves from the danger of forgetting to sanitize inputs in some places. Ac-
tiveRecord, the ORM (object relational mapping) system that rails uses to
interface to databases does just this.

Denial of service attacks are a bit different in that they don’t usually do
any sort of long term damage. Rather, they make a website unavailable or
less available by bombarding the server with requests. A traditional DOS
attack where you simply repeatedly send requests to a server from a sigle
machine are relatively easy to prevent simply by having systems that detect
unusually high volumes of traffic from a single source and reject requests
all requests from those sources. A distributed denial of service attack (or
DDOS) is such an attack is made in a way that makes the traffic appear to
(or actually) come from different sources. There are several complex ways of
doing this and basically no consistent ways of preventing it. I suspect (though
I have not looked into it) that Heroku provides some basic protection from
traditional DOS attacks. I am in some sence protected from DDOS attacks
by the mere fact that nobody would go to the trouble setting up a DDOS
for a simple Go server rails demo. I might be vulnerable to attack on other

10

sites hosted by Heroku but I'm not particularly worried as DDOSes tend to
target high profile sites with some sort of political purpose.

Question 5:

Finally, discuss your personal opinions and preferences on old and new
technologies and trends in web development, including perhaps the core
technologies of HTML, XHTML, and HTML5 (whatever you think that
means), CSS and its compilers, Javascript and its compilers and
popular libraries, the backend languages and frameworks like PHP,
Rails etc, popular systems such as Wordpress, as well as options like
Node, Backbone, Bootstrap and so on. The specific list is up to you;
the point here is to show that you have an overview and understanding
of where the field was and is going.

Anyone can tell you that internet has changed quite rapidly in recent
decades. I think the most significant change has also been the most obvious
one: more people use it. When Tim Berners-Lee invented the world wide
web a seriously doubt he forsaw FaceBook. I that the rise of social networks
has had less to do with the progression of underlying technology then with
the change in needs of the web’s users. This increase in internet use has (and
will likely continue to have) positive and negative effects on the field. Specif-
ically, the increased economic demand for new web applications has fueled
many innovative projects. Rails for example has grown into a powerful tool
that allows developers to quickly get from an idea to a working prototype.
Meanwhile, the demand for higher performance servers has spawned Node.js
which powerfully shakes the way people think about concurrency.

The increase in internet use also means that multiple significant demo-
graphics that don’t have a good understanding of computers now have a
stake in the direction of the internet. These include lay-people using social
networks, business people who want to profit from the internet’s success, and
amateur web developers who understand the technologies well enough to use
them but never bother to go deeper. Trends like the continued popularity
of PHP (and it’s use in popular applications like FaceBook, WordPress, and
Wikipedia) worry me. People who don’t know much about computers can
easily look PHP, see how successful it is, and conclude it is a good thing.

Of course these forces aren’t totally new either. There have always been
forces keeping things from turning out perfectly. The history of the inter-

11

net is full of stories about a technology not doing everything we wanted it
to and people finding inellegant work-arounds that later became industry
standards. The document object model and libraries like JQuery is a really
good example. The DOM didn’t have the features that were needed so we
built around it. I see this as making lemonade when life gives you lemons.
Languages that compile to JavaScript and CSS are like lemonade.

The internet is a complicated thing with many interested parties and
many interlocking moving parts. I think that’s why I find it so fascinating. I
hope whatever contributions I am able to make to it’s future in my lifetime
help people make sense of and do cool things with it.

12

