noisy channels

discussion

This is a summary of chapter 5 in "Codes" text, using their notation.

The math is conditional probability and entropy again, but this time with a different interpretation.

We're back to thinking about 1st order Markov again, for now, but with an added "noise" source between the sender and receiver.

symbol \boldsymbol{p} sent \rightarrow NOISE \rightarrow symbol \boldsymbol{q} received

$$
\begin{aligned}
& \mathbf{p} \equiv\left[p_{1}, p_{2}, \ldots\right]=\text { probabilities of symbols produced by sender }=(1 \times \mathrm{N}) \text { row vector } \\
& \mathbf{q} \equiv\left[q_{1}, q_{2}, \ldots\right]=\text { probabilities symbols seen by receiver }=(1 \times \mathrm{N}) \text { row vector } \\
& \begin{aligned}
\Gamma & \equiv\left[\Gamma_{\mathrm{ij}}\right]
\end{aligned} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& =[\text { probability of receiving symbol } \mathrm{j} \text { given that } \mathrm{i} \text { i was sent }=(\mathrm{N} \times \mathrm{p})
\end{aligned}
$$

where $i=$ row $=$ sent symbol, and $j=$ column $=$ received symbol

$$
\begin{aligned}
\mathbf{t} \equiv\left[t_{\mathrm{ij}}\right] & =\Gamma_{\mathrm{ij}} p_{i}=\operatorname{prob}(\operatorname{get} \mathrm{j} l \text { sent } \mathrm{i}) \operatorname{prob}(\operatorname{sent} \mathrm{i})=\operatorname{prob}(\text { get } \mathrm{j} \& \operatorname{sent} \mathrm{i})=(\mathrm{N} \times \mathrm{N} \text { matrix }) \\
& =\operatorname{probability}(\mathbf{p} \& \mathbf{q})=[\operatorname{probability}(\operatorname{sent} \mathrm{i}, \operatorname{got} \mathrm{j})]=\operatorname{probability}(\mathrm{i}, \mathrm{j}) \\
& =\text { joint probability distribution }
\end{aligned}
$$

We can also define the conditional probability in the other direction

$$
\begin{aligned}
\Delta \equiv\left[\Delta_{\mathrm{ij}}\right] & =[\text { conditional probability }(\text { sent } \mathrm{i} \mid \text { got } \mathrm{j})] \\
& =\left[t_{\mathrm{ij}} / q_{j}\right]=\mathrm{N} \mathrm{x} \mathrm{~N} \mathrm{matrix}
\end{aligned}
$$

For any probability distribution \boldsymbol{g} that sums to 1 , we already have a notion of entropy :

$$
H(\boldsymbol{g}) \equiv-\sum_{i} g_{i} \log _{2}\left(g_{i}\right)
$$

We now define a conditional entropy.

The text uses two similar notations, and shows that two definitions are equivalent.

$$
\begin{aligned}
H(\boldsymbol{p} \mid \boldsymbol{q}) & \equiv H(\boldsymbol{p} \& \boldsymbol{q})-H(\boldsymbol{q}) \equiv H(\boldsymbol{\Gamma} ; \boldsymbol{p}) \\
= & H(\boldsymbol{t})-H(\boldsymbol{q}) \\
= & \sum_{j} q_{j} H(\boldsymbol{p} \mid j)
\end{aligned}=-\sum_{j} q_{j} \sum_{i}\left(t_{\mathrm{ij}} / q_{j}\right) \log _{2}\left(t_{\mathrm{ij}} / q_{j}\right) .
$$

Likewise,

$$
\begin{aligned}
H(\boldsymbol{q} \mid \boldsymbol{p}) & \equiv H(\boldsymbol{p} \& \boldsymbol{q})-H(\boldsymbol{p}) \equiv H(\boldsymbol{\Delta} ; \boldsymbol{q}) \\
= & H(\boldsymbol{t})-H(\boldsymbol{p}) \\
= & \sum_{i} p_{i} H(\boldsymbol{q} \mid i)
\end{aligned}=-\sum_{i} p_{i} \sum_{j}\left(t_{\mathrm{ij}} / p_{i}\right) \log _{2}\left(t_{\mathrm{ij}} / p_{i}\right) .
$$

The "channel capacity" of the source \mathbf{p} through the channel Γ is then defined as the difference of two of these entropies:

$$
\begin{aligned}
f_{\Gamma}(\boldsymbol{p}) & \equiv H(\boldsymbol{p})-H(\boldsymbol{\Gamma} ; \boldsymbol{p})=H(\boldsymbol{p})-H(\boldsymbol{p} \mid \boldsymbol{q}) \\
& =\text { bits of information about } \mathbf{p} \text { available to someone who knows } \mathbf{q}
\end{aligned}
$$

All this implies (from the definitions of conditional probabilities) a bunch of identities :

$$
\begin{array}{lll}
1=\sum_{j} \Gamma_{\mathrm{ij}} & \text { for every } i & \text { sum of each conditional probability is } 1 \\
1=\sum_{i} \Delta_{\mathrm{ij}} & \text { for every } j & \text { ditto } \\
1=\sum_{\mathrm{ij}} t_{\mathrm{ij}} & & \text { sum of all joint probabilities is } 1 \\
q_{j}=\sum_{i} p_{i} \Gamma_{\mathrm{ij}} & \text { or } & \mathbf{q}=\mathbf{p} \Gamma \text { using matrix multiplication } \\
p_{i}=\sum_{j} t_{\mathrm{ij}} & & \text { p marginal probability from } \mathrm{t} \\
q_{j}=\sum_{i} t_{\mathrm{ij}} & & \text { q marginal probability from } \mathrm{t}
\end{array}
$$

Example :

$$
\begin{aligned}
& \mathbf{p}=[0.7,0.3]=[\operatorname{prob}(\operatorname{send} 0), \operatorname{prob}(\text { sending } 1)] \\
& \boldsymbol{\Gamma}=\left[\begin{array}{ll}
\Gamma_{00} & \Gamma_{01} \\
\Gamma_{10} & \Gamma_{11}
\end{array}\right]=\left[\begin{array}{ll}
\operatorname{prob}(\operatorname{get} 0 \mid \operatorname{sen} 0) & \operatorname{prob}(\operatorname{get} 1 \mid \operatorname{send} 0) \\
\operatorname{prob}(\operatorname{get} 0 \mid \operatorname{sen} 1) & \operatorname{prob}(\operatorname{get} 1 \mid \operatorname{send} 1)
\end{array}\right]=\left[\begin{array}{ll}
0.99 & 0.01 \\
0.02 & 0.98
\end{array}\right] \\
& \mathbf{q}=[0.7,0.3]\left[\begin{array}{ll}
0.99 & 0.01 \\
0.02 & 0.98
\end{array}\right]=[0.699,0.301]=[\operatorname{prob}(\text { get } 0), \operatorname{prob}(\text { get } 1)] \\
& \mathbf{t}=\left[\begin{array}{ll}
p_{0} \Gamma_{00} & p_{0} \Gamma_{01} \\
p_{1} \Gamma_{10} & p_{1} \Gamma_{11}
\end{array}\right]=\left[\begin{array}{ll}
0.693 & 0.007 \\
0.006 & 0.294
\end{array}\right]
\end{aligned}
$$

Everything else is calculated below, including the various entropies.

- definitions

```
H[prob_] := Total[-Flatten[prob] Log[2, Flatten[prob]]];
H2[pxy_] := Block[{},
    pX = Total[Transpose[pXY]];
    Return[Sum[-pXY[[i, j]] LOg[2, pXY[[i, j]] / pX[[j]]]]];
    ];
\Gamma={{0.99,0.01},{0.02,0.98}};
p = {0.7, 0.3};
q = p. \Gamma;
t = Table[p[[i]] \Gamma[[i, j]], {i, 1, 2}, {j, 1, 2}];
\Delta = Table[t[[i, j]]/q[[j]],{i, 1, 2},{j, 1, 2}];
```

■ check

```
\Gamma // MatrixForm
```



```
p // MatrixForm
( 0.7 
q // MatrixForm
( 0.699
t // MatrixForm
(0.693 0.007
\Delta // MatrixForm
(cc}\begin{array}{cc}{0.991416}&{0.0232558}\\{0.00858369}&{0.976744}\end{array}
Total[\Delta] // MatrixForm
(\begin{array}{l}{1.}\\{1.}\end{array})
Total [p]
1.
Total[q]
1.
Total[Transpose[r]] // MatrixForm
\(\binom{1}{1.}\).
```


Total[Total[t]]

1.

Total [t]

$\{0.699,0.301\}$

Total[Transpose[t]]
$\{0.7,0.3\}$

entropies

Entropy of input

H [p]
0.881291

Entropy of output
H [q]
0.88251

Entropy of joint distribution, knowing everything

H [t]
0.980278
$\mathrm{H}(\mathbf{q} \mid \mathbf{p})$ calculated two ways:

1. Prob(gotl sent 0)

г[1]]
$\{0.99,0.01\}$

Prob(gotl sent 1)
r[[2]]
$\{0.02,0.98\}$

Entropy of those two conditionals

```
H[r[[1]]]
```

0.0807931
H[T[[2]]]
0.141441
weighted average of the conditional entropies

```
p.{H[\Gamma[[1]]], H[T[[2]]]}
```

0.0989874
2. difference of (joint entropy - source entropy)

H[t] $-\mathbf{H}[p]$
0.0989874
$\mathrm{H}(\mathbf{p} \mid \mathbf{q})=\mathrm{H}(\Gamma ; \mathbf{p})$ calculated two ways :
H[t] $-\mathrm{H}[\mathrm{q}]$
0.0977684
q. $\{\mathbf{H}[$ Transpose[Δ][[1]]], $H[T r a n s p o s e[\Delta][[2]]\}$
0.0977684

channel capacity

$\mathrm{H}[\mathrm{p}]-(\mathrm{H}[\mathrm{t}]-\mathrm{H}[\mathrm{q}])$
0.783523

The interpretation for these numbers then is :
a) The source \mathbf{p} with $(0,1)$ probabilities of $(0.7,0.3)$, without noise, can deliver 0.88 bits of information per bit sent.
b) With this noisy Γ channel, which flips $(0,1)$ with $(0.01,0.02)$ probability, only 0.78 bits of information per bit sent is possible.

