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Introduction

Much of this project was inspired by the earlier work I had done for my Statistics class
taken at Marlboro College with Matt Ollis in Spring 2012. That project explored general
trend finding and the use of statistical techniques applied to a data set containing informa-
tion about previous Marlboro College students. Then,we tried to answer whether studying
broadly in the first two years meant that a student’s outcomes would improve. Ultimately,
our results came back inconclusive, but nevertheless we came away with some interesting
findings.

Since then, I wanted to learn some more advanced statistical techniques, including linear
regression, multiple regression, and other data mining methods, and try to revisit a similar
data set. Most of this project has mainly been based around playing with new techniques and
theory I have learned, applied to a very similar data set composed of information gathered
about academics at Marlboro, but there has always been at least a vague question under-
pinning it. I wanted to answer the question of what predicts student success at Marlboro,
a question that has been both difficult and fun to explore. Before beginning, my difficulties
with this question were certainly not unique, as many academic institutions have tried and
would love to find a definite answer to this, Marlboro College included. Although my findings
do not provide any definitive profile for who will be the most successful here, I still have the
hope that some of the insights gained through this research may be beneficial.

Information Received

The information I received was an Excel spreadsheet containing information on students who
have entered Marlboro College from the year 2000 on. In this time period, the spreadsheet
contained entries for 1334 such students, including current students, alumni and students
who have withdrawn from the college. Each column represented a different piece of infor-
mation available about students. I will list them below:
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Entry Date, the Current Status of the Student, Graduation Date (if applicable),

Ethnicity, Gender, Home Zip Code, Citizenship Status, Whether the student was

a first-year college student or transfer, Admissions track (either regular admission

or early action), if Financial Aid was requested, Admissions Referral Source,

High School grade point average [GPA] (for home-school students, this number was

often made up based upon an admissions counselor’s judgment), Marlboro GPA, Plan

of Concentration Field(s) of Study, Plan Grade, ACT Test Scores for all ACT’s

submitted, which included the Composite Score, Date the Test was administered,

Date the Marlboro College Admissions Office Received the Test, English, Math,

Reading, Science and Writing Scores. It also included information on AP tests

for however many AP’s a student decided to take (up to 5), including the Date

the Test was Administered, Date the Marlboro College Admissions Office Received

the Test, Test Score, and Test Type. SAT test data was available as well for

all tests taken by students, containing the Date the Test was Administered, Date

the Marlboro College Admissions Office Received the Test, Critical Reading, Math,

and Writing Scores.

I also received information about every course a student had taken during their time at
Marlboro, which included course numbers, course titles, number of credits attempted per
course, the number of credits earned, and the class standing the student had by the time
when they took the course. This, at least at first, seemed to be a fairly comprehensive list
of information about students at Marlboro.

However, through my group work in the Painting by Numbers class, Elisabeth Joffe,
Emma Rusbarsky and I became interested in being able to quantitatively address the effect
that Marlboro College has upon one’s writing ability. This lead us to seek out even more data
on students at Marlboro, particularly Initial Writing Placement Scores and Clear Writing
Requirement data. This data came in the form of a column for the initial writing placement
a student received, and then a column for the clear writing requirement score each time a
student submitted.

This is all the data that culminated in this final project, and the corresponding writeup.
Once this information was assembled into one spreadsheet, there ended up being 1334 rows
and 73 columns, meaning there are 97,382 entries to examine. This is certainly a daunting
task, but ultimately, the role of a statistical researcher (or student learning statistics, in this
case) is to distinguish the signal, or what we are looking for, from the noise inherent in data
sets as large as this. Fortunately (or unfortunately), there did seem to be plenty that could
be discarded in the hopes of predicting anything useful.

https://cs.marlboro.edu/courses/spring2013/painting/home


Assembling a Data Set

It would have been useful to have had the data come from one source, but unfortunately
this wasn’t the case. Therefore, a considerable amount of time was spent learning Excel
functions to match up student information together. In the interest of anonymity, random-
ized numerical student ids were generated instead of using student names to index entries,
and some part of the time was spent putting sources received from various sources together.
Ultimately, having multiple data sources was problematic and may have introduced some
errors in this analysis for several reasons.

The first reason is reliability of some of the data sets we/I obtained, particularly the
information on writing assessments at Marlboro College. John Sheehy has been collecting
writing information at least since the year 2000, but especially in the case of initial writing
assessment data, has had little intentions to do anything with said data. Anecdotally, before
this point, I was informed that initial writing assessments were not even recorded at all, out
of the interests of not having student’s scores follow them around through their Marlboro
career. Therefore, it is unlikely that much care went into the precision of data entry, es-
pecially compared to information received from the Registrar’s office. This is evidenced by
the fact that writing score information was only available for 1022 entries out 1334 students
total in the time period. The missing students appeared to separated randomly, not simply
missing for a given period of years. This led Bill Mortimer to joke that this was information
obtained in a memory stick under the floorboard of John Sheehy’s car, an apt description.

The second is that in order to utilize the writing information, I had, in some cases to
manually correct errors in the spreadsheet I was given, on a best guess basis. While this
increases the likelihood that writing information for any particular student is incorrect, it
is unlikely that this affects writing information in the aggregate by any reasonable amount.
This is due to my presumption that my best guesses were usually correct, and that there
were only 182 entries to correct.

The last source for potential error, then, lies in the difficulty for outside observers to cross
validate the information I have computed. Fans of the R-statistical package often criticize
the use of Excel to perform statistical analyses because it requires those wishing to check the
validity of statistical experiments to have to repeat the same steps the original researcher
did in computation. Often times, this is extraordinarily difficult, if not impossible. More
discussion of this will be continued in the Methodology section.

Methodology

This project was completed through use of LibreOffice Calc (similar to Excel), and the R
statistical computing package. As a result, much of what I have done can (fairly easily) be



retraced and computed independently. Throughout this writeup, I will refer to what I have
done in R, and therefore, attached are the R-script used (final.R) and the spreadsheet the
data was analyzed from (export.csv and export.xls). Therefore, before beginning, it is worth
mentioning what I have done that cannot be retraced easily (or, what I did in Excel). The
first, as already mentioned, is compiling the information taken from different sources into
one grand data sheet. One of the great parts about R is that when a researcher receives new
data, it is very simple to run the same statistical tests previously done on another data set.
Because of this, I have tried to write R code which allows for the numbers to be re-crunched
when more student information comes in year after year. Then, in order to accomplish
this, there simply needs to be one person who is responsible for collecting relevant student
information year after year, so that compiling information from different sources won’t be
necessary (more than that later).

The second is the removal of information that seemed extraneous to the question at hand.
Although I won’t mention all of what I removed, data like the date the Marlboro College
Admissions office received a test score seemed irrelevant and therefore was removed from
the final spreadsheet. Finally, I wrote various formulas to match and re-categorize the data
given to me. In an attempt to figure out if a student had taken a Writing Seminar or not, I
had to look through the course titles of every class that student had taken. Unfortunately,
not every class listed as a Writing Seminar was titled as such, and therefore, I had to look
through the Marlboro College course catalog online, which contains information on courses
offered through the year 2002, to find and label the courses that were designated Writing
Seminars. Again, this was the only other part of the process that was non-reproducible, and
could be easily updated if one wished to put the data into the format I have used.

The rest of the data analysis happened through use of the R statistical computing pack-
age. Part of the beauty of R is that all code ran can relatively easily be reproduced and
cross-validated. In each of the attached R-scripts, a different statistical technique is applied
to the data, and each will be discussed in its own section in this writeup. For each, when new
data about students comes in, each can be re-ran to see whether these results are changing
over time, or whether results appear to be holding up. Each particular technique will be
described in a later section.

Difficulties of Using Observational vs Experimental Data

Ultimately, Marlboro data presents huge challenges to anyone wishing to find trends or
causal effects on how does well here. Most of this difficulty is due to the fact that basic
measures do not adequately summarize an individual, a result no doubt confirmed in college
admissions offices everywhere. However, some of the difficulty is due to the fact that most
of this information was collected not for the purpose of statistical analysis, rather created
for (and a result of) daily institutional use. As such, there is plenty of information that if
stored and archived, would have been fantastic to incorporate into the scope of this project,



but ultimately, was lost/thrown out for various reasons. One such example is the writing
score on a prospective student’s application. The admissions office scores both the writing
submission an applicant submits from previous classes and how well they feel the applicant
would fare in college, and use these numbers in their decision to accept or deny a student.
Once the incoming class arrives at Marlboro, though, these scores are thrown out, out of
concern that they might follow a student permanently through their time here. This is a
valid concern, and the opportunity for a fresh start should not be de-emphasized. However,
this would make for a great measurement to analyze, and see how well the admissions office
scores end up being as predictors of student success. Other challenges include gaps in the
data due to institutional procedural changes and in many cases, a lack of data entry in the
first place. These and other reasons make data analysis a very difficult prospect at Marlboro.

However, these concerns are not unique. Although some foresight into the collection of
data would be helpful in terms designing real life experiments and data analysis, Marlboro
College is not alone in having more observational data than it does experimental. Indeed,
in the so called era of big data, billions of terabytes of raw, unprocessed observational data
is available on institutions and just about everything, little of which has even begun to be
processed and analyzed. Therefore, this writeup builds from the vast amount of data analysis
literature aimed more at fixing the often unique problems found in datasets than looking at
perfectly designed experimental data.

Linear Regression

Linear regression is an approach that aims to model a (often times) linear relationship
between an explanatory (or x) and response (or y) variable. It takes the general form
y = E(y)+ε, where E(y) is the expected value for y given x, and ε represents the unexplained
variation in y measurements caused by random phenomena, or the ”special snowflake” ef-
fect for our data. Linear regressions can be used to determine how strong a relationship
between two (or more, in the case of multiple regression) variables is, and can often be used
as a predictive tool (at least, when our x value we are trying to predict is in our sample range).

Therefore, it is easy to see why linear regression might be a helpful technique to use
on Marlboro data - to reveal correlations between variables. Of course, some care must be
taken to make sure one does not, as the adage goes, interpret correlation as causation. In
order words, just because we have a linear relationship does not imply an actual, real world,
relationship. Then, some care was taken to make sure any correlations found actual meant
something – which generally just involves use of common sense. For example, one result we
found in our group project was that Marlboro GPA ”explains” about 60% of the variation
in Plan GPA. This does not mean that one’s 3 year grade point average causes one to have
a different Plan grade. Rather, it is likely that students who are hard workers will remain
so on Plan, and likewise for the converse. As such, although the results of linear regressions
are illuminating, it is not sufficient to accept them at face value.



In simple linear regression, one can model a linear relationship by the form of the equa-
tion given by y = β0 + β1x + ε, where β0 is the y-intercept of the line, and β1 is the slope
of the relationship. After receiving observational (or experimental) data, one can estimate
the β’s through the method of least squares, which aims to find just that - the line which
results in least squared vertical distance between it and residuals, or outlying points. After
confirming that with a statistical measure of confidence that the model is better than no
relationship, one can check how well the linear model fits the data based on the coefficient
of determination, or r2 value. Once the r2 value proves a correlation (and we prove some
causation), we can use this to generate prediction and confidence intervals for y.

In R, we use the following command to build a linear regression model:

> model <- lm(y~x)

And then to generate summary statistics about model adequacy:

> summary(model)

I will explain these summary statistics in the multiple regression section.

Fortunately, it is pretty easy to plot linear regression models with a scatter-plot and line
of best fit. It can be easy to how well the model fits the data this way, and determine whether
or not there is another relationship happening in the data. The data could be displaying
a characteristic where the y-values are increasing exponentially, where it could be useful
to plot the y-axis on a logarithmic scale. Alternately, the data could model a curved, or
nonlinear, relationship, in which case, we may want to speculate about interaction terms or
whether or not higher order models are appropriate. These will be discussed in the multiple
regression section.

Multiple Regression

Multiple regression takes the same theory of linear regression and uses it to model several
explanatory variables, instead of just one. The R code to move to a multiple regression
model is pretty simple, given by:

> model <- lm(y~x_1+x_2+...+x_n)

Then, multiple regression models become pretty difficult to plot with just a scatter-plot
and line of best fit. Quickly, we have to rely on statistical measurements of adequacy and
not graphical representations of best fit relationships.



Measuring Model Adequacy for Multiple Regression

In R, the summary function generates measures of adequacy for multiple regression mod-
els.

> summary(model)

As before in simple linear regression, R uses the least squares method to fit the regression
line to the data. But now, we need a global test to check if the entire model is statistically
significant. This test comes in the form of our F-Test and rejection p-value. In order to see if
our model is significant, we can compare our f-test to a tabulated f-test based on the df and
freedom in the numerator and denominator (which r tells us, but are given by) of k df

n−(k+1) df
,

where n is our sample size, and k is the number of β’s in our model. If our f-test is greater
than the tabulated rejection f value, our model is significant. Similarly, our rejection p-value
gives us the confidence level that we have for whether or not our f-value is larger than our
tabulated f-value.

In addition, since we now have multiple parameters, it is worth finding some way to
determine which ones are significant and which are not. For each β, we are looking for the
likelihood that the true coefficient of the parameter is zero, or β = 0, and adds nothing
to our model. There are two methods of evaluating this in order to try to reject this null
hypothesis. They are t statistics and our p value, noted by the R output as t value and
Pr(> |t|) respectively. Let’s look at a baseline multiple regression model I built to compare
some parameters against GPA at Marlboro.

> model <- lm(Plan.GPA ~ Marlboro.GPA + Median.Income + Population)

> summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.632e-01 1.091e-01 2.412 0.0162 *

Marlboro.GPA 9.611e-01 3.064e-02 31.367 <2e-16 ***

Median.Income 1.662e-07 3.272e-07 0.508 0.6118

Population -2.318e-07 6.760e-07 -0.343 0.7317

----

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

So, this model looks at how significant the Population Density of a student’s neighbor-
hood, median income of said neighborhood, and Marlboro GPA are in terms of predicting
the score one should get on Plan, assuming that whatever relationship we might have, it is
linear and that our x’s are probabilistically independent and do not exhibit multicollinearity.
It’s worth mentioning what our t-value is based on. It is given by β̄i

sβ̄t
or the sample mean

of the parameter over its sample standard deviation. Then Pr(> |t|), or the p-value, is
based upon the rejection region for a parameter, as given by |t| > tα/2, where tα/2 is based



upon n-(k+1) degrees of freedom [5, p. 176]. The p-value measures the likelihood that t is
actually in this rejection region.

So then, let’s look at the p-value for these parameters. The output states that Marlboro
GPA is significant at 99.99% confidence level. However, since both .6118 and .7317 ¿ 0.05
(or whatever confidence level you wish to use), it seems pretty unlikely that the Population
density or median income of one’s area influence Plan grade.

Let’s examine the output for the R2 and R2
a for this model before moving on.

Multiple R-squared: 0.6159,Adjusted R-squared: 0.614

This suggests that even though Population and Median Income are insignificant, the Marl-
boro GPA continues to make this model look significant. Therefore, looking at individual
parameters is an important step. Although Mendenhall et al. only recommend evaluating
the interaction or squared β’s, since R conducts the test on every variable it’s still worth
looking at the individual parameters, but obviously put the major emphasis on the p-value
of the most important β’s [5].

I’ve written more about adequacy tests for multiple regression here.

Determining what to put in Multiple Regression Models

Ultimately, regression analysts are in search for the multiple regression model which ex-
plains the response variable the ”best”. Most of the time, this is a guess and check process.
However, there is a way to automate the process called, ”best subset selection”. There are
a variety of best subset approaches in R, including forwards and backwards stepwise best
subset modeling. In forward best subsets procedures, parameters are gradually added, until
all the possible parameters are in the model. In backwards, the converse method is applied.
Backwards modeling usually results in higher multiple R-squared values for a given model
with k parameters, but requires that a model has more observations than parameters.

The R code below is an example of one such best subsets procedure in both directions:

> library(MASS)

> model <- lm(y~x1+x2+x3)

> step <- stepAIC(model, direction="both")

> step$anova # display results

Another method is through use of the regsubsets() function:

> model <- regsubsets(y~x_1+x_2+x_3, nbest=2) #nbest specifies how many

# of the best models will be reported for each subset size

https://cs.marlboro.edu/courses/spring2013/matts_tutorials/wiki/Jay_Sayre%27s_Previous_Entries


The upside of this function is that we can specify how many of the best models we want
to see for given number of parameters, k. The reason this is nice is because whenever we
plug in an additional β into our model, we always will have a higher multiple R-squared
R2 value. Therefore, regardless of whether or not what we plug in actually has that much
value, it will appear that our model is enormously predictive. Then, it is useful to have a
model that is parsimonious, or has the maximum predictive value for the smallest number
of explanatory variables. Therefore, it is useful to look for the most predictive models with
the fewest β’s, and the ”nbest=” helps with this.

The downside of automated best subsets procedures is that they require the size of the
sample to not change between each model. This is not a problem with a complete data set.
However, with the missing entries in our data set (going back to the challenges of observa-
tional data), it is difficult to use stepwise regression procedures.

In A Second Course in Statistics: Regression Analysis, Mendenhall et al. mention that
one way to improve regression models is to hypothesize whether there are non-linear re-
lationships in the data due to higher-order terms or interaction terms. Interaction terms
represent where two explanatory variables may have some underlying relationship. Higher
order variables may explain relationships where there can be an increasing/decreasing effect
of an explanatory variable on the dependent variable [5]. In simple linear regression, these
relationships are easier for one to postulate about and test out. However, in multiple regres-
sion, these relationships are difficult to plot graphically, and sometimes very difficult to guess.
Therefore, it would great to have best subsets procedure for checking interaction terms and
higher order explanatory variables. To my knowledge, both regsubsets() and stepAIC() do
not directly allow for this, and I’m not sure what function does. Regardless, this would result
in a massive number of permutations of models to check, and would probably require way
more computing power than available on most computers, including my laptop. However,
we can plug in individual guesses for interaction terms by using the R code:

> xint = x_1*x_2

> model <- regsubsets(y~x_1+x_2+x_3+xint, nbest=2)

Similarly for higher order variables:

> xhigh =(x_1)^2

> model <- regsubsets(y~x_1+x_2+x_3+xhigh, nbest=n)

Once we have a few candidates, we can either use ANOVA tests to compare various
models or can plot which combinations of parameters lead to various r-squared values, using
the r command:

> plot(model, scale="adjr2")



Which gives us this image:

Ultimately, these methods can be used to generate useful and significant multiple regres-
sion models aimed at predicting student success at Marlboro.

Logistic Regression

Logistic regression aims to adapt the techniques and theory of linear regression to use where
a researcher is aiming to find a relationship between explanatory variables and a categorical,



qualitative response variable. One example of where this is useful is trying to model what
characteristics are correlated with whether a student withdraws or not.

Then, let

y =

{
1 if student withdraws

0 if student graduates

Our logistic regression model, aims to predict E(y), or the probability that a student
withdraws, P (withdraw), based on the explanatory variables input into our model. Our

model for the probability that a student withdraws, then, is E(y) = exp(β0+β1x1+β2x2...βnxn)
1+exp(β0+β1x1+β2x2...βnxn)

.

This is sometimes alternatively written as ln( P (withdraw)
1−P (withdraw)

) = β0 + β1x1 + β2x2 . . . βnxn,

where P (withdraw)
1−P (withdraw)

= P (withdraw)
P (graduate)

, representing the odds of y = 1 occurring, and is called

the log-odds model [5, p. 497].

In R, estimates of the explanatory variables are generated through maximum likelihood
estimation, where test statistics for individual parameters and overall model adequacy have
approximate chi-square χ2 distributions. Now, let’s look at generating logistic regression
models in R.

The following R-code generates a logistic regression model.

> model <- glm(y ~ x_1 + x_2+ x_3, family=binomial)

> summary(model)

As before for linear regression, the summary() function provides us with measures for
model and parameter significance. This generates multiple statistics, including residual and
null deviance. A high residual deviance shows that the parameters are unlikely to have
modelled the logistic function for P(withdraw)=1, on a given χ2 distribution and number
of degrees of freedom. Then, Pr(> |z|) gives a measurement similar to our p-value for the
parameters of linear regression. Estimates are chi-square estimations of the effects of each
parameter, βi. These estimates can be interpreted as percentage change in the odds of a
student withdrawing, P(Withdraw)/P(Graduate), for every 1 unit increase in x1, holding all
other x’s fixed, if this estimate is transformed into eβi − 1.

Analysis of the usefulness of each of the parameters is given by the R code:

> anova(model, test="Chisq")

Where the ANOVA Test tries adding the factors in one by one, and measuring the
difference in residual significance for each one, allowing one to determine which inputs are
the most significant. Then, if one wants to compare their original model to a new one
developed through an ANOVA test (or guess and check), one can determine the confidence
threshold of a new model being better than a old one by the R code:



> test <- pchisq(oldmodelresidualdeviance - newmodelresidualdeviance, 1)

> percent(test * 100) #A R function I wrote turning a number into a percentage

Where we are given the confidence threshold of our result [4].

Non-parametric Regression

Although use of interaction terms and higher-order linear models in linear regression allows
linear regression to be plotted to non-linear relationships, it often times can be easier to
begin with the assumption that the relationship is non-linear and use non-parametric re-
gression models instead. The main object of non-parametric regression, then is not estimate
the various parameters of a graph, but rather to the estimate the regression function itself.
Therefore, such methods are frequently used for trend finding, rather than prediction.

The general non-parametric regression model, then, is written yi = si(xi) + εi. All mod-
els, use some sort of smoother si in order to define how ”fitted” the function or curve will
be to each data point, which are estimated by either cubic smoothing splines or thin-plate
smoothing splines. This non-parametric model can be scaled up to have multiple explanatory
factors, given by the additive regression model, yi = α+ s1(xi1) + s2(xi2) + · · ·+ sk(xik) + εi
[5, pp. 513]. In multiple non-parametric regression, it is difficult to use this for trend finding
(since multiple dimension graphs are hard to read) and there is no analogy to the multiple
R2 value, so the utility of these is hard to measure. Ultimately, one can use ANOVA tests
to see whether non-parametric models with more parameters are more significant than those
with less, in order to determine significance of a larger model.

There are many different ways/functions that employ some sort of non-parametric re-
gression, but for models with multiple explanatory variables, we can use the R code:

> model <- loess(y ~ x_1 + x_2, span=0.5, degree=1)

In this case, span defines the fixed proportion of the data set that each local regression
function covers. Therefore, the larger the span the smoother the resulting non-parametric
regression will be.

> summary(model)

Gives us the significance results, again, where the likelihood of a non-parametric model is
maximized when the sum of the squared residuals is minimized, given by S(β) =

∑n
i=1[yi −

si(xi)]
2. Then, ANOVA tests can be used in order to determine which parameters minimize

S(β) the most.

> model <- loess(y ~ x_1 + x_2, span=0.5, degree=1)

> model2 <- loess(y ~ x_2, span=0.7, degree=1) #Span=0.7 since sqrt(0.5)~=0.7

> anova(model2, model) #Tests for adequacy of the x_1 variable



The ANOVA test outputs an approximate F-test for the change in the residual sum
of squares. This process can be roughly compared to evaluating the change the multiple
r-squared R2 value by plugging in different β’s [1].

Machine Learning for Data Mining

Machine learning is defined as the non trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data. [6] With machine learning, we must
must make a distinction between supervised and unsupervised learning techniques. Super-
vised learning, is primarily concerned with using one or more predictor variables to estimate
what a value a response variable may have, or in terms of probability theory, aiming to
predict Pr(Y |X) [3, pp.485]. With supervised learning there is a clear measure of success,
or lack thereof, that can be used to judge adequacy in particular situations and to compare
the effectiveness of different methods over various situations. [3, pp.486] However, the goal
of unsupervised learning is to directly infer the properties of a probability density function
with the help of a degree-of-error for each observation, where there can be a higher number
of x observations than in supervised learning, and the properties of interest are often more
complicated than simple location estimates [3, pp.486]. Roughly, unsupervised learning can
be used to see trends in large data sets, where supervised learning is much easier to use if
one already knows which trends to look for. In large observational data sets like the one
we received, it is easy to see why the former would be beneficial, although it might lose the
benefit of some predictive value.

There are a variety of machine learning approaches, but undoubtedly one of the most
popular is association rule learning. As one of the most prominent methods in both machine
learning and data mining [6], I figured that I would focus on this technique instead of a
swath of different data mining methods out of preference for understanding one method more
in depth and applying it than obtaining a broad overview of the field, which appears to be
categorized by a variety of different techniques, largely separated into different categories
because of their practical applications. Other popular techniques include cluster analysis,
which involves looking for patterns in data sets, and anomaly detection. I’d like to explore
these at a later point, but for now I will focus upon association rule mining.

Association rule mining looks for rules found in a data set, and the incidence of those
rules in the data. It is a form of unsupervised learning, helpful to a statistical researcher
wishing to find patterns in a data set which then can be plugged into a supervised method,
such as linear regression. Although association rule mining can be used to observe rules in
any data set, it was originally developed to help retailers predict what items a customer is
likely to buy given their previous purchases (see: Target knows you’re pregnant). Therefore,
much of the documentation for association rule mining algorithms is written in a format
specifically designed for retail use. However, I will explain the method in a way describing
how it is used on the Marlboro data set, indicating that association rule mining can be used

https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0


for a variety of purposes and not just retail sales.

The ”arules” package and Apriori Association Rule Min-

ing Algorithm

One of the implementations of association rule mining in R is the ”arules” and ”arulesViz”
package [2], and Apriori algorithm for generating rules. The Apriori algorithm takes a
breadth first approach to searching for rules, aimed at being able to be run on less power-
ful computer, such as mine [6]. Therefore, for this project, I used the arules package. I
will begin by showing the inputs arules takes, and the theoretically underpinnings of the
arules/apriori algorithm, learned from mainly from the Hahsler et. al paper, Introduction to
arulesA Computational Environment for Mining Association Rules and Frequent Item Sets.

Theory of Association Rule Mining

To begin, association rule mining requires a set of items, or things, that we wish to find
rules or associations between. Then, let I = {i1, i2, . . . , in} be the set of n items. Addition-
ally, let D = {s1, s2, . . . sm} be a set of m students, or in their case transactions, called the
database. Then each student in the database, sj ∈ D, has a unique student ID and for each
student row in the database contains a subset of items in I, sj ⊆ I.

Then, a rule is defined by the form X ⇒ Y where X, Y are both subsets of items in the
set I, X, Y ⊆ I, and X ∩ Y = ∅, or both X and Y share no items in common. It is worth
giving an example of how this can work. Therefore, let I = {pass clear writing, pass initial
writing, graduate, drop out, take writing seminar}. Then X = {take writing seminar, pass
initial writing}, Y = {pass clear writing}. Then X ⇒ Y would be a rule that says that
if a student passes the initial writing test and takes a writing seminar, they will also pass
the clear writing requirement. In large data sets like ours, though, this might lead to an
inordinate amount of rules, and therefore, there must be some constraints on significance
that can be used to narrow down the amount of rules.

And, of course, there in fact are such constraints. The first is support, or supp(X) of a
set of items X. It is defined as the proportion of students in the database which have taken a
writing seminar and passing initial writing, over total number of students. It approximates
the probability that a student has taken a writing seminar and passed initial writing, or
P (WS ∧ IW ). The second is the confidence of a rule, written conf(X ⇒ Y ). Roughly, it
approximates the probability of Y given X, or P (Y |X). In this case, it gives the number of
students for whom have taken a WS, passed initial writing, and pass clear writing, over the
total number of students who have taken a WS and passed initial writing. Then, confidence
of a rule is given by supp(X∪Y )

supp(X)
.



If one seeks additional measures to pare down the sheer amount of rules, it is possible
to use the measure of lift, written as lift(X ⇒ Y ). It is defined as supp(X∪Y )

supp(X)supp(Y )
. It can be

interpreted, as Hahsler et al. write, ”as the deviation of the support of the whole rule from
the support expected under independence given the supports of the [left and right hand side
of the equation]”, where ”greater lift values indicate stronger associations” [2, pp. 3].

Inputs to arules

The arules package requires all data to be coerced to a ”transactions” (mirroring the
retail-oriented focus of the package) data format. As such, transforming one’s data into a
transactions format is one of the most difficult steps in the process. The transactions data
format is a binary incidence matrix, where the cardinality of the item set I is equal to num-
ber of columns and the cardinality of the database (or number of students) is equal to the
number of rows. Then, each column corresponds to a different item, with 0 representing the
student not having the item, and 1 representing the presence of the item.

From the attached associationrules.R script, a binary incidence matrix resembles the
form:

However, the input does not have to be in this form, as the arules package can convert
data into this format itself. The data can be read in .csv format, or from a regular data
frame format in R. The ”associationrules.R” script goes through a few variations of how
data can be input into a transactions format, but let me give an example here.

If this resembles roughly our data set

StudentID items
1 takenWS, passedCWR, passinitialwriting
2 takenWS, passedCWR
3 passedCWR, passinitialwriting
4 passedcwr, takenWS

then this would be transformed into the transactions format:



StudentID takenWS passedCWR passinitialwriting
1 1 1 1
2 1 1 0
3 0 1 1
4 1 1 0

There are two separate formats the data set can be in: single and basket format, and
both formats do not take headers, which need to be removed beforehand. Single format has
one item per row, whereas the basket format can have multiple items per row, separated by
columns. What is interesting to note is that in single format, one can enter multiple items
per student by simply having multiple rows with the same student id and different items
per each row. I used this technique to analyse student course data, which naturally is well
suited to this format.

In single format, this R-code will read in our data:

> clsdata <- read.transactions(file, sep=",", format="single", cols=c(1, 2))

Where the first column ”1” refers to the student ID, and the second column ”2” refers
to the column the item is in. In single format, if there is any information outside of these
two defined columns, it is not analysed.

In basket format, this R-code will read in our data:

> All<-read.transactions(file, format="basket", cols=1, rm.duplicates = TRUE)

In this case, each column represents a different item that one student will have. This is
most suited to the table of students and all of their attributes. ”cols=1” refers to that the first
column is where student id’s are stored, but the rest remains undefined. One can also do this
without student ids, assuming each row is a different student, with the change ”cols=NULL”.

Using arules and arulesViz

Once one has coerced their data into a transactions format, then one can finally mine for
association rules. (All this is commented on in the associationrules.R script). This involves
using the apriori algorithm on the transactions data.

Then we can read in our data

> clsdata <- read.transactions(file, sep=",", format="single", cols=c(1, 2))

and then use the apriori alrgorithm to find rules based on a minimum support and confidence,
in this case 0.01 and 0.5, respectively.



> rules = apriori(New, parameter=list(support=0.01, confidence=0.5))

In this case, we have 165 rules, a relatively small amount. However, it is not uncommon to
have six figure numbers of rules, and therefore, we need some way to pare them down.

> subrules = rules[quality(rules)$confidence > 0.8]

> subrules2 = head(sort(rules, by="lift"), 30)

Are two ways to achieve this. Then, there are two things we can now do with these set of
rules. One is to visualize them, and the other is to export them so we can look at rules for
specific items, or any other purpose.

One way to visualize them is a sort of word-cloud esque graph which uses color to indicate
lift and the size of the bubbles to indicate support. I’m personally preferential towards this.
The R-code to generate it is:

> plot(subrules2, method="graph", control=list(type="items"))

Which gives us:



Another method is plotting the most important rules on a graph that shows which items
lead to each other. This is generated by:

> plot(subrules2, method="paracoord", control=list(reorder=TRUE))



This helps us see maximal item sets for a rule, which are not proper subsets of any other
frequent item set.

Alternately, these rules can also be exported to a data frame so they can be used to look
at specific rules using:

> rulesdf <- as(subrules, "data.frame")

And then, one can one their R tool of choice to narrow down to rules they care about, or
find other ways of plotting this information. I’ll leave this exploration to the reader, since I
haven’t found anything else to use to look at specific rules, other than exporting back into
a csv, and then using CTRL-f in Excel. I’m sure there is a better way in R.

Thoughts on Using Association Rule Mining

I believe that this can be used to help a researcher find interesting patterns in a data set,
as an unsupervised learning tool. After finding these patterns, one could then plug results in
to a supervising learning technique including linear or (in most cases, given the categorical
variables) logistic regression. Ultimately, for this project, Association Rule Mining probably
does not have enough information to determine really interesting results, but that could be
changed. Unfortunately, all the inputs into the arules package have to be factors, so numeric
information like GPA or SAT scores would have to be put into a categorical format like (low,
middle, high) in order to be used in the arules package. I have not done this, but ultimately,
I think it could result in some interesting results if one did.



Conclusions

Each conclusion in this corresponds to a piece in the ”final.R” script. The ”final.R” script
has numbers that will match numbers listed with each conclusion here. However, the ”fi-
nal.R” script has some sections that do not correspond to conclusions here, and instead give
examples of each statistical method applied to Marlboro data.

(1) - Revisiting the Painting by Numbers Project

Let’s revisit this result and show some of the work behind it:

This result was generated through a simple linear regression model generated through
the code:

> model <- lm(Plan.GPA~Marlboro.GPA)

> summary(model)

First, the linear model deletes any entries (rows of students) that do not have Plan grades,
which reduces the dataset down considerably, taking out 699 entries.

Then, the summary() call gives us our r2 value of 0.6182, with a p-value that indicates a
higher than 99.99% confidence level of statistical significance. This informs us that approxi-
mately 61.82% of our sample variation in Plan grade is ”explained” by one’s 3-year Marlboro
GPA.

Also, we have a Residual standard error of 0.2576, as the sample standard deviation of
our error ε. Then we should expect most of our observed y-values (Plan GPA’s) to fall within
2(0.2576) of the their predicted values given by the regression line (y=0.96x+0.25, in this
case). Therefore, we have a small estimated standard deviation of ε, a good thing for any
model.

Another measure of model adequacy is given by the coefficient of variation, or the ratio
between the estimated standard deviation of the error (given by s) and the sample mean
(given by ȳ, given as a percentage by the formula C.V. = 100(s/ȳ). Generally, regression
analysts prefer for this to be smaller than 10%. Plugging in with a sample mean of 3.526,
we get a C.V. of ∼= 7.32, which is lower than 10%.



Therefore, it appears that this is a statistically significant model. On the subject of cor-
relation not implying causation, as stated earlier, we need to remind outside observers that
this does not mean that 60% of your Plan Grade is based on your Marlboro GPA. Phrasing
this correlation appropriately for our graph was one of the challenges we faced.

Since this is a simple linear regression, it is fairly easy to graph. I’ve tried two methods
here, one plotting the best fit line obtained in the regression model, and another, using a
non-parametric loess line, in order to do more trendfinding, and see how closely related the
two linear and non-linear methods end up being.

This plots our data and linear regression model:

> plot(x, y)

> abline(model)



This plots our data using a non-parametric model with the same parameters:

> plot(x, y)

> lines(lowess(x, y, f=0.5, iter=0), lwd=2)



They both look like they come to a similar result – that there is definitely an upward
result, but for any particular student, given the spread of the points, this relationship is
certainly not set in stone.

(2) Building an ”Ultimate” Model to Predict Student Success

In order to determine which explanatory variables measure student success (or Marlboro
GPA) the most, we can use best subsets procedures to plug in all the information provided in
the massive data set I received. Unfortunately, though, it was not possible to simply ”plug”



everything into a subset selection procedure, since for all the test scores, there was a large
number of students who didn’t submit any standardized test at all, since Marlboro is test op-
tional. Therefore, I had only 268 students to look at the predictive effects of tests/test scores.

Let’s begin with all the explanatory variables that didn’t involve standardized tests. They
were all plugged into a multiple regression regression and run through the stepAIC() method
of subset selection, but only in a forward selection process, since there are missing entries in
some of the columns that causes backwards methods to throw errors. This is given by the
R code:

> fit2 <- lm(Marlboro.GPA~Number.of.WS.s+Pass.CWR.+Calculated.GPA+

Referral.Source+Admissions.Plan+Fin..Aid.Requested+Program+

Citizenship.Status+Ethnicity+Highest.Student.Level.for.WS+

X..Portfolio.Submissions+Enter.Date+Writing.Placement+Placement.Factor+

Highest.CWR.Score+Older.CWR.Score+Oldest.CWR.Score+Gender, data=alldata)

> step <- stepAIC(fit2, direction="forward")

> summary(step)

This revealed that out of all the possible explanatory variables we have, only 3 of them
are statistically significant, and they are: Highest.CWR.Score, Writing.Placement[Up], and
Referral.SourceReferral[Teacher]. This is really surprising and demonstrates just how much
noise there can be in looking for a signal. Then, we can plug in Highest CWR Score and
Writing Placement into a model (leaving out Source Referral because it only applies to a
small subset of students), to obtain summary statistics about our model.

> model <- lm(Marl.GPA~CWR.Score+Writing.Caret)

> summary(model)

The function summary() then outputs:

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.93884 0.06428 30.163 < 2e-16 ***

Highest.CWR.Score 0.36395 0.01791 20.318 < 2e-16 ***

Writing.PlacementSide 0.18023 0.04682 3.849 0.000125 ***

Writing.PlacementUp 0.29253 0.05873 4.981 7.29e-07 ***

Residual standard error: 0.58 on 1148 degrees of freedom

Multiple R-squared: 0.2814,Adjusted R-squared: 0.2789

F-statistic: 112.4 on 4 and 1148 DF, p-value: < 2.2e-16

Then, we see that all of these variables are statistically significant, and have an overall
multiple R-squared R2 = 0.2814. Furthermore, this model is fairly parsimonious, and it



seems to account for a non-neglible amount of sample variation in one’s Marlboro grade
point average.

This, then, is also the underpinnings of another group result:

If one prefers non-parametric regression:

> model<-gam(Marl.GPA~Writing.Caret+CWR.Score, family=gaussian)

> summary(model)

Gives us a very similar result:

Parametric coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.93884 0.06428 30.163 < 2e-16 ***

Writing.PlacementSide 0.18023 0.04682 3.849 0.000125 ***

Writing.PlacementUp 0.29253 0.05873 4.981 7.29e-07 ***

Highest.CWR.Score 0.36395 0.01791 20.318 < 2e-16 ***

R-sq.(adj) = 0.279 Deviance explained = 28.1%

GCV score = 0.33789 Scale est. = 0.33642 n = 1153

For test scores, a similar best subsets process was repeated just for students who had taken
those tests. As the result of this process, it was determined that the two most important
quantitative predictors of Marlboro GPA are SAT Writing and ACT Reading. Indepen-
dently, we can look at the results of the summaries for each.

For ACT Reading:

> test3 <-lm(Marlboro.GPA~ACT.1.Reading.Score)

> summary(test3)

Gives us:

Multiple R-squared: 0.05041,Adjusted R-squared: 0.03404

F-statistic: 3.079 on 1 and 58 DF, p-value: 0.08458

We have a result that while technically significant, is only so on a 90% confidence interval
given the p-value of 0.08458. I’d consider this to be interesting but not a particularly mem-
orable result.

Then, for SAT Writing:



> test5 <-lm(Marlboro.GPA~SAT.2.Writing.Score)

> summary(test5)

Gives us:

Multiple R-squared: 0.1089,Adjusted R-squared: 0.1033

F-statistic: 19.43 on 1 and 159 DF, p-value: 1.917e-05

This time, SAT Writing is statistically significant with 99.99% confidence, and looks as if
it explains 10% of sample variation in Marlboro GPA. Maybe Marlboro should require SAT
Writing, then.

The only other results that proved to be interesting, stemmed from conversations I had
with other students in the Painting by Numbers class. They mentioned that it seemed likely
that students who had submitted standardized test scores did so in order to use their good
test scores to ”signal” that they were qualified applicants, and Marlboro’s real average test
scores might be lower than they are in reality. This is impossible to prove. But I wondered –
does submitting a test at all make you more likely to have a higher GPA? Therefore, I made
up factors for whether a student had submitted standardized tests, and threw in Gender
(based of earlier exploratory data analysis) into a multiple regression model to find out. Of
course, R handles categorical explanatory variables correctly, so no changes have to be made.
These were plugged into a best subsets procedure, which let us know that: Gender, Whether
a student has taken AP tests, and whether a student has taken SAT tests, (but not ACT
tests, oddly enough) have statistically significant results ”explaining” Marlboro GPA.

We can evaluate this model here:

> model <- lm(Marlboro.GPA~Gender+Taken.AP.s.+Taken.SAT.)

> summary(model)

Which gives us:

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.15562 0.03113 101.365 < 2e-16 ***

GenderMale -0.11118 0.04397 -2.529 0.01156 *

Taken.AP.s.Yes 0.39223 0.12123 3.235 0.00124 **

Taken.SAT.Yes -0.35050 0.06103 -5.743 1.15e-08 ***

Residual standard error: 0.7989 on 1328 degrees of freedom

Multiple R-squared: 0.03222,Adjusted R-squared: 0.03004

F-statistic: 14.74 on 3 and 1328 DF, p-value: 1.915e-09

This indicates that although statistically significant, these explanatory factors explain
little of the sample variation in Marlboro GPA. Then, I’d be fairly safe saying that Gender



and whether one has taken standardized tests has little effect on GPA.

Then, although we don’t have our ultimate model, we still have some interesting results.

(3) Using Logistic Regression to Determine What makes Students Leave

In order to use regression analysis to predict a categorical response variable, such as
withdraw status, we must use logistic regression. Then, for Marlboro data, we could try to
model whether grade point average predicts whether or not one will withdraw.

In R, we can do this with:

> model <- glm(Current.Status~Marlboro.GPA, family=binomial)

> summary(model)

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.3015 0.4420 11.99 <2e-16 ***

Marlboro.GPA -1.6418 0.1344 -12.21 <2e-16 ***

Null deviance: 1843.5 on 1331 degrees of freedom

Residual deviance: 1588.1 on 1330 degrees of freedom

AIC: 1592.1

For this model, the high residual deviance should scare us, indicating that this model
doesn’t really do a great job estimating withdraw status, although it is somewhat lower than
the null deviance. Then, in order to figure out what predicts withdraw status, we need to
hypothesize about better models. Still, this is an interesting result - that Marlboro GPA, on
its own, does not particularly predict whether or not a student will leave.

Now, we can try adding in a variable, particularly whether or not a student has requested
financial aid. Then, our model is now:

> model <- glm(Current.Status~Fin.Aid+Marlb.GPA, family=binomial)

> summary(model)

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.7494 0.5060 11.36 <2e-16 ***

Marlboro.GPA -1.9147 0.1560 -12.28 <2e-16 ***

Fin..Aid.RequestedYes 3.4854 0.3023 11.53 <2e-16 ***

Null deviance: 1843.5 on 1331 degrees of freedom

Residual deviance: 1318.0 on 1329 degrees of freedom

AIC: 1324



Therefore, adding in ”financial aid requested” as an explanatory variable reduces residual
deviance by quite a bit. Additionally, both of these variables are statistically significant, with
a very low probability that they do not pass a χ2 distribution test. Although we still have to
convert these into a number that makes sense, based off the estimates, we see that increases
in Marlboro GPA have a decrease the odds of withdraw status, while financial aid requests
increase the odds of a withdraw status. However, here, it might be nice to compare how
much deviance each specific variable explains. We can check this with:

> anova(model)

Df Deviance Resid. Df Resid. Dev

NULL 1331 1843.5

Marlboro.GPA 1 255.33 1330 1588.1

Fin..Aid.Requested 1 270.09 1329 1318.0

Which shows us that Financial Aid Requested explains slightly more variation who drops
out or not, but only by a small margin. Therefore, it looks as if the two most important fac-
tors in whether a student leaves are their grade point average and if they requested financial
aid.

(4) Predicting the Average Applicant

This portion was completed in the associationrules.R script, starting from line 89.
Association rule mining can be used for more than simple rules like which classes fre-

quently lead to others. In this case, it can be also used to determine the most frequent items,
or characteristics at Marlboro. This is only one more use of this, but I bet there are some
more pretty interesting applications of this here. As such, qualitative categorical Marlboro
data was read in a basket format through the code:

> All <- read.transactions(file, format="basket", cols=1)

> rules4 = apriori(All, parameter=list(support=0.01, confidence=0.8))

And the plotted after being subsetted using the following line:

> plot(subrulesall3, method="graph", control=list(type="items"))

Which gives us:



Ok. So we have that a frequent Marlboro student is Female, Early Action, White,
a Freshman, and a U.S. Citizen. This is sort of a silly result, but it demonstrates the
capabilities of association rule mining to produce some interesting findings.

Recommendations

Ultimately, it appears that while some of my results are interesting, they tell a story that
is, at the very least, incomplete. In, my opinion, far more interesting and useful results



about Marlboro students (prospective, current, and past) are out there, and can be revealed
through statistical techniques mentioned here. Undoubtedly, there needs to be a increased
commitment to storage of institutional data for use in such analyses. The loss of information
like H.S. GPA, reader scores, and whatever else that was lost is unfortunate, because it would
have potentially resulted in some interesting findings. Bill Mortimer attributed this to the
fact that the data I received was the result of day-to-day institutional use, and for data used in
day-to-day use, there was little oversight aimed at making sure valuable information was kept
for long-term institutional analysis. In other words, the fact that I received observational,
and not experimental data likely had adverse effects upon my results. This led, Bill, and
certainly me as well, to the conclusion that having an institutional researcher would be great
to mitigate data loss, corruption, and to balance use of data for daily purposes and for long
term institutional analysis. Also, it would let someone else take up this daunting task.
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