Marlboro College Plan of Concentration

Dylan Mur(ghy—l\/[ancini

Computer Science & Computer Security

May 2, 2017
Faculty Sponsor Jim Mahoney Professor of Computer Science
Secondary Reader Matt Ollis Professor of Mathematics

Outside Examiner Ian Kozak Green River Data Analysis

To demonstrate competency in computer science and computer security, this
Plan is divided into the following weights:

Component | %
Development of and paper about a security scanner 50%
Systems programming: Modifying a running process 30%

Examinations on programming languages, and algorithms | 20%

Contents

|Acknowledgements| 4
[Foreword] 5
[Modifying a Process on Linux]| 7
Motroductionl. o o 7
................................ 7
GDBI. . . 9
PTRACE ottt e 12
|Adding a System Calll 0 000 15
Linux Kernel Modules 17
|Writing and Reading Process Memory| 18
[Boan: an HTTP(S) MitM Proxy] 24
[Background|o 24
How Boan Workd 25
Resultdl . . .« o ot 26
IMoving Forward| o 28
[Examinations| 30
|Programming Languages|. 30
................................. 49
[References| 68
|Code Appendix| 70
R . . 71
externallackid. 72
Hag.cl. 7
e R 78
[mspectprintlid. 79
DRmad. - 80
................................. 82
.................................... 83
fandomed 84

Bracerd 86
borandomed 87
Boaml oo 88
boan.py|l 88

D DYl . . . e 93

D DY| - -« o e e e e e 100
setup https intercept.shl00 107
............................... 108

BhOuChEml. 108

bhoutud 109

cull ... 110
........................... 113

|Algorithms Exam|.o oo oo 116
|Programming Languages Exam| 146
fraction sum search.cl 146

fraction sum search.js| 148
[fraction_sum _search _functionalpy] 150

Eractlon sum_search imperative.py|. 151

raction sum searc Pyl .- 152

network graph.py| 153

Otwork ETapILdol]. « « « o o e 156

Acknowledgements

I would like to give a special thanks to my professor, faculty sponsor, and role
model, Jim Mahoney, professor of computer science at Marlboro College. I could
not have done this without you. Thank you for the hours after class, the late
night games of email tag, and unwavering support through the process of Plan.

Forward

The question I get the most is "why security". I can distinctly recall the exact
moment at which I knew I wanted to pursue it as a degree. It is an anecdote that
begins in the middle of my second semester at Marlboro College. I was taking
a class on microcontrollers. This lab based class centered around working with
Arduinos— using them to explore circuits, code, switches, lights, and all that.
It was an introductory level class, but for me became the embedded systems
programming primer I was craving. During the last few weeks of the semester,
each of us had to create a final project. People decided to work on everything
from electronic thermometers to wirelessly controlled robots. There was even
a student who made a fully functional theremin! On the final class we had to
present our project to the class. I wasn’t anywhere to be found. I showed up
to my professor’s office long after that class ended. The hours I poured into
my project must have shown in my appearance because he took pity on me
and granted permission to present my project for credit. I apologized profusely
explaining my project took longer than I ever anticipated. I put my backpack
on his desk and pulled out my Arduino— and there it was, just my Arduino.
Nothing more than a bare Arduino. No wires connected to a breadboard, no
LED’s, no motors, no wireless modules, or theremin to be seen. "Is this it?",
he said. I urged him, to plug it in to his computer. He didn’t look amused but
humored my request attaching the Arduino by USB. I'm paraphrasing but the
dialogue that followed was essentially:

Professor: "What now?"

ME: "This is it. List your USB devices- type ’lsusb’"

Professor: "Okay... see what exactly?"

ME: "It’s no longer a serial communication device. It’s a MIDI device!"
Professor: "This is the most unimpressive impressive thing."

I had flashed the ROM of the Arduino with a program acting as a USB

controller and subsequently implemented the HID specification to echo as a
native MIDI device. It was during this presentation I came to realize a couple of
things: One, I truly love the communication protocols, their specifications, and
their implementation. Two, there is absolutely no glory in loving them. From
that moment on I drowned myself in low level languages like C, and started
recreating standard GNU utility programs. It was a short hop onto security from
there. I began on to do things like implement ping via ICMP, ARP spoofing,
DNS redirection, and crack WEP. Studying security became this way to take
the protocols I found fascinating and turn them into sport.

Modifying a Process on Linux

Introduction

There are many legitimate and nefarious reasons to interrupt the normal execu-
tion flow of a program. Some of the good reasons include: debugging, memory
diagnostics or forensics, and sand-boxing for analysis. Reasons also include clan-
destine motives— hacking to bypass features or modify the behavior of a program
for profit. On operating systems like Windows or OSX there exists a plethora of
material to explain methods used to accomplish these goals. This is due to the
fact these operating systems make up the majority of computer users. Linux is
gaining popularity as a proprietary operating system replacement. As of March,
2017, 5.9% of desktops are running Linux as the main operating system— up
2.3% from 2009.[1] In my time studying operating system implementation, mal-
ware analysis, and reverse engineering, I found there to be a lack of material,
especially in concern to proof-of-concept code (POC) for Linux on modifying
a running process. This paper aims to document methods I've researched for
Linux and provide POC implementation for future security students.

DLL Injection

A dynamic-link library (DLL) is a shared library loaded at run time by pro-
grams. DLL injection is a technique used for running code within the address
space of another process by forcing it to load a DLL.[2] On Linux there are a
number of environment variables that control the loading process, one of which
is LD PRELOAD. This environment variable can be set to specify a shared ob-
ject that will be loaded before all others, effectively overriding any of the same
symbols in other libraries.[3] For example, consider the following target program
random.c (see Code Appendix for the source code). This program simply prints
a random number in a never-ending loop using the rand() function from the
standard c library (libc)— which by default is linked dynamically.

$ gcc random.c —o random
$./random

83

7

15

Listing 1: Compiling and running random.c with GCC and on Ubuntu

To implement DLL injection we first need to create a shared library that will
take precedence. The file unrandom.c contains just a definition for the rand()
function.

int rand(){
return 42;
}

Listing 2: unrandom.c

Compile it as a shared library, which will produce a shared object (.so). When
LD PRELOAD is set to use this new library my very predictable rand() defi-
nition is used.

$ gcc —shared —fPIC unrandom.c —o unrandom.so
$ LD PRELOAD=$PWD/unrandom.so ./random

42

42

42

Furthermore you can export LD PRELOAD so you don’t have to specify the
new library each time you run the target program.

$ export LD PRELOAD-$PWD/unrandom . so
$./random

42

42

42

Our new definition of the rand() function is executing code in the process’s
address space. To further exemplify this I have created an example intercepting,
puts(), which is used within the prtinf(). The target program printfecho.c returns
whatever string you pass into it (see Code Appendix for the source code of
rintfecho.c). For example, passing in the string "Hello, World!" returns the string
back:

$ gcc printfecho.c —o printfecho

$./printfecho "Hello, World!"
Hello, World!

The new shared library code in inspectprintf.c utilizes the dlsym library for
working with libraries and symbols.

#define GNU SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <string.h>

static int (xreal puts)(const char* str) = NULL;
int puts(const charx str){

/% printing out the number of characters */
printf (" puts:chars#%lu\n", strlen(str));

/+ resolve the real puts function from glibc
*+ and pass the arguments.

*/

real puts = dlsym (RTLD NEXT, "puts");

real puts(str);

Listing 3: inspectprintf.c

The RTLD NEXT flag specifies the next symbol after this one that shares
name. The new puts definition essentially wraps the libc version. It intercepts
the system call, executes code the program is unaware of (prints a character
count of the string passed in), and then passes the arguments onto the real
puts() function in libc.

$ gcc —shared —fPIC inspectprintf.c —o inspectprintf.so —1dl

$ LD PRELOAD=$PWD/inspectprintf.so ./printfecho "Hello, World!"
puts:chars#:13

Hello, World!

GDB

One of the limitations of DLL injection is that the method can only override
dynamically-linked functions. What would be the entry point if the target is
statically compiled? Modifying the execution of such a program can be accom-
plished with the use of a debugger. Probably the most well-known method to
hit pause on a program’s execution and meddled around on Linux is through
the use of the GNU Debugger (GDB). GDB’s intended purpose is to run other

programs, allowing the user to exercise control over them, and examine variables
when problems arise. GDB allows you to see what is going on ‘inside’ another
program while it executes. At Marlboro, we use it heavily when learning C and
Assembly. GDB can do four main kinds of things:[4]

Start your program, specifying anything that might affect its behavior.

Make your program stop on specified conditions.

e Examine what has happened, when your program has stopped.

Change things in your program, so you can experiment with correcting
the effects of one bug and go on to learn about another.

To show GDB modifying a process in action I have created a target program
flag.c’ (see Code Appendix for the source code). It is a minimal program con-
sisting of a single conditional. An integer ’flag’ is set to false at the start, and
without anyway to change that the conditional it always evaluates to false.

$ gcc flag.c —o flag
$./flag
Flag is false

The program behaves as expected. Although this is a simple conditional on an
integer, it is no different from the logic used to implement trial lock features in
freeware. To begin changing the expected behavior of the flag program, I first
load the binary into GDB as if to begin a the normal debugging process (The q
flag is just to suppress GDB’s welcome message).

$ gdb —q flag

Reading symbols from flag ...(no debugging symbols found) ... done.
(gdb) b main

Breakpoint 1 at Ox6a4

(gdb) r

Starting program: /home/us3r/Desktop/testdir/flag

Breakpoint 1, 0x00005555555546a4 in main ()

(gdb) disassemble

Dump of assembler code for function main:
0x00005555555546a0 <+40>: push Y%rbp
0x00005555555546al1 <+1>: mov Y%rsp ,%rbp

=> 0x00005555555546a4 <+4>: sub $0x20,%rsp
0x00005555555546a8 <+8>: mov %edi,—0x14(%rbp)
0x00005555555546ab <+11>: mov Y%rsi,—0x20(%rbp)
0x00005555555546af <+15>: movl $0x0,—0x4(%rbp)
0x00005555555546b6 <+22>: cmpl $0x0,—0x4(%rbp)

0x00005555555546ba <+26>: je 0x5555555546ca <main+442>
0x00005555555546bc <+28>: lea O0xal(%rip),%rdi # 0
x555555554764

0x00005555555546¢c3 <+35>: callq 0x555555554560

10

0x00005555555546¢c8 <+40>: jmp 0x5555555546d6 <main-+54>
0x00005555555546¢ca <+42>: lea 0xa0(%rip),%rdi # 0
x555555554771
0x00005555555546d1 <+4+49>: callq 0x555555554560
0x00005555555546d6 <+454>: mov $0x0,%eax
0x00005555555546db <+59>: leaveq
0x00005555555546dc <+60>: retq

End of assembler dump.

(gdb) x/4xb 0x00005555555546ba

0x5555555546ba <main+26>: 0x74 O0x0e 0x48 0x8d

So far I've just set a breakpoint on the main method. Inspecting the assembly
shows the conditional is on lines main+15, main+22 and main+26 (if (flag)).
Address 0x00005555555546ba is shown in bytes because it is what I want to
modify. The je operand at that address means jump equal or jump zero, testing
the zero flag. The zero flag is used to check the result of an arithmetic operation—
the cmpl at main+22. The hex code of je is 0x74. By changing it to 0x75 the
je would become jne— jump if not equal.[5] This can be modification can be
accomplished using GDB’s set command.

(gdb) set *(char+)0x00005555555546ba=0x75

(gdb) disassemble

Dump of assembler code for function main:
0x00005555555546a0 <+40>: push %rbp
0x00005555555546al1 <+1>: mov Y%rsp,%rbp

=> 0x00005555555546a4 <+4>: sub $0x20,%rsp
0x00005555555546a8 <+8>: mov %edi,—0x14(%rbp)
0x00005555555546ab <+11>: mov %rsi,—0x20(%rbp)
0x00005555555546af <+15>: movl $0x0,—0x4(%rbp)
0x00005555555546b6 <+22>: cmpl $0x0,—0x4(%rbp)

0x00005555555546ba <+26>: jne 0x5555555546ca <main-+42>
0x00005555555546bc <+28>: lea O0xal(%rip),%rdi # 0
x555555554764

0x00005555555546¢c3 <+35>: callq 0x555555554560
0x00005555555546¢c8 <+40>: jmp 0x5555555546d6 <main+54>

0x00005555555546¢ca <+42>: lea 0xa0(%rip),%rdi # 0
x555555554771

0x00005555555546d1 <+49>: callq 0x555555554560

0x00005555555546d6 <+54>: mov $0x0,%eax

0x00005555555546db <+59>: leaveq
0x00005555555546dc <+4+60>: retq

End of assembler dump.

(gdb) x/4xb 0x00005555555546ba

0x5555555546ba <main+26>: 0x75 O0x0e 0x48 0x8d

(gdb) ¢

Continuing.

Flag is true

[Inferior 1 (process 21803) exited normally|]

Continuing execution after my modification confirms the flag now evaluates
as true. Even though you can attach to an already running process with "GDB
-p PID’ (where PID is the process id of the process you want to attach to),

11

I wanted to create more permanent program modifications— ones that didn’t
require the need to be wrapped by GDB. This curiosity led me to look into how
GDB accomplishes writing to memory with the set command.

PTRACE

At the heart of GDB (and almost any Linux debugging tool) lies the system
call PTRACE. Operating systems offer services through a standard mechanism
called system calls. They provide a standard application program interface for
accessing the underlying hardware and low-level services, such as the file sys-
tems. When a process wants to invoke a system call, it puts the arguments to
the system call in registers and invokes soft interrupt 0x80. This soft interrupt
is like a gate to the kernel mode, and the kernel will then execute the system
call after examining the arguments. [6]

$ man ptrace

PTRACE(2) Linux Programmer’s Manual
PTRACE(2)
NAME
ptrace — process trace
SYNOPSIS

#include <sys/ptrace.h>

long ptrace (enum ptrace request request, pid t pid,

void *addr, void xdata);

DESCRIPTION
The ptrace() system call provides a means by which one
process (the "tracer") may observe and control the execution of
another process (the "tracee"), and examine and change the
tracee ’s memory and registers. It is primarily used to
implement breakpoint debugging and system call
tracing.

A tracee first needs to be attached to the tracer.
Attachment and sub—sequent commands are per thread: in a
multithreaded process, every thread can be individually
attached to a (potentially different) tracer, or left not
attached and thus not debugged. Therefore, "tracee"
always means "(one) thread", never "a (possibly multithreaded)

In short, the man page of PTRACE says it is possible to code a complete
debugger using this system call alone. As POC I am going to use it to inter-
cept getuid(). Although you can use PTRACE to attach to a running process
it is faster to develop by calling fork(), using the parent to debug the child.
The parent process is alerted every time something happens in the child. For

12

my example I will be requesting notification of on every system call. The first
argument to PTRACE determines the service requested:[7]

PTRACE_TRACEME: Indicates that this process is to be traced by its
parent.[14]

PTRACE_SYSCALL: Stops the tracee for inspection at the entry to or exit
from a system call.[14]

PTRACE _GETREGS: Copy the tracee’s general-purpose or floating-point
registers, respectively, to the address data in the tracer.|[14]

PTRACE _SETREGS: Modify the tracee’s general-purpose or floating-point
registers, respectively, from the address data in the tracer.[14]

The target program for my PTRACE example simply prints out the current
user ID (UID). See the Code Appendix for the source code of printfecho.c.
Running target.c without any modification:

$ gcc target.c —o target
$./target

Target program

user id: 1000

My PTRACE hack named tracer.c forks the target as a child.

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/syscall .h>
#include <sys/reg.h>
#include <sys/user.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#define TARGET "/home/us3r/Desktop/plan/target"
#define NEW UID 1337

int main(int argc,char*x argv) {
int status = O0;
int syscall n = 0;
int entering = 1;
struct user_regs_struct regs;
int pid = fork();

if (!pid) {
ptrace (PTRACE TRACEME, 0, 0, 0);
execv (TARGET, argv);

} else {

wait (&status);

13

while (1) {
ptrace (PTRACE SYSCALL, pid, 0, 0);

wait (&status);
if (WIFEXITED(status)) break;

ptrace (PTRACE GETREGS, pid, NULL, ®s);

syscall n = regs.orig rax;
if (syscall n = SYS_ getuid) {
if (entering) {
entering = 0;
}
else {

ptrace (PTRACE GETREGS, pid, 0, ®s);
regs.rax — NEW_UID;
ptrace (PTRACE SETREGS, pid, 0, ®s);
entering = 1;
}
}

}

}

return O;

}

Listing 4: tracer.c

Running tracer in turn runs target, intercepts the getuid() system call and
returns 1337 as the UID. Of course this method of overriding a system call could
be used for debugging purposes on any system call or function.

$ gcc tracer.c —o tracer
$./tracer

Target program

user id: 1337

To mitigate this method of PTRACE interception you could easily detect
if your process is being traced by PTRACE by calling PTRACE yourself. For
example, I've written a demonstration program entitled ptest.c where PTRACE
is called with PTRACE TRACEME- this would return an error if the process
is already being traced.

#include <stdio.h>
#include <sys/ptrace.h>

int main () {
if (ptrace (PTRACE TRACEME, 0, 1, 0) = —1) {
printf("Don’t trace me!!l\n");
return 1;

14

printf("Normal Execution... no tracing going on here.\n");
return O0;

Listing 5: ptest.c

Running the program un-traced returns the message "Normal Execution":

$ gcc ptest.c —o ptest
$./ptest
Normal Execution... no tracing going on here.

However, the program does not like being traced by a debugger like GDB:

$ gdb —q ptest

Reading symbols from ptest...(no debugging symbols found) ... done.
(gdb) r

Starting program: /home/us3r/Desktop/testdir/ptest

Don’t trace me!!

[Inferior 1 (process 25656) exited with code 01]

(gdb)

An error is returned as the process can not call ptrace while it is being traced
by GDB. This is a cat and mouse game— you could attach a debugger after the
program does its trace check, and programs can implement further methods of
trace detection but I hope this conveys how this game is essentially played.

Adding a System Call

System calls can be viewed as entry points into the kernel through which pro-
grams request services from the kernel. After learning PTRACE can be detected,
and myself trying to reverse programs with PTRACE detection, I wondered if
it were possible to add a separate system call to the kernel- one that would
give me the features of ptrace(), but not be ptrace(), and thus not be detected.
This is probably the most backwards way of going about mitigating detection
but this essay would not be complete with out mentioning the answer is yes—
you can add system calls to a Linux kernel and nothing is stopping you from
implementing a second version of PTRACE.[IT]

Adding a system call or modifying anything about a Linux distribution can
be accomplished by downloading the kernel’s source, recompiling, and installing
it into your system. Rather than detail all the files that need to be modified or
walk through the system dependent compilation process, I've decided to high-
light what to change in order to bypass ptest. The source code of ptrace and

15

other system calls are in the /kernel directory of the kernel source code. In
ptrace.c on lines 401-430, we can see the definition for ptrace traceme— the func-

tion that calculates a return value when calling PTRACE with PTRACE TRACEME.
On line 427 you can see my addition: ret = 0. This is how I've set the return

value to always be true. With this modification, traceme will always return

true instead of returning an error value when calling PTRACE within a traced
process. /linux-4.8.0/kernel/ptrace.c lines 401 - 430

401 | /%

402 * ptrace traceme —— helper for PTRACE TRACEME

403 *

404 * Performs checks and sets PT_ PTRACED.

405 * Should be used by all ptrace implementations for PTRACE TRACEME.
406 */

407 | static int ptrace traceme (void)

408 | {

409 int ret = —EPERM;

410

411 write lock irq(&tasklist_ lock);

412 /% Are we already being traced? =/

413 if (!current—>ptrace) {

414 ret = security ptrace traceme(current—>parent);

415 /*

416 * Check PF_EXITING to ensure —>real parent has not passed
417 * exit ptrace(). Otherwise we don’t report the error but
418 * pretend —>real parent untraces us right after return.
419 */

420 if (!ret && !(current—>real parent—>flags & PF_ EXITING)) {
421 current —>ptrace = PT PTRACED;

422 __ptrace_link(current , current—>real parent);

423 }

424

425 write _unlock irq(&tasklist lock);

426

427 ret = 0;

428

429 return ret;

430 |}

After recompiling and installing the new kernel, the results of the same
ptest.c as before are modified!

16

X64796c616e@comput3r: ~/Desktop

X64796c616e@comput3r:~/ pS uname -r
4.8.17

x64796c616e@comput3r: «top$ cat ptest.c
#include <stdio.h>

#include <sys/ptrace.h>

int main(){
if (ptrace(PTRACE_TRACEME, 0, 1, 0) ==
printf("Don't trace me!!\n");
return 1;

}

printf("NMormal Execution... no tracing going on here.\n"};
return 0;
}x64796c616e@comput3 € op$ gcc ptest.c -o ptest
x64796c616e@comput3r: . /ptest
Normal Execution... no tracing going on here.
X64796c616e@comput3r:~/ 5 gdb -q ptest
Reading symbols from ptest...(no debugging symbols found)...done.
(gdb) r
Starting program: /home/x64796c616e/Desktop/ptest
Normal Execution... no tracing going on here.
[Inferior 1 (process 1355) exited normally]
(gdb) 1

Linux Kernel Modules

The process of downloading kernel source and compiling for hours is a slow
and painful way to develop a modification for the kernel or access kernel space.
Rather than rebuild and reboot the kernel every time we want new functionality
Linux supports kernel modules (LKM) which can be loaded and unloaded into
the kernel upon demand. They extend the functionality of the kernel without
the need to reboot the system. For example, one type of module is the device
driver, which allows the kernel to access hardware connected to the system.[I8]

Using LKM’s speed up development time and I am able to display their rein
over kernel space with more complexity in this section. Kernel code cannot access
the libraries of code written for the Linux user space (like libc) as the kernel
module lives and runs in only kernel space. The interface between kernel space
and user space is clearly defined and controlled. We have a printk() function that
can output information which can be viewed from within user space. For this
POC T implemented a "Hello, World" LKM that has functionality comparable
to reading /proc/PID/maps. The source code for lkm.c is in the Code Appendix.
One note about compiling and running this would be to change the absolute
path and PID of the target program. The target program here, loop.c, just
runs continuously (the source code of which is also in the Code Appendix). For
example:

$ gcc loop.c —o loop

17

$./loop

I’m a loop!
I'm a loop!
I’m a loop!
I’'m a loop!

When the module is loaded into the kernel, its init method is called which
displays the virtual memory addresses of the target program’s code.

$ make && sudo insmod ./ hello.ko && sudo rmmod hello && dmesg |
tail —8
make —C /lib /modules/4.8.0—41—generic/build M=/home/us3r/Desktop/
lkm modules
make[1]: Entering directory ’/usr/src/linux—headers—4.8.0—41—
generic’
CC [M] /home/us3r/Desktop/lkm/hello.o
Building modules, stage 2.
MODPOST 1 modules

cC /home/us3r/Desktop/lkm/hello .mod. o
LD [M] /home/us3r/Desktop/lkm/hello.ko
make|[1]: Leaving directory ’/usr/src/linux—headers—4.8.0—41—generic

[30973.299308] Hello, world init
[30973.299314]
This mm_struct has 18 vmas.
[30973.299318]
Code Segment start = 0x556938442000, end = 0
x5569384428cc
Data Segment start = 0x556938642dd0, end
x556938643010
Stack Segment start = 0x7ffel6957c40
[30973.314581] Hello, world cleanup

I
o

Furthermore we have read and write access to this program’s memory via
the mm_struct which contains pointers to those addresses. In user land you
could not access the code or data sections of a process for writing.

Writing and Reading Process Memory

Actually modifying the in memory instructions of a process via an LKM is rein-
venting the wheel. There are actually two relatively unknown system calls I've
come across in my research that can do the job. They are process vm writev
and process_vm_readv— similar in fashion to Window’s WriteProcessMemory
and ReadProcessMemory. The man page states they are intended to write and
read to a process’s memory for fast inter-process communication. The bible of
Linux malware analysis, "The Art of Memory Forensics", mentions how little
these system calls are seen:

18

"Since the 3.2 kernel version, Linux has provided two functions,
process_vin_readv and process vm _writev, that allow for read-
ing and writing of a foreign process’ memory without the use of
ptrace. Although it means that the use of PTRACE PEEKTEXT
and PTRACE POKETEXT could be avoided, all the other ptrace
functionality in this section is still required. Furthermore, because
these system calls are relatively new at the time of writing, we have
yet to see any malware in the wild use them."[19]

With that being said I would like to provide the POC for these mysterious
system calls. The target program flag2.c is similar to the first flag program in the
GDB example, however it simply continues printing the flag’s value in a never-

ending loop (see the code appendix for the source code of flag2.c). Running
flag2:

$ gcec flag2.c —Og —o flag2
$./flag2
Flag = 0
Flag = 0

In inspecting flag2’s binary we can observe the memory offset (0x201014) of
the initialized integer that is the actual flag. Below the image depicts me using
Hopper Disassembler in lieu of GDB to determine this offset.

o Hopper Disassembler v3

J> DI o) (a) () (p) (u & 3 A=y |
*flag2 @
@) rirentr 1 ([1[8
TMC END__: -
Labels | strings 0000000000201010 db 0x00 ; ‘. ; XREF=deregister_tn_clones, reg
0000000000201011 db exee ; .
» Tags 080000000201012 db exee ; .
0800000000201013 db_exee ; .
crtstuffc 2 lagl:
init 0800000000201014 db 6xee ; . i XREF-main+d, main+14
b sc0 0800000000201015 db exee ; .
sub_5c 0000000000201016 db exee ; '.
sub_sc8 0800000000201017 db exee ; . i XREF-deregister_tn_cloness+7
sub_sdo ; External Symbols Segment
stort ITM_deregisterTicloneTable:
- 0800000000202000 b 0x00 ;
deregister_tm_clones 0800000000202001 db exee ; .
register_tm_clones 0000000000202002 db 0x00 ; ‘.
do_global_dters_aux 0800000000202003 b 0x00 ; .
Frame dumry - 0800000000202004 db exee ; .
frame_dummy 0800000000262005 db exee ; .
register_tm_clones 0800000000202006 db exee ; '
main 0800000000202007 db 0xe0 ;
libc_csu_init libc_start main:
Tl et 0800000000202008 db oxeo ;
—libe_csu_fini 0800000000202009 b 0x00 ; .
_fini 000000000026200a db ©0x00 ; ‘.
10_stdin_used 080000000026200h db 0x00 ; .
" FRAME_END__ 080000000020200c b 0x00 ; .
frome " 080000000020200d db exee ; .
—frame_dummy_init_array_er 080000000020200e db 0x00 ; .
__do_global_dters_aux_fini_ar 000000000020200 db 6x00 ; '.
JCR_END, gmon_start_:
DYNAMIC 0800000000202010 b ox00 ; .
DYNAMIC ;
- 0900000000202011 db exee ; .
_GLOBAL_OFFSET_TABLE_ 0000000000202012 db exee ; ‘.
sub_200c8 0800000000202013 db exee ; .
sub_200fds 0800000000202014 db exee ; '
- 0800000000202015 db exee ; .
sub_200ffo 0800000000202016 db exee ; '
__dso_handle - R
~_TMC_END__
. Analysis segment External Symbols
_ITM_deregisterTMCloneTable > analysis section External Symbols Section
~ libc_start_main > dataflow analysis of procedures in Segment 2
gmon_start_ > dataflow analysis of procedures in Segment 3

_printf_chk > dataflow analysis of procedures in External symbols
— Background analysis ended 6

s Address 0x201014, Segment Segment 3, flag + 0, Section .bss, file offset 0x1014

19

Using this information we can write a program that determines the base
address of the target, uses the offset to calculate the flag’s address, and writes
to processes memory to change it. In my capture the flag hack, ctf.c, you can see
me parsing the /proc/PID/maps file to determine the base address in memory.

#define GNU_ SOURCE
#include <stdio.h>

#include <stdlib .h>
#include <sys/uio.h>

#define FLAG OFFSET 0x201014
int main(int argc, char const xargv|[]){
pid_t pid;
struct iovec local[1];
struct iovec remote|1];
ssize t nread;
pid = atoi(argv][1l]);
char fname[255];
FILE xf;

sprintf (fname, "/proc/%i/maps", pid);
f = fopen (fname, "r");

char buff[255];
fgets (buff, 255, f);

long long unsigned int base addr;
sscanf (buff,"%Lx",&base addr);
unsigned char buf[sizeof(int)];
int n = 1;

= 0; 1 < sizeof(int)=2; ++i){
n>>ixsizeof (int) *2;

for (int
buf|i]
}

local [0].iov_base = buf;
local [0].iov_len = sizeof(int);

|| =

remote [0].iov_base = (voidx*)base addr+FLAG OFFSET;
remote [0].iov_len = sizeof(int);

nread = process vm_writev(pid, local, 1, remote, 1, 0);

if (nread){
printf (" Captured the flag!\n");

return 0;

20

Listing 6: ctf.c

Running ctf.c:

$ gcec ctf.c —o ctf && sudo ./ctf 18401
Captured the flag!

The output of the continuously running flag2 is now changed without inter-
rupting the execution!

Flag
Flag
Flag
Flag
Flag
Flag
Flag
Flag
Flag
Flag
Flag

[l el i e R e B e B an R o R o)

Building off this simple example where the flag is just an integer in the data
section, I would like to conclude my work here with an example comparable to
video game hacks in the wild. The file externalhack.c is a health hack written
for AssualtCube, a cross-platform first-person shooter video game. The value
I'm changing is the player’s health, which starts at 100 by default. This is not
an integer in the data section, it lives on the stack. However, there is a player
class initialized in the data section and my program follows pointers to playerl’s
location and uses that address to calculate the offset (see the code appendix for
the source code of externalhack.c).

Running assault cube:

21

AssaultCube

fps 145

Notice the health value at 100 in the bottom left hand corner. Running
externalhack.c:

$ gcc externalhack.c —o externalhack
$ sudo ./externalhack

Found PID: 14238

Found Base Address: 0x55c0b687b000
Player Pointer: 0x55c0b6bf3130
Player Address: 0x55c0b7a3c2f0
Player V Health: 0x55c0b7a3c400
Health: 100

Hacked Health

This is a more complete program in which you don’t even need to pass a PID
over— the hack will parse the /procs directory for the correct PID. The result is
infinite health! Every tick the value of the players health is overwritten, leaving
the player invincible.

22

AssaultCube

fps 144

23

Boan: an HTTP(S)
Man-in-the-Middle Proxy

Project hosting and documentation:
https://github.com/0x64796c616e/Boan

Boan is the English version of the Korean word E ¢} meaning security or
preservation of public peace. The project is an HTTP/HTTPS proxy that allows
for the modification of requests to aid in manual web application penetration
testing.

Background

The idea to code a web proxy for my Plan project comes from multiple sources.
One common reason to code your own tool like Boan is fear of becoming a
"script kiddie"— a person who uses existing computer scripts or code to hack,
lacking the expertise to write their own. I wanted to demonstrate knowledge
of web security and protocols’ implementation. In my time as an intern at a
software security firm it became abundantly clear that the majority of web
vulnerabilities revolve around breaking encoding. A proxy that allows for the
manipulation of requests is a the tool for the job. Also, a standard project for a
computer science student is to implement an HTTP server of some kind— making
one that can handle encryption was my way of taking it one step further. The
addition a graphical user interface (GUI) as the front-end was a way of satisfying
the software developer in me.

24

https://github.com/0x64796c616e/Boan

How Boan Works

To safeguard sensitive information from potential eavesdroppers or man-in-the-
middle attacks, TCP/IP includes secure protocols (SSL/TLS) which have been
designed specifically to attain end-to-end security. These protocols follow a
handshake protocol to establish a shared encryption key which is known only to
the client and the secure server. Once the handshake is complete, all successive
data transferred between the client and server are encrypted. Since the client
and secure server alone have the shared encryption key, they exclusively are
able to decipher the data. A special case occurs when circumstances require the
client to use a proxy server to connect to a remote secure server. To preserve
pure end-to-end encryption the proxy server must not see the shared encryption
key. However, the proxy server must still connect the client to the remote server
so the handshake can even take place.

To accommodate this special case, HT'TP has a method: CONNECT. This
method is used by a client to instruct a proxy server to establish a connection
with a remote server so that handshaking between the client and the remote
server can take place. After that connection is established, the handshake takes
place. All consecutive data transfer between the client and the remote secure
server are encrypted and sent to the proxy server— the proxy acts only as a relay
point between the client and the remote secure server. Using a relay point like
this is known as tunneling. Since the proxy server does not know the encryption
key, it cannot examine the data in the communications, and end-to-end security
is preserved.

When the client opens an SSL/TLS connection to a secure server, it ver-
ifies the server’s identity by checking two conditions: First, it checks whether
its certificate was signed by a certificate authority (CA) known to the client.
Second, it makes sure that the common name (CN), host name, of the server
matches the one it connects to. If both conditions are true, the client assumes
the connection is secure. In order to be able to intercept traffic on the proxy
connection, Boan acts as a certificate authority, however, not a very trustwor-
thy one. Instead of issuing certificates to actual persons or organizations, Boan
dynamically generates certificates to whatever hostname is needed for a connec-
tion. If, for instance, a client wants to connect to https://www.facebook.com,
Boan generates a certificate for “www.facebook.com” and signs it with its own
CA. This CA certificate is generated the first time Boan is run, and installed as
a trusted root in your browser.

25

Results

To gauge my development I have been testing Boan on http://demo.testfire.
net/), and an example website of my own creation http://demofire.000webhostapp.
com/. The website I created is a PHP example of GET/POST forms, and
SESSION data to demonstrate Boan working. Testfire.net is an intentionally
vulnerable fake-banking website entitled Altoro Mutual. The Altoro Mutual
website is published by Watchfire, Inc. for the sole purpose of demonstrat-
ing the effectiveness of Watchfire products (IBM’s AppScan) in detecting web
application vulnerabilities and website defects. Watchfire produced a security
report for testfire.net, (http://blog.watchfire.com/files/demo.testfire.
net-security-report-8.6.pdf), of which I have gone through and reproduced
the vulnerabilities with Boan that deal with breaking encoding or inserting ma-
licious code. Vulnerabilities such as, cross-site scripting (hosted and reflected),
SQL injection, privilege escalation (horizontal and vertical), faulty session man-
agement, forced browsing, and HTTP response splitting. [20]

To document a serious finding, here is an example of Boan being used to
detect privilege escalation via SQL injection on Altroro Mutual. Although this
finding is listed in Watchfire’s security report, the actual payload. On http:
//testfire.net/bank/login.aspx|you are prompted to log in with a username
and password.

26

http://demo.testfire.net/
http://demo.testfire.net/
http://demofire.000webhostapp.com/
http://demofire.000webhostapp.com/
http://blog.watchfire.com/files/demo.testfire.net-security-report-8.6.pdf
http://blog.watchfire.com/files/demo.testfire.net-security-report-8.6.pdf
http://testfire.net/bank/login.aspx
http://testfire.net/bank/login.aspx

x Boan

File Edit Help

[Running...]

Request

POST http://testfire.net/bank/login.aspx HTTP/1.1

Host: testfire.net

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:53.8) Gecko/20100101 Firefox/53.0
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,%/%;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 36

Referer: http://testfire.net/bank/login.aspx

Cookie: ASP.NET SessionId=f5iggrrwamiiomjjx32jch55; amSessionId=1119248536;
amlserInfo=UserName=YWRtaW4=&Password=JyBPUiAxPTETLSO=

DNT: 1

Connection: keep-alive

Upgrade-Insecure-Requests: 1

uid=admin&passw=" OR 1=1;--EbtnSubmit=Login

Forward

Because the username for the admin account is predictable, and there is
poor input validation on the SQL query— thus I am able to modify the SQL
statement to return with a positive username/password match.

27

Altoro Mutual: Online Banking Home - Mozilla Firefox

Altoro Mutual: Online Bar x

€ @ testfire.net/bank/main E1| @ ||Q search wBa ¥ # » =

Sign Off | Contact Us | Feedback | Sean:n

ooil> G

= MY ACCOUNT PERSONAL | SMALL BUSINESS ‘ INSIDE ALTORO MUTUAL

TWANT TO ...

= View Account Summary
» View Recent Transactions
» Transfer Funds Welcome to Altoro Mutual Online.

Hello Admin User

= Search News Articles
= Cusiomize Site Language View Account Details:

ADMINISTRATION

= View Application Values
= Edit Users

Privacy Policy | Security Statement | © 2017 Altoro Mutual, Inc.

The Altoro Mutual website is published by Watchfire, Inc. for the sole purpose of demonstrating the effectiveness of Watchfire products in detecting web application
vuinerabilities and website defects. This site is not a real banking site. Similarities, if any, to third party products and/or websites are purely coincidental. This site is provided

E "as is” without wamanty of any kind, either express or implied. Watchfire does not assume any risk in relation to your use of this website. For additional Terms of Use, please |
1 0o to http:/ivwww watchfire. com/statementsfterms. aspx. ;

E Copynight © 2017, Watchfire Corporation, All ights reserved.

The result is being able to log in as a bank administrator. The Watchfire
security report doesn’t mention remediation for this vulnerability but my rec-
ommendation would be to use parameterized queries.

Moving Forward

Boan was not always a MitM proxy. It started out as web crawler written in
C++/QT. Due to the learning curve of developing in C++ and working with
GUI frameworks, and also the fact I still had to learn about HT'TP implementa-
tion, I opted to move the code base to Python. Developing in Python was faster
for me and provided a lot of built-in libraries for things like socket connections
and compression. Developing Boan has been a learning experience in HTTP(S),
web security, and software development, but moving forward there are a couple
goals I would like to accomplish. For one, I would like to port the code back to
C+-+ for speed. Although the main bottleneck for a proxy is the internet connec-
tion speed, C++ would provide a speed up on the compression/decompression
and the encryption/decryption. Feature wise, the Python proxy module within
Boan actually supports more functionality than the GUI allows. Currently it
is possible to import the proxy module and override the request/response han-
dlers to script automated changes to web traffic; i.e implementing SSL split or
DNS redirection. The proxy module also allows for sending arbitrary requests

28

and viewing the responses. Moving forward I would like to incorporate these
into the GUI, as for actual security report generation the response would be
something you want to include in findings.

29

Examinations

Programming Languages

Out: Tue April 11 2017
Due: Tue April 18 by midnight

This is open take-home exam: books or web sources are OK as long as the
problem doesn’t set other constraints, you cite them explicitly, and that they
aren’t a drop-in solution to the problem. However, the more your answer is a
summary of someone else’s article, the less we will be impressed. Don’t ask other
people for help. Don’t just give a numerical result, give an explanation. Your
job is to convince us you understand this stuff.

So in terms of a grading rubric, what you should think about is

e technical merit - correctness & thoroughness of response
e clarity of expression (including docs & tests for code)

e demonstration of understanding (vs summarizing others work)

Be very explicit about which sources you used for each problem. As always
with my exams, if you think there’s a mistake in one of the questions or it
doesn’t make sense, you can (a) ask for clarification, and/or (b) make and state
an explicit interpretation and do the problem that way. (Again: the point is to
show your mastery, not to get the "right answer" per se.)

Good luck.

30

Paradigms Variables & Scope Functions Data Structure
imperative variable function data structure
functional type iterate array

object oriented immutable lambda list
global closure vector
scope callback link
name recursion collection
macro pass by reference hash
pointer pass by value
argument
side effect
stack overflow
dynamic
Object Oriented Syntax Multithreading | Compiler Design
static syntactic sugar concurrent lazy
object comment fork parse
overload thread lexical
namespace symbol
method compiled
throw interpreted
class link
inheritance bind
interface
exception
package

Software Design

pattern
test

31

Paradigms

Paradigms are the conceptual representation of data and execution in a pro-
gramming language. The three main abstractions are imperative, functional,
and object-oriented. We use them to classify programming languages although
most languages support more than one paradigm. (I provide an example of a
multi-paradigm language in question two by using Python to implement a pro-
gram using a functional, imperative, and object-oriented style).

The imperative paradigm is a style of programming wherein you describe how
to get what you want. An example imperative language would be C. Declara-
tive programming is similar in its procedural style, however the difference from
imperative is that you are describing what you want and not how to get it. An
example declarative language would be SQL. In SQL you write queries for what
you want without writing procedures for it. An example of me using imperative,
object-oriented, and declarative all together is the course scheduling web appli-
cation I wrote for Marlboro College’s registrar. I used objected oriented PHP
and declarative SQL in the back-end and javascript to produce a calendar front
end.

A prime example of a functional language would be either LISP or HASKELL.
In a pure functional programming language, a program’s execution is the evalua-
tions of expressions, whereas in imperative languages you are writing statements
which change a global state. Functional programming in essence is using func-
tions as the building blocks.

Object-oriented programming is a paradigm based on the notion of objects.
Objects have attributes (data) and methods (functions) and interact with one
another as the logic of the program. This paradigm focuses more on the repre-
sentation of data rather than procedural logic. Python, Java, C++, and PHP
are some of the most widely used languages that encourage this paradigm. C
does not have support for objects, and PHP only in the last couple of years
starting supporting it.

Compiler Design and syntax

The languages I will be talking about the mostly are Python, Javascript, PHP,
and C. The C language is considered statically typed, meaning the variable type
is known at compile time. The big advantage for statically typed languages is
that type checking can be done by the compiler, and therefore a lot of trivial
bugs are caught before execution. Dynamically typed languages like Python do
their type checking at run time. Although bugs may exist, development speed is
increased. The syntax of PHP and Javascript play off the popularity of C syntax.

32

Command lines end in semicolons, white space for the most part doesn’t matter,
and curly brackets are every where. Python is the language with synatic sugar
in mind. Python uses white space to encapsulate its functions and conditionals.
It uses more human readable keywords too like "not", "is in", "until".

Programming languages can be interpreted or compiled. Interpreted lan-
guages execute code directly usually composed of subroutines in machine code.
Compiled languages are converted into machine code or bytecode. The advan-
tage of interpreted languages is platform independence. Compiled languages like
C, although not platform independent, enjoy an increase in speed thanks to their
static type checking. Javascript, Python, and PHP are interpreted languages.
They are compiled into intermediate code for their respective JIT-compiler and
executed.

Multithreading

Multithreading is all about concurrent execution. A single CPU can execute a
process on each of its cores, speeding up a program utilizing this. When pro-
gramming concurrent processes, you will either be forking or threading. Forking
creates a child process that shares no memory with the parent. For a concrete
example of this please refer to my ptrace example in Modifying a Process on
Linux. In threading, a sibling is created that shares the same program data
but its own stack. For a concrete example of threading please refer to Boan:
an HTTP(S) MitM Proxy. Forking is more resource intensive than threading,
although a new process can run independently.

Variables & Scope

Variables are the symbolic references to some data in a computer program. The
name of the variable is that literal symbol. Languages usually have restrictions
on what characters or numbers can be in a name. For instance, valid variable
names in python must start with a letter or an underscore, then consist of letters,
numbers and underscores, and are case sensitive. Variables in PHP follow the
same rules except they must start with a $. A variable’s type is the classification
of its data. This type information tells the compiler or interpreter how the
program intends to treat the data. For example, some built-in types in Python
are: integer, boolean, float, bytes, and string. In C, there is no built-in string
type. Strings in C are represented as an array of chars. Some languages like C
or D require the type as part of the variables definition, whereas in PHP or
javascript the type is just optional.

Example variable declaration in Python:

33

"Hello"
=0
True

Y,

[~

Example variable declaration in C:

int d = 3, f = 5;
double z = 0x8;
char string[|] = "hello, world";

char x = 'x7;

In C, a variable must be defined before it is initialized. In contrast, Python
is interpreted so we can create variables on the fly with the only rule being
you cannot reference a variable that hasn’t been assigned a value. Variables can
be mutable or immutable, meaning they can be changed or remain a constant
state. Without specifying an int as const in C, it will by default be mutable. In
Python and Javascript, strings are immutable. Strings in PHP are mutable but
the common practice is to treat them as mutable.

Example of immutability in javascript:

var string = "I can not be changed";
var piece = statement.slice (2, 5);

The variable ’string’ still contains the same value even after the slice function
is invoked. If strings were mutable in javascript the string variable would now
have the value "I can be changed". Such is the case in languages like Ruby,
where strings are in fact mutable.

Variables associate a name to a value, whereas pointers store the location in
memory. Example pointer declaration in C:

int foo = 2;
int *foo ptr = &foo;

The variable foo ptr contains the memory address of foo. To access the value
of foo, we would have to deference the pointer. Python and other interpreted
languages abstract away from having to deal with pointers.

A scope in any programming is the region of the program where a variable
exists and its symbol is accessible. There are three places where variables can
be declared: 1. Local- inside a function. 2. Global- Outside of all functions. 3.

Formal- in the definition of function parameters.

Example of scope in C:

34

#include <stdio.h>

/* global wariable declaration */

int var = 1;

/* function scope x/
void printnum (int var) {
var = 3;
printf ("%i\n", var);

}

int main () {
printf ("%i\n", wvar); // global
int var = 2;
printf ("%i\n", wvar); // local
printnum (var); // function
printf ("%i\n", var); // proof

return 0;

The output of the above example would be 1, 2, 3, 3. Even though the variable
var uses the same name throughout the program, it exists in different scopes.
Some languages utilize a global keyword to use a global variable inside a func-
tions scope. PHP goes as far as to include a global associative array as part of
the language spec.

Example of global variables in PHP:

<?php
$a = 1;

function printnum (){
$a = 2;
echo $GLOBALS[’a’];
echo $a;

}

printnum () ;
7>

This program would output 1, 2 as it first prints the global $a and then prints
the local $a.

35

Functions

These are example function declarations in C, Python, and PHP, of a function
maxnum() which returns the greater value of two integers.

Function in C:

int maxnum(int numl, int num2) {
int result;

if (numl > num?2)

result = numl;
else
result = num2;

return result ;

Function in Python:

def maxnum(numl, num2):
return max(numl,num?2)

Function in PHP:

function maxnum($numl,$num?2) {
return max($numl,$num?2) ;
}

PHP shares some syntax with C in the curly brackets and semi-colons but
there is no need to declare argument type as with C. In a lot programming
languages there exists a special type of function lamba, an anonymous function
not bound to a symbol. C has no support for lambda and closures.

Example lambda in PHP:

$input = array (1, 2, 3, 4, 5);
$output = array filter($input, function (8v) { return $v > 2; });

Example lambda in Python:

>>> foo = [1, 2, 3, 4, 5
>>> filter (lambda x: x > 2, foo)
[3, 4, 5]

Another cool type of functions are closures. Closures attach data to code

36

therefore remembering values passed in by enclosing their scope. The use case
for closures include eliminating dependencies on constants and global variables.

Example closure in Python:

def say hi(msg):

def talk():
print ("Hello, "4msg)

return talk

hello = say hi("Dylan")
hello ()
hello ()

This program would say "Hello, Dylan" twice without having to pass in
"Dylan". A callback function is a type of closure. In the simplest terms, a
callback function is any function that is called by another function that takes
the first function as a parameter. A callback function is invoked after something
happens.

Example callback in javascript/jQuery

$("#btn_1").click (function () {
alert ("Btn 1 Clicked");

s

Here, once the selected DOM element is clicked, an anonymous function is
called. Even without a symbol, the function could still be examined via the
arguments object of the containing function. The main languages I've been dis-
cussing, PHP, javascript, Python and C all support recursive functions. In C, the
maximum recursion depth is the operating systems stack size (probably 1MB).
In Python and PHP you have environment variables that guard against this
impending stack overflow. In python you can not pass primitives by reference
as arguments. Python uses call by object reference.

Example:

def append one(li):
li.append (1

1 = [0]

append one(1)

print 1

1
)

def append one(li):

li = [0, 1]
1 = (0]
append one(1)
print 1

37

The reason the second append _one function doesn’t change 1, is because 1 points
to one array, but inside the function a new array is created and 1 still points to
the old one. Such is not the case in PHP or C.

Example in PHP:

function foo(&S$var){
$var+-+;
}

$a=5;
foo(%a);

In the above code snippet, the variable $a ends up as 6. Both PHP and C use
the ampersand to denote passing by reference.

Data Structure

Data structures are a way of organizing data to to be more useful. Structures
like hash tables, linked lists, stacks, and queues are usually created from smaller
language collections like arrays, structs, tuples, and lists. In python you have a
hefty amount of built in structures. Something that always threw me off coming
from C was Python’s use of the word dictionary. In other languages a "dictio-
nary" is is an associative array. You have an array of arrays, and you construct
that explicitly. In python, this dictionary is its own type.

Example dictionary in Python:

records = {
’Dylan’: [1,2,3],
‘Matt’: [2,3,4]
}

for student,grades in records.items():
print("{} — {}".format (student ,grades))

This iteration would produce:

Matt — [2, 3, 4]
Dylan — [1, 2, 3]

Achieving this same output with an associative array in PHP or C is more

38

complicated. We have to create an array of arrays, and iterate over them using
indices.

Example dictionary in PHP:

$records = array ("Dylan"=>array (1,2,3) ,"Matt"=>array (2,3,4));
print _r($records);

This would ouput:

Array

[Dylan] => Array

0] =1
[1] = 2
[2] = 3

)

[Matt] => Array

(

0] = 2
[1] = 3
[2] = 4

In C things get even more complicated. We have to make choices about string
size and use structs that pointer to one another. PHP and Python, although
using different collections, have built-in methods for appending and removing
elements of an array. In C, you would have to use malloc and remember to free
when done.

Object-oriented

Both Python and PHP support object oriented programming. In fact even the
variables are objects in these languages. C has no support for it at all. In my per-
sonal opinion, object-oriented programming is all about good exception handling
(C doesn’t even support exception handling). Beyond simple things like inher-
itance and class definitions, one feature of object-oriented programming that
differs wildly among languages is interfacing. An interface in object-oriented
programming is a method defined in some abstract class that requires children
to define it. For instance, a vehicle class would require a start engine method,
but the different car classes might implement the method differently. Python
doesn’t support interface per se, but you will see people doing something along
the lines of this:

39

Interface in python:

class vehicle(object):
def startengine(self):
raise NotImplementedError("This method is required")

In php you don’t need to use a work around because it supports interfacing with
its own template class type.

Interface in PHP:

interface vehicle{
public function startengine ($key);

class Car implements vehicle{
private $vars = array();

public function startengine (3key){
return;
}

Interfacing requires you to define a function, whereas overloading is the ability to
define methods with the same name and different arguments. There is no method
overloading in python however you can in C++ or Java. In PHP overloading
requires some hook trickery that I've never truly understood. Common practice
is to avoid it.

Question 2

Write six programs implementing solutions to the following two problems across
the three languages with different styles. (These may be the same three lan-
guages from question 1 but don’t need to be.)

In each case, include docs and tests appropriate to the style of that language,
including explicitly what version of what language you ran, in what environment,
what steps compiled and/or ran the code, and what the input and output looked
like.

Use these programs to illustrate some different currently popular program-
ming paradigms, as well as your mastery of the vernacular within these program-
ming language communities. Standard libraries and extensions are allowed, but

40

the more you can do yourself the better. As a post scipt, discuss which languages
you found well suited to which problem, and why. The two problems are:

A) fraction sum search

What permutation of the digits from 1 to 9 will add to 1 when arranged
in a form similar to 1/23 + 4/56 + 7/89 ? Find the answer with a brute force
search.

B) web crawler visualization

Write a program which will first build a network of URLs and the links
between them by starting at a given web page and following its links outwards,
and then generate a visual representation of that network.

All the details are up to you, including which page to start at, how far to
go, and how to display the result.

Fraction Sum Search

I have written 5 solutions to this problem in three languages. Inside the attached
code folder are the following programs:

File: fraction sum search.c

Language: C

Style: imperative

Running: Compile with gce and run. Tested on gee v6.3

$ gcc fraction_sum_search.c

$./a.out

Output:

5/34 + 7/68 + 9/12 = 1
5/34 + 9/12 + 7/68 = 1
7/68 + 5/34 + 9/12 = 1
7/68 + 9/12 + 5/34 = 1
9/12 + 5/34 + 7/68 = 1
9/12 + 7/68 + 5/34 = 1

Execution time: 0.016011 seconds

41

File: fraction _sum_search.js

Language: Javascript

Style: imperative

Running: Run with nodejs or include in an HTML page. I ran with nodejs
v4.7.2

$ nodejs fraction_ sum _search.js

Output

[57 37 47 77 67 87 97 17 2]
[5, 3, 4, 9,1, 2, 7, 6, 8 |
[77 67 87 57 37 47 97 17 2]
[7, 6, 8, 9, 1, 2, 5, 3, 4 |
[97 17 27 57 37 47 77 67 8]
[9,1, 2, 7,6, 8,5, 3, 4]
Execution time: 328ms

File: fraction sum_python imperative.py
Language: Python 3

Style: imperative

Running: Run with python3. I used python v3.5.3

$ python3 fraction sum search imperative.py

Output:

(5, 3, 4, 7, 6, 8, 9, 1, 2)

(5, 3, 4,9, 1, 2, 7,6, 8)

(7, 6, 8, 5, 3, 4, 9, 1, 2)

(7, 6, 8,9, 1, 2, 5, 3, 4)

(9, 1, 2,5, 3, 4,7, 6, 8)

(9, 1, 2, 7, 6, 8, 5, 3, 4)

Execution time 0.3413383960723877 seconds.

File: fraction sum python functional.py
Language: Python 3

Style: functional

Running: Run with python3. I used python v3.5.3

$ python3 fraction_sum_search_functional.py

Output:

42

(5, 3, 4, 7, 6, 8, 9, 1, 2),
(5, 3, 4,9, 1,2, 7,6, 8),
(7, 6, 8, 5, 3, 4, 9, 1, 2),
(7, 6, 8,9, 1, 2, 5, 3, 4),
(97 17 27 57 37 47 77 67 8)7
(9, 1, 2, 7, 6, 8, 5, 3, 4)]
Execution time: 0.36745166778564453

File: fraction sum_python OOP.py

Language: Python 3

Style: Object-oriented

Running: Run with python3. I used python v3.5.3

$ python3 fraction sum_ search OOP.py

Output:

[(5,
(57
(77
(77
(97 b
(9, 1,
Execution time

))
))
))
))

37 17
37 67
67 17
6, 3,
1 6

))

) k)) 37]
0.38771629333496094 seconds.

8, 9
2, 7
4,9
2, 5
4, 7,6,
8, 5

~N Ut © Ut O
D W WO
= 00 i N 00 N
—

Web Crawler Visualization

File: network grpahy.py

Language: Python 3

Style: imperative

Usage: A valid website address, hostname, is the only required command line
argument to the program. There is an optional flag parameter -n, which is the
number of urls to process from the built up queue of URLs.

$ python3 network graph.py —h
usage: network graph.py [—h]| [—-n N| hostname

Network Graph

positional
hostname

arguments:
The website URL from which to spidering.

optional arguments:
—h, —help show this help message and exit
—n N Number of urls to parse from the queue

43

Running: Run with python3. I used python v3.5.3

python3 network graph.py http://cs.marlboro.edu/ —n 20

Output:

Visiting #19: http://www.marlboro.edu/

Urls 295 found. The queue is now: 40

Visiting #18: http://cs.marlboro.edu/

Urls 41 found. The queue is now: 329

Visiting #17: http://cs.marlboro.edu/courses/spring2017/

Urls 34 found. The queue is now: 367

Visiting #16: http://cs.marlboro.edu/courses/spring2017/algorithms/
home

Urls 20 found. The queue is now: 398

Visiting #15: http://cs.marlboro.edu/courses/spring2017/info /home

Urls 19 found. The queue is now: 412

Visiting #14: http://cs.marlboro.edu/courses/spring2017/3d/home

Urls 18 found. The queue is now: 425

[

The program produces a dot file named "network graph.dot" in the current
working directory. This dot file can be compiled into an image format with
graphviz like such:

$ dot network graph.dot —Tpdf —o graph.pdf

Sample output for different number of URLS processed:

44

nook.marlboro.edu

www.marlboro.edu

cs.marlboro.edu

Figure 1: -n 30

<

L www.marlboro.edu g

~C_ nook.marlboro.edu

Figure 2: -n 300

45

Figure 3: -n 1000

Notes

The brute force solutions to the fraction sum problem are pretty straightfor-
ward. Even though execution time isn’t the best measure of what’s going on,
C and its compiled nature runs faster than Javascript and Python. There are
two approaches to making an object oriented solution for the fraction sum prob-
lem: one, each permutation is it’s own permutation or fraction class and those
objects are then checked and two, a single a ’permutation generator’ object is
created and passed data. I chose the later for my object-oriented approach— it
is essentially a wrapper class to Python’s built in itertools permutation class.
For all the python solutions I used a default library to generate permutations.
In Javascript and C I generated the permutations myself. I believe the better
paradigm here is functional or imperative depending on which you work faster
in. The fraction problem does not lend itself to an object-oriented solution be-
cause that adds a lot of bloat memory and execution on top of a brute force
method. In brute-force the name of the game is speed and memory management.

For the web crawler problem I went the route of creating one program that
works better than three that are less featured given my time frame. When
implementing HTTP and parsing HTML there is a lot to think about. First, you
need to make requests and receive responses. This was made easier in Python
with some built-in networking classes but in languages like C, you'd have to
deal with buffering and TCP connections all on your own. Once you have a
HTTP response parsing it for more links is a game of trade-offs. You can use
regular expressions but that doesn’t follow redirects, or javascript /vbscript code,
or submit forms to potential new pages. Rendering the page and submitting
forms, or processing javascript and faking clicks takes time but is ultimately a
more complete a web crawl. HTTP responses can be compressed (in a number
of different formats) or sent streamed (chunked) so you have to parse headers
and have solutions for all of that. There might be file formats such as pdfs
and images you don’t want to download when crawling so you have to worry
about black-listing or white-listing extensions. Because the question is pretty

46

open ended in what kind of graph to show with the collected data I chose to
display a graph only of websites that link to one another. If a website A links
to a website B, but B does not link to A, than that connection is not included
in my graph.

Question 3

Discuss the strengths and weaknesses of these programming languages as you
see them. Feel free to discuss a few other languages that you're familiar with as
well. What sorts of problems or situations are good fits to these languages, and
why? Which do you personally like, and why? Be specific, giving examples that
justify your comparisons and conclusions. (This may well cover some ground
you’ve already discussed in the previous two problems. If so, you don’t have to
repeat any of that, just refer back to it and bring up anything that you feel
hasn’t yet been brought forward.)

I subscribe to the notion that programming is 90% decision and 10% typing.
There is a right tool for the job, and languages usually have an area they shine
in. Every problem I'm trying to solve and each piece of software I code is a battle
between efficiency and development time. Is learning GO to code a bleeding-
edge web server worth the time? Is programming it in Python worth the loss in
efficiency?

That being said I do have a favorite programming language: C. Further-
more, I prefer to code imperatively. I believe learning C makes you a better
programmer in other languages. C is very minimal and close to computer archi-
tecture. There is no garbage collection and you have to worry about memory
management yourself. The advantage to knowing C is that you have a very
good idea of how a computer works. Not just how your programming executes,
but how memory is laid out. The only level below C is the assembly spoken
by a specific CPU. Although coding in assembly might provide an ounce of
speedup, development would be slow. Even developing in C can be tiresome.
When I am prototyping applications it is much faster for me to develop in an
interpreted language like Python with dynamic typing. Such is the case with my
Plan project. I started by using C++ but the learning curve was steeper than
time allowed so I switched to Python— which beside being faster to develop in,
has a bunch of useful built-in libraries that helped me out. I believe the speedup
in development was more beneficial than an enterprise speed application.

I believe the superiority battle between imperative and functional program

is simply answered by which one you develop in faster. Although learning both
will help you become a better programmer and problem solver. Object-oriented

47

programming should be reserved for certain problems that lend themselves to
that abstraction, such as: video games, web applications, and GUI development.
Applications where you are interacting with "things". I do believe it is easier to
write OOP MVC where a web page is a page object, than to code imperatively
some event driven web server. OOP in my opinion is also more maintainable
and easier to add features in. However, there is a reason neural net research is
not done representing matrices as objects: it adds too much memory use and
execution time. This is where statically compiled languages like C shine, and
why you see tools like Cpython trying to compile python into C.

Python, javascript and PHP are all powerful languages. Javascript has grown
from this cute scripting language to a back-end technology. I think its powerful
for students because you can use it in a multitude of situations for web de-
velopment. You can replace the whole linux-apache-mysql-php stack with just
javascript now. That being said javascript/node has limitations in speed, like
still being able to only utilize a single core of a web server. PHP has a special
place in my heart as the first language I learned. It is ubiquitous on the web
but I have my gripes with it. For one, it is sort of scattered brained. PHP is
one of those languages people added to with a 'wouldn’t it be cool if” mentality.
Therefore things like functions don’t follow a standard pattern— like which comes
first the needle or haystack in a search function. There are about 1000 different
ways to do the same thing in PHP which take it as you will, I'm not a fan of.
Pythons main benefit in my mind is its readability. Although it is a personal
preference, I find Python to be the cleanest language I've used. It is definitely
more ubiquitous than javascript too. Besides being on computers and servers,
Python is the poster child for the Internet of things. The major con to python
for me is speed. Without using some sort of py to ¢ third party tool, python
is almost never the fastest solution. With that being said, Python is definitely
easier to implement and prototype algorithms in than C. Although C is faster,
Pythons built-in data structures and libraries of science related functions allow
for rapid development.

Besides the execution times of my fraction sum solutions, a favorite lan-
guage benchmark of mine to share is Gregory Hildstrom’s done in 2015.[9] The
test program he came up with dynamically allocates some heap memory once,
initializes an array/vector, and then performs many 32-bit integer and 64-bit
floating point calculations using that array. The algorithm does not calculate
anything useful and it does not measure the performance of any single opera-
tion. It is just a low-level workload that was easy to port to various languages.
For the intended number of calculations, a program in C ran in 206.1 seconds. A
program in Cpython (python compiled to C) ran in 382.4 seconds. That’s close
to regular C, but regular interpreted Python took 24970 seconds. PHP beat out
Python but not by anything to write home about at 19195 seconds. Javascript
was surpisngly to me, the fastest of the interpreted languages at 1678.6 seconds.

48

Algorithms

out: Sun April 23 2017, due: Sun April 30 by midnight

This is open take-home exam: books or web sources are OK as long as the
problem doesn’t set other constraints, you cite them explicitly, and that they
aren’t a drop-in solution to the problem. However, the more your answer is a
summary of someone else’s article, the less we will be impressed. Don’t ask other
people for help. Don’t just give a numerical result, give an explanation. Your
job is to convince us you understand this stuff.

So in terms of a grading rubric, what you should think about is

e technical merit - correctness & thoroughness of response
e clarity of expression (including docs & tests for code)

e demonstration of understanding (vs summarizing others work)

Be very explicit about which sources you used for each problem. As always
with my exams, if you think there’s a mistake in one of the questions or it
doesn’t make sense, you can (a) ask for clarification, and/or (b) make and state
an explicit interpretation and do the problem that way. (Again: the point is to
show your mastery, not to get the "right answer" per se.)

Good luck.

Question 1

Explain, implement, explore numerically the O() behavior either Prim’s or
Kruskal’s algorithm, which find the minimum spanning tree of a weighted graph.

The core of this work should be a numerical experiment in which you ran-
domly generate graphs of different sizes, find either the time or number of steps
the algorithm takes, use those to create plots of its behavior, and compare the

shape of the plot with the expected result.

As usual with my assignments, your code should be clearly documented with
explicit tests.

Be clear that you should choose one of these to do, not both.

49

Prim’s Algorithm

Prim’s is a greedy algorithm that finds a minimum spanning tree (MST) for a
weighted undirected graph.[8] The MST is a subset of the graph that contains
all the vertices without cycle with the least amount of edge weight. Frequently
MST algorithms are used in random graph generation, however, I will be using
the networkx library— installed by default in the Anaconda suite.[10]

Prims works as follows:

Start at an arbitrary vertex and add it to a list of visited vertices (which
just contains this root one for now) Find the least costly edge from a vertice
in the visited list to a vertice that hasn’t been visited Add the vertice that you
just visited to your list of visited and repeat until all vertices are marked visited

There are of course many different data strucures to represent the graph
and implement the algorithm, and they effect the run-time complexity. I've
chosen to represent my graph as an adjacency matrix— purely because of personal
preference. Adjacency matrices use O(n*n) memory. They have constant look-up
time to check for the presence or absence of a specific edge, but are slow to iterate
over all edges. Adjacency lists on the other hand, use memory in proportion to
the number edges, which might save a lot of memory if the adjacency matrix is
sparse.

Some library inclusion
import random
import networkx as nx # for random graph generation

Below is my graph generation function. Another reason I chose to represent
the graph as adjacency matrix was so that I wasn’t replying on networkx’s class
methods for retrieve edges or finding neighbor vertices. I wanted the algorithm
part to be all my own code.

def gen graph(n,p=1):
mninn
n = The number of nodes.
p = Probability for edge creation.

Returns an adjacency matric representation of a random
undirected graph weighted.
mnimnn
G = nx.fast gnp random graph(n,1)
for (u, v) in G.edges():

G.edge[u][v][weight’] = random.randint (0,10)
return nx.adjacency matrix(G).todense ()

G = gen graph(4)
print (G)

50

Output:

el
O O+
SO w
ceow

Following is my Prim’s Algorithm implementation. Some implementations
use a priority queue or two lists to manage nodes visited and not reached— I am
using one list to mark nodes as seen or unseen (False or True). The lookup if a
node has been reached is done in constant time: unreached[node]. While there
are still unreached nodes, I find an edge from a visited node to one that has not
been seen with the lowest cost. The MST ouputted is a graph in edge list form.
The edges have the structure (nodel,node2,weight).

def prim(G,start=0):

unreached = [[True]|*len(G)
unreached [start| = False
MST = []

while any(unreached):

e = min([(x,y,G[(x,y)]) for x in range(len(unreached)) for
y in range(len(unreached)) if not unreached|[x] and unreached|y
|1, key=lambda x: x[2])

unreached |[e[1]] = False

MST. append (e)
return MST

print (prim(G))

Output:

[(0, 1, 1), (1, 3, 0), (0, 2, 5)]

To visualize an MST I am using my code on a previously generated graph.
The starting graph:

o1

G = nx.adjacency matrix(nx.convert.from dict of dicts({0: {1: {’
weight’: 5}, 2: {’weight’: 7}, 3: {’weight’: 0}}, 1: {0: {~
weight’: 5}, 2: {’weight’: 2}, 3: {’weight’: 8}}, 2: {0: {’
weight’: 7}, 1: {’weight’: 2}, 3: {’weight’: 4}}, 3: {0: {’
weight’: 0}, 1: {’weight’: 8}, 2: {’weight’: 4}}, 4: {1: {’
weight’: 0}, 2: {’weight’: 8}, 3: {’weight’: 5}, 0: {’weight’:

7}}})) . todense ()
print ("This is the adjacency matrix\n")
print (G)
print ("\nThis is MST edge list (Node,Node,Weight)\n")
print (prim (G))

Output:

This is the adjacency matrix

[[0 570 7]
[5 028 0]
[7 204 8]
[0 8 40 5]
[7 08 5 0]]

This is MST edge list (Node,Node, Weight)

The produced MST:

33

The expected time complexity of my implementation is O(V2) using the
adjacency matrix. An improvement could be made by using a priority heap to
store all edges of the input graph, ordered by their weight. That would lead to
an O(E*log(E)) worst-case running time.[1]

This will take about two minutes on a j—core processor
from matplotlib import pyplot
import timeit, functools

x,y = (1,11
for n in range(20,420,20):
x.append (n)
G = gen_graph(n)
t = timeit.Timer(functools. partial (prim, G))
y.append (t.timeit (1))
pyplot. title (’Time Complexity of Prim\’s Algorithm)
l1=pyplot.plot(x, y, ’o—’, label="Prim(g)’)
avg = sum([y[i]/x[i] for i in range(len(x))]|)/len(x)

12=pyplot.plot(x, [(avg*v)**x2 for v in x|, ’o—’, label="Apprx O(V

94

Time {Seconds)

"2)7)

pyplot.legend ()
pyplot.ylabel (’Time (Seconds)’)
pyplot.xlabel (’ Vertices’)

pyplot . xticks (range(40,440,40))
pyplot . xticks (range(40,440,40))

pyplot .show ()

Output:

Time Complexity of Prim’s Algorithm

- Frimi{g)
& Apprx O(V"2)

'_I
i

5 K

==}
i

))))))) 1
40 g0 120 160 200 240 280 320 360 400
Vertices

Question 2

Illustrate a depth-first and breadth-first tree search, preferably using a stack
and queue, using the tree of possible moves in a triangular peg solitaire game
as the tree.

The game I have in mind starts with this configuration;

%)

where each * is a peg in a hole, and the . is an empty hole. The goal is to
remove pegs by jumping as in checkers, leaving one peg in the center as the final
position.

Switching from a breadth-first search (BFS) to a depth-first search (DFS) is
as simple as switching from a queue to stack. In a BFS, from the root node you
add children to a queue. Those children are then visited at that depth and the
process repeated for their children at another depth. If you switch to a stack
you now have a DFS. You will search down an entire branch(s) before reaching
a second child from the root. Arguably the hard part of this problem is the
generation of the tree and representation of the game. I've chose to represent it
in a pseudo matrix form, where each hole is a coordinate:

This would make the corners points (0,0),(4,0) and (0,4). The center is (1,2).
Pegs are represented as astriks and holes are periods.

problem board = [[’%7, =«

[
[

— %
3k
o

|

I’
*

*

[

)

)

)
v,

Below are some utility functions for things like making moves, displaying the
board, finding neighbors, and determining if a point is a peg or hole.

import copy

def print board(board):

nnn

board = Array or arrays representing board.

Given a board as

[[7*}’}*”}*7,?*7, 7* 7]}[7*}’}*7,}*7, 7* 7])[7*”’*?”* 7/, [
)*’)}* ’]7[" }/]I

it pretty prints the board:

* K %k K K

* kK ok

96

def

def

def

* %

nnn

i=0

for row in board:
print ("{}{}".format(" "xi,’ ’.join(row)))
i+=1

neighbors (p):

nnn

p = A point in tuple form (z,y)
Returns a list of points surrounding it.

>>>neighbors ((1,2))

49%; 2), (0, 2), (0, 3), (1, 3), (1, 1), (2, 1)]

x = pl0]

y = p[1]

return list (filter (lambda c: c[0] >= 0 and c¢[0] <= 4—c[1] and ¢
[1] >= 0 and c[1] < 5, [(x+1,y),(x=1,y),(x=Ly+1),(x,y+1),(x,y
_1)»(X+1)y_1)]))

ispeg (p,b):

nunn

p = point (z,y)

b = board in the form

[[7*777*)’7*7,7*7’7* 7]}[’*77’*7,7*7’7* 7],[7*?’7*77}* 7]’ [

CRI N)
2 J

Returns true if the point is a ’x’ peg
mnimnn
return [(x,y) for x,y in filter (lambda c: b[c[1]][c[0]] = %,

p)l

valid _moves(b):
mnimnn

b = board in the form
[/7*)”*7)*7 }*7, 7* ’]7/7*}’)*7’}*7,7* ’]’/7*)77*}’)* 7], [

2 K
WL)

Returns a list of wvalid moves on the board. Moves are in the
tuple form (peg to move, peg to remove, peg to land on)
where each of those is points in tuple form ((z,y),(zl,yl),(z2,

y2))

>>>valid_moves(board in the form

/[7*)77*}’)*7’}*7, 7* ’]7[!*)’)*}’)*7,7* ’]’/’*)71*}’)*}], [
L))

[[(07 2)7 (0’ 3)? (07 4)/’ /(2’ 2)? (17 3)7 (07 4)//

mnimn
moves =]
for y in range(len(b)):
for x in range(len(b[y])):
if bly][x] = "%
continue

57

def

def

def

p = (x,y)
n = neighbors(p)
pn = ispeg(n,b)
for m in pn:

nx = 0

ny = 0

if m[0]==p[0]:
nx=m]|0]

if m[0] < p[O]:
nx=m|[0] —1

if m[0] > p[O]:
nx=m[0]+1

if m[l]==p[1]:
ny=m|1]

if m[1] < p[1]:
ny=m[1]—1

if m[1] > p[1]:
ny=m|[1]|+1

if (nx < 0 or ny < 0) or ((nx,ny) not in neighbors(
m)) or b[ny|[nx] = ’x’:
continue

moves . append ([p,m, (nx,ny)])
return moves

move (m, b) :
mnimnn

m = Move to be made in the form ((z,y),(z1,y1),(z2,y2))
b = board

Returns a new board instance with the move made.

nb = copy.deepcopy (b)
nb[m[0][1]][m[O][O0]] = .~
0]]
0]]

nbm[1][1]][m[1]][
nb[m[2][1]][m[2]]
return nb

[
% -

pegcount (b):

mnimnn

b = board

Returns the number of pegs on the board.
mnimnn
return sum(x.count("+") for x in b)

gen tree(b):

mnimnn

b = Board

Returns a reference to a root node of a tree of all possible
moves .

98

Nodes are in dict form:
Node {
board:b
valid_moves :[]
children :[]

Children of a node are references to nodes with the parent
moves made on their board and so on.

mnimnn

n={"board" :b}

n["valid _moves"| = valid moves(n|["board"])

n|["children"| = []

for m in n["valid moves"]:
child = gen tree(move(m,b))
child ["move"] = [m]
n|["children"]. append(child)

return n

Generating the tree takes up most of the time — I average around 55 seconds.
This is mainly due to me copying the board every move.

import time

s = time.time ()
root = gen tree(problem board)
gentime = time.time()—s

print ("It took {} seconds to generate the tree of moves".format(
gentime))

Output:

It took 58.63520812988281 seconds to generate the tree of moves

Here is my depth-first search. Without a specific goal in mind, my search
returns a dictionary containing a lot of information found along the way. I keep
track of end games found, the moves to reach them, and also tally them based
on the number of pegs left.

def dfs(root):

stack = root["children"|
results = {"info":{}}
paths = {}

while stack:
node = stack .pop ()

children = node|["children"|
for ¢ in children:

99

c¢|["move"|]= node|"move"|+c["move"|

if not children:
¢ = pegcount(node| ’board’])
if ¢ not in results["info"]:
results ["info"|[c] = 0
paths[c] — []
results ["info"|[c] +=1
paths|[c].append(node|"move"|)

stack.extend (children)

results ["paths’| = paths
return results

My breadth-first search is the same code with the stack exchanged for a
queue. I'm using python’s collection library because a default list’s method of
pop(0) is not as efficient as deque’s popleft().

from collections import deque

def bfs(root):

queue = deque(root|["children"])
results = {"info":{}}
paths = {}

while queue:
node = queue.popleft ()

children = node["children"]
for ¢ in children:
c¢["move"]= node["move"|+c["move"|

if not children:
c pegcount (node| >board ’])
if ¢ not in results["info"]:
results ["info"|[c] = 0
paths[c] = []
results ["info"|[c]| +=1
paths|[c].append(node|"move"|)

queue . extend (children)

results ["paths’| = paths
return results

Running the BFS:

BFS
import time

S time . time ()
root = gen tree(problem board)

60

gentime = time.time ()—s

s2 = time.time ()

results = dfs(root)

dfstime = time.time()—s2

print ("Tree generation took {} seconds.".format(gentime))

print ("The BFS took {} seconds.".format(dfstime))

print ("\nPegs\t\tNumber")
print (" Remaining\t of Games")

print (" ")

for p,n in sorted(results|["info"].items()):
print ("{}\t\t{}".format(p,n))

print(" n

print ("Total: \t\t{}".format(sum(results|["info"].values())))

Output:

Tree generation took 55.356807231903076 seconds.
The BFS took 3.0062286853790283 seconds.

Pegs Number

Remaining of Games
1 29760
2 139614
3 259578
4 123664
5 14844
6 844
7 324
8 2
Total: 568630
Running the DFS:
4 DFS
import time
s = time.time ()
root = gen_ tree(problem board)
gentime = time.time ()—s
s2 = time.time ()
results = bfs(root)
bfstime = time.time ()—s2
print ("Tree generation took {} seconds.".format(gentime))

print ("The BFS took {} seconds.".format(bfstime))

print ("\nPegs\t\tNumber")
print (" Remaining\t of Games")

61

print ("

for p,n in sorted(results["info"].items()):
print ("{}\t\t{}".format(p,n))
print (" "

print ("Total: \t\t{}".format(sum(results|["info"].values())))

Output:

Tree generation took 62.894432067871094 seconds.
The BFS took 2.132901668548584 seconds.

Pegs Number
Remaining of Games

29760
139614
259578
123664
14844
844
324

2

0O Utk WN

Total: 568630

The time complexity of my queue implementaion is O(V+E) as the total
time spent looking in the adjacency list is E (the number of edges) and all of
V (vertices) are added to the queue in constant time. This is the same big O
behavior for the DFS. Push and pop on the stack are constant so there is V
nodes added, and E edges are visited. In my implementation both algorithms
run about the same pace.

Interestingly, in all the games with 1 peg left not a single one ends with it
in the center of the board (point (1,2)). My results are in agreement with Keith
Wannamaker’s results— he is a software engineer who published a paper on the
number of games and various endings starting from different positions.[12]

for path in results|["paths"|[1]:
if path[—1][-1] = (1,2):
print (path)
No games end in the center

Also in my returned results are the games themselves. Attached is results.txt
which contain all 29760 games ending in one peg. Below is an example game of
a random 1 peg solution.

b = problem board
print (" Starting position")

print _board (b)

for m in results|["paths"][1][0]:

62

b = move(m,b)
print ("Move {} to {} and remove {}".format(m[0],m[2] ,m[1]))
print board (b)

Output:

Starting position
* ok k% x
x ok %k %

Move (2, 2) to (0, 4) and remove (1, 3)

Move (0, 2) to (2, 2) and remove (1, 2)

Move (0, 4) to (0, 2) and remove (0, 3)

Move (3, 1) to (1, 3) and remove (2, 2)

Move (0, 1) to (0, 3) and remove (0, 2)

Move (3, 0) to (1, 2) and remove (2, 1)

Move (2, 0) to (0, 2) and remove (1, 1)

Move (1, 3) to (1, 1) and remove (1, 2)

63

Move (0, 3) to (0, 1) and remove (0, 2)
Move (0, 0) to (0, 2) and remove (0, 1)

Move (0, 2) to (2, 0) and remove (1, 1)

* kL %

Move (1, 0) to (3, 0) and remove (2, 0)

* ok

Move (4, 0) to (2, 0) and remove (3, 0)

More interesting I find is the worst-case senario from the starting position.
There are only two "solutions" that end with 8 pegs and end in the same posi-
tion. For example:

b = problem board

print ("Starting position")

print board(b)

for m in results|["paths"][8][0]:
b = move(m,b)
print ("Move {} to {} and remove {}".format(m[0],m[2] ,m[1]))
print_board (b)

Output:

Starting position
ok x kK ok
ok k%

64

Move (0, 2) to (0, 4) and remove (0, 3)

Move (2, 0) to (0, 2) and remove (1, 1)

Move (3, 1) to (1, 1) and remove (2, 1)

Move (0, 1) to (2, 1) and remove (1, 1)

Move (2, 2) to (2, 0) and remove (2, 1)

Move (0, 4) to (2, 2) and remove (1, 3)

Question 3

The task of finding a given string from a collection of strings can be solved by
algorithms that fit into several paradigms, including brute force and (if the list
is sorted) divide-and-conquer.

e Given an example of an algorithm that fits each of these descriptions, and
describe their O() behavior.

e Can you come up with a third algorithm design technique that can be
applied to this problem, a representative algorithm, and its O() behavior?

65

(You don’t need to code these - just discuss what’s going on.)

In string matching the most basic approach is bruteforcing— a variation on
sequential searching. With N being the search space or collection of strings, and
M being pattern to look for, bruteforcing works as follows:

For each character in N, compare it to the first character of M. If they don’t
match, you move forward a character in N. If the two characters match, then
continue matching the next character of N and M. You continue this search
pattern until you find M within N or not at all.

Bruteforcing is quite slow, and the time complexity is O(N*M) as you com-
pare each element of N against M. One way to improve runtime might be pre-
processing the list to be sorted in some desired way.|[11]

If the search space is already sorted, a binary search would be an optimal
divide-and-conquer algorithm. Given a sorted search space N, a binary search
first compares the middle element of N with search pattern M. If the pattern
matches the middle element, its position is returned. If the pattern is less than
the middle value, the process is repeated on the lower half of the search space
until found. If the pattern is greater than the middle value, the process is re-
peated on the upper half. Since each comparison in the binary search halves
the search space, it is easy to assert that the time complexity is a logarithm:
O(log(N)). 13]

Greedy algorithms are another paradigm of pattern matching algorithms.
An algorithm behind some of the fastest search algorithms out there is the
Boyer-Moore algorithm. In the vanilla Boyer-Moore algorithm you search for
occurrences of the pattern M in the set N by performing explicit character com-
parisons at different alignments. Unlike in bruteforcing, you skip as many align-
ments as possible using heuristic information from pre-processing the set. The
shifts are calculated on two rules: the good-suffix shift and the bad-character
shift. Pre-processing the set takes O(N) time but the searching happens in
O(N*M). I've included the Boyer-Moore algorithm in the greedy algorithm cate-
gory but it sort of lives in limbo between greedy and bruteforce. It uses heuristic
information like a greedy algorithm, but pure greedy algorithms usually return
a sub-optimal solution. [15][16]

Question 4

You're given a list of N names and told that you’ll need to search the list for a
given name M times. The following are suggested:

66

e using a hash table
e using a heap
e sequential search

e sorting followed by binary search

Discuss the time efficiency of these approaches as the size of N and M vary.
Which one would you suggest and why? Would your answer change if you needed
to change the list of names by adding and deleting names (say, P times) between
searches?

A hash table would be the best solution— even more so if you wanted to
add or delete names. Search, insertion, and deletion operatons all happen in
constant time. The only constraint would be picking a good hash function that
provides a uniform distribution of hashes. The less uniform it is, the more you
need to compensate for collisions with execution time.

Sorting the array and using a binary search would leave you with a binary
tree as search, insertion, and deletion operatons would happen in O(log(N))
time. Although a hastable is a faster implementation for the problem at hand,
it fails for relative searchs— things like the "next smallest" or "one greater than".
The binary search tree would provide this relation-type information.

My second choice would be a heap. The structure is tree-like similar to
binary search tree except nodes must be ordered either greatest to least or least
to greatest. Insertion and deletion happens in O(long(N)) but finding the min
or max would be constant time. Again, this is not relavant to the problem but
is a benefit over the binary search tree.

A sequential search (as talked about in question 3) would be my last resot
option. Insertion, deletion, and search would all be O(N).

67

References

1]

2]

3]

4]

[5]

[6]

7]

18]

19]

OS Platform Statistics. (n.d.). Retrieved April 29, 2017, from https://www.
w3schools. com/browsers/browsers_os.asp

DLL injection. (2017, April 20). In Wikipedia, The Free Encyclopedia. Re-
trieved April 29, 2017, from https://en.wikipedia.org/w/index.php?
title=DLL_injection&oldid=776305093

Shared Libraries, TLDP, Retrieved April 29, 2017, from [t1dp.org/HOWTO/
Program-Library-HOWTO/shared-1libraries.htmll

Sourceware. (n.d.). Summary of GDB. Retrieved April 29, 2017, from https:
//sourceware.org/gdb/onlinedocs/gdb/Summary.html

H., W. (n.d.). Intel 80x86 Assembly Language OpCodes. Retrieved April 29,
2017, from http://wuw.mathemainzel.info/files/x86asmref .html

Padala, P. (n.d.). Playing with ptrace, Part I. Retrieved April 29, 2017, from
http://www.linuxjournal.com/article/6100

Mips42. (n.d.). Mips42. Retrieved April 30, 2017, fromhttp://mips4?2.
altervista.org/ptrace.php

Prim’s algorithm. (2017, March 21). In Wikipedia, The Free Encyclope-
dia. Retrieved May, 2017, from https://en.wikipedia.org/w/index.php?
title=Primj}27s_algorithm&oldid=771475622

Hildstrom, G. (n.d.). Programming Language Performance Comparison.
Retrieved May, 2017, from http://hildstrom.com/projects/langcomp/
index.html

[10] Anaconda package list. (n.d.). Retrieved May, 2017, from https://docs.

continuum.io/anaconda/pkg-docs

[11] Stoimen, C. (2012, March 12). Computer Algorithms: Brute Force String

Matching. Retrieved May, 2017, from http://www.stoimen.com/blog/
2012/03/27/computer-algorithms-brute-force-string-matching/

68

https://www.w3schools.com/browsers/browsers_os.asp
https://www.w3schools.com/browsers/browsers_os.asp
https://en.wikipedia.org/w/index.php?title=DLL_injection&oldid=776305093
https://en.wikipedia.org/w/index.php?title=DLL_injection&oldid=776305093
tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://sourceware.org/gdb/onlinedocs/gdb/Summary.html
https://sourceware.org/gdb/onlinedocs/gdb/Summary.html
http://www.mathemainzel.info/files/x86asmref.html
http://www.linuxjournal.com/article/6100
from http://mips42.altervista.org/ptrace.php
from http://mips42.altervista.org/ptrace.php
https://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm&oldid=771475622
https://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm&oldid=771475622
http://hildstrom.com/projects/langcomp/index.html
http://hildstrom.com/projects/langcomp/index.html
https://docs.continuum.io/anaconda/pkg-docs
https://docs.continuum.io/anaconda/pkg-docs
http://www.stoimen.com/blog/2012/03/27/computer-algorithms-brute-force-string-matching/
http://www.stoimen.com/blog/2012/03/27/computer-algorithms-brute-force-string-matching/

[12] Wannamaker, K. (2016, January). The Cracker Barrel Peg Game. Retrieved
from http://wannamaker.org/math/TheCrackerBarrelPegGame . pdf

[13] Binary search algorithm. (2017, April 27). In Wikipedia, The Free Ency-
clopedia. Retrieved 08:41, May 1, 2017, from https://en.wikipedia.org/
w/index.php?title=Binary_search_algorithm&oldid=777552439

[14] Linux Journal. (n.d.). Retrieved April 30, 2017, from http://man7.org/
linux/man-pages/man2/ptrace.2.html

[15] Boyer-Moore string search algorithm. (2017, January 15). In
Wikipedia, The Free Encyclopedia. Retrieved 08:44, May 1, 2017,
from https://en.wikipedia.org/w/index.php?title=Boyer/E2/80%
93Moore_string_search_algorithm

[16] Lecroq, T. (n.d.). Boyer-Moore Algorithm. Retrieved May, 2017, from
http://wuw-igm.univ-mlv.fr/~lecroq/string/nodel4.html

[17] Bellevue Linux. (2006, April 26). System Call Definition. Retrieved April
30, 2017, from http://www.linfo.org/system_call.html

[18] TLDP. (n.d.). A Kernel Module. Retrieved April 30, 2017, from http:
//www.tldp.org/LDP/1lkmpg/2.6/html/x40.html

[19] The art of Memory Forensics Detecting Malware and Threats in Windows,
Linux, and Mac Memory. (2014). Indianapolis, IN: John Wiley & Sons, Inc.

[20] Watchfire. (n.d.). Retrieved April 30, 2017, from http://testfire.net/

69

http://wannamaker.org/math/TheCrackerBarrelPegGame.pdf
https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=777552439
https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=777552439
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://en.wikipedia.org/w/index.php?title=Boyer%E2%80%93Moore_string_search_algorithm
https://en.wikipedia.org/w/index.php?title=Boyer%E2%80%93Moore_string_search_algorithm
http://www-igm.univ-mlv.fr/~lecroq/string/node14.html
http://www.linfo.org/system_call.html
http://www.tldp.org/LDP/lkmpg/2.6/html/x40.html
http://www.tldp.org/LDP/lkmpg/2.6/html/x40.html
http://testfire.net/

Appendices

70

ctf.c

#define _GNU_SOURCE
#include <stdio.h>

#include <stdlib .h>
#include <sys/uio.h>

#define FLAG OFFSET 0x201014
int main(int argc, char const xargv|[]){
pid _t pid;
struct iovec local [1];
struct iovec remote[1l];
ssize t nread;
pid = atoi(argv|1l]);
char fname[255];
FILE «f:

sprintf(fname, "/proc/%i/maps", pid);
f = fopen(fname, "r");

char buff[255];
fgets (buff, 255, f);

long long unsigned int base addr;
sscanf (buff ,"%Lx",&base addr);

unsigned char buf[sizeof(int)];

int n = 1;

for (int 1 = 0; i < sizeof(int)=*2; ++i){
buf[i] = n>>ixsizeof (int)x2;

local [0].iov_base = buf;

local [0].iov_len = sizeof(int);

remote [0].iov_base = (voidx)base addr+FLAG OFFSET;
remote [0].iov_len = sizeof(int);

nread = process_vm_writev(pid, local, 1, remote, 1, 0);

if (nread){
printf (" Captured the flag!\n");

return O;

71

externalhack.c

/%

Run with:
gcc hack.c —o hack && sudo hack

*/

#define GNU SOURCE
#include <sys/uio.h>
#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <stdarg.h>
#include <unistd.h>
#include <sys/types.h>
#include <linux/limits.h>

#include <stdint.h>

#define RED "\x1B[31m"
#define GRN "\x1B[32m"
#define YEL "\x1B[33m"
#define BLU "\x1B[34m"
#define MAG "\x1B[35m"
#define CYN "\x1B[36m"
#define WHT "\x1B[37m"
#define RESET "\x1B[Om"

typedef void xaddr; // Using void pointers to reference and compare
memory addresses

void print_ bytes(charx buffer, ssize t len){

for (int i = 0; i < len; ++i){
printf("%X ", buffer[i] & OxFF);

}
printf("\n");

return;

}

pid_t getPID(char* procname){

pid_t pid;
char line [10];

char str[35];
strepy (str, "pidof ");
strcat (str, procname);

FILE xcmd = popen(str, "r");

fgets (line, 10, cmd);

72

pid = strtoul (line, NULL, 10);
pclose (cmd) ;

return pid;

}

void privcheck (){

uid_t uid=getuid (), euid=geteuid();

if (uid != 0 || uid!=euid) {
printf ("PROBLEM: Need to run as root.\n");
exit (0);

}

return;

}
addr getbaseaddr (pid t pid){

char fname [PATH MAX];
FILE xf;

sprintf (fname, "/proc/%i/maps", pid);
f = fopen (fname, "r");

char buff[255];

fgets (buff, 255, f);

fgets (buff, 255, f);

fgets (buff, 255, f); /+ because i need better way for assault
cube to parse mpas file third line =/

long long unsigned int base addr;
sscanf (buff,"%Lx",&base addr);

return (addr)base addr;

}

ssize _t read bytes(pid t pid, addr mem addr, charx buf) {
}

int bytesTolnt(unsigned char*x b){
int val = 0;
int j = 0;
for (int i = 0; 1 < 4; +4+i)
val 4= (b[i] & OxFF) << (8x%j);
i
}

return val;

}

long bytesToLong(unsigned char* b){

73

uint64_t n = 0;

n += ((uint64 t)b[7]<<56);
n += ((uint64 t)b[6]<<48);
n += ((uint64 t)b[5]<<40);
n += ((uint64 t)b[4]<<32);
n += ((uint64 t)b[3]<<24);
n += ((uint64 t)b[2]<<16);
n += ((uint64 t)b[1]<<8);
n += ((uint64_ t)b[0]<<0);

return n;

}

int intToBytes(int n, char sbuf){

return 0;

}

long read long(pid t pid, addr addy){
struct iovec local[1];
struct iovec remote[1];

int nbytes = 8;
unsigned char buf[nbytes];
ssize t nread;

local [0].iov_base = buf;

local [0].iov_len = nbytes;

remote [0].iov_base = addy;

remote [0].iov_len = nbytes;

nread = process _vm _readv(pid, local,

return bytesToLong(buf);

}

int read int(pid_t pid, addr addy){
struct iovec local[1];
struct iovec remote|1];

int nbytes = 4;
char buf[nbytes];
ssize t nread;

local [0].iov_base = buf;

local [0].iov_len = nbytes;
remote [0].iov_base = addy;
remote [0].iov_len = nbytes;

74

1,

remote ,

1, 0);

nread = process vm_readv(pid, local, 1, remote, 1, 0);

return bytesTolnt (buf);

}
int write int(pid t pid, addr addy, int n){

unsigned char buf[4];
intToBytes(n, buf);

struct iovec local[1];
struct iovec remote[1l];

ssize t nread;

local [0].iov_base = buf;

local [0].iov_len = 4;

remote [0].iov_base = addy;

remote [0].iov_len = 4;

nread = process _vm_writev(pid, local, 1, remote, 1, 0);

return nread;

int main(void){

privcheck (); // Make sure we are running as root (
process _vm_readv and writev require this)

char* name = "assaultcube"

pid_t pid = getPID (name);

if (pid = 0){
printf ("PROBLEM: Process not found.\n");
exit (0);

}

printf (YEL "Found PID: \t" RESET "%i\n", pid);

addr base addr = getbaseaddr (pid);
addr playerlp = base addr+0x378130;

addr playerl = (addr)read long(pid,playerlp);
addr playerl vh = player1+40x110;

printf (YEL "Found Base Address: \t" RESET "%p\n", base addr);

(_
prlntf(YEL "Player Pointer: \t" RESET "%p\n", playerlp);
printf (YEL "Player Address: \t" RESET "%p\n", playerl);
printf (YEL "Player V Health: \t" RESET "%p\n", playerl vh);
printf (" Health: %i\n", read int(pid,playerl vh));

7

printf (YEL "Hacked Health" RESET "\n");

while (1) {
write int(pid,(addr)playerl vh,1337);
}

return O0;

76

flag.c

#include <stdio.h>

int main(int argc,

int flag = 0;

if (flag){
printf("Flag is

} else {

printf("Flag is

}

return 0;

}

char const xargv|[]) {

true\n");

false\n");

7

flag2.c

#include <stdio.h>
#include <unistd.h>

int flag;

int main ()
flag

{
while (1) {
printf("Flag = %i\n",
sleep (2);

return 0;

flag);

8

inspectprintf.c

#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <string .h>

static int (xreal puts)(const char*x str) = NULL;
int puts(const charx str){

/+ printing out the number of characters x/
printf (" puts:chars#%lu\n", strlen(str));

/* resolve the real puts function from glibc
* and pass the arguments.

*/

real puts = dlsym (RTLD NEXT, "puts");

real puts(str);

79

lIkm.c

#include <linux/module.h> /x Needed by all modules x/
#include <linux/kernel.h> /+x Needed for KERN INFO x/
#include <linux/init.h> /* Needed for the macros */
#include <linux /mm.h>

#include <linux /highmem.h>

#include <linux/pid.h>

#include <linux/ptrace.h>

#include <linux/pid.h>

#include <linux/uaccess.h>

#include <linux/sched.h>

#include <linux/errno.h>

#include <linux/pagemap.h>

#include <linux/ptrace.h>

#include <linux/security .h>

#include <asm/pgtable.h>

#include <asm/uaccess.h>

#define DRIVER AUTHOR "Dylan Murphy—Mancini"

#define DRIVER DESC ">Hello, World’ LKM"

MODULE_LICENSE("GPL") ;

MODULE AUTHOR(DRIVER AUTHOR) ; /% Who wrote this module? x/
MODULE DESCRIPTION (DRIVER DESC); /x What does this module do */
MODULE SUPPORTED DEVICE("testdevice");

struct task struct xtask;
struct pid *pid_struct;
struct mm_ struct smm;
struct vm _ area struct *xvma;
struct page x*xpage;

char buf[128];

void *old buf = buf;

pid_t pid;

static int _ init init func(void){
printk ("Hello, world init\n");

pid = 28035;

pid struct = find get pid(pid);
task = pid_ task(pid_struct ,PIDTYPE PID);

rcu_read lock();

if (task){
mm = task—>mm;

printk ("\nThis mm _struct has %d vmas.\n", mm>map count);
printk ("\nCode Segment start = 0x%lx, end = 0x%lx \n"
"Data Segment start = 0x%lx, end = 0x%lx\n"
"Stack Segment start = 0x%lx\n",
mm—>start _code , mm—>end_code,
mm—>start data, mm—>end data,

80

mm—>start _stack);

}

rcu_read unlock();

return 0;

}

static void _ exit cleanup func(void){
printk (KERN INFO "Hello, world cleanup\n");
}

module init(init func);
module exit(cleanup func);

81

printfecho.c

#include <stdio.h>

int main(int args, char =xargv|[]) {
printf("%s\n", argv|[1]);
return 0;

}

82

ptest.c

#include <stdio.h>
#include <sys/ptrace.h>

int main(){
if (ptrace (PTRACE TRACEME, 0, 1,
printf("Don’t trace me!l\n");
return 1;

0) = -1 {

}

printf("Normal Execution... no tracing going on here.\n");
return O0;

83

random.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char const xargv|[]){

while (1) {
printf("%d\n" ,rand () %100);
sleep (1) ;

}

return 0;

84

target.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char const xargv|[]){

while (1) {
printf("%d\n" ,rand () %100);
sleep (1) ;

}

return 0;

85

tracer.c

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/syscall .h>
#include <sys/reg.h>
#include <sys/user.h>
#include <unistd .h>
#include <string.h>
#include <errno.h>

#define TARGET "/home/us3r/Desktop/plan/target"
#define NEW _UID 1337

int main(int argc,charxx argv) {

int status = O0;

int syscall n = 0;

int entering = 1;

struct user_regs_struct regs;

int pid = fork();

if (!pid) {
ptrace (PTRACE TRACEME, 0, 0, 0);
execv (TARGET, argv);

} else {

wait (&status);

while (1) {
ptrace (PTRACE SYSCALL, pid, 0, 0);

wait (&status);
if (WIFEXITED(status)) break;

ptrace (PTRACE GETREGS, pid, NULL, ®s);

syscall n = regs.orig rax;
if (syscall n = SYS getuid) {
if (entering) {
entering = 0;
else {

ptrace (PTRACE GETREGS, pid, 0, ®s);
regs.rax = NEW_UID;

ptrace (PTRACE SETREGS, pid, 0, ®s);
entering = 1;

}
}
}
}

return 0;

}

86

unrandom.c

int rand(){
return 42;
}

87

Boan

boan.py

#!/usr/bin/env python3

import sys

import os

from time import sleep

et Proxy #44

import proxy

from urllib.parse import urlparse
##H#+ GUI 7444

from PyQt5 import uic

from PyQt5.QtWidgets import QMainWindow, QApplication
from PyQt5.QtGui import x*

from PyQt5.QtCore import =

from PyQt5.QtWidgets import x*

mainwindow _ui_file = "resources/g.ui" #Qt XML ui file.
Ui_MainWindow, QtBaseClass = uic.loadUiType(mainwindow ui_file)

waitCondition = QWaitCondition ()
mutex = QMutex ()

class SettingsWindow (QDialog) :
def init (self):
super (SettingsWindow , self). init ()
uic.loadUi(’resources/settings.ui’, self)
self.settings = QSettings("Boan", "Boan")
self.loadSettings ()
self .show ()

def loadSettings(self):

self .spinBox port.setValue(int (self.settings.value("port",
8080)))

self . filter filetypes.setPlainText(self.settings.value("
filter filetypes", ".css, .gif, .ico, .png"))

self . filter hosts.setPlainText (self.settings.value("
filter hosts"))

def accept(self):
self.settings.setValue("port",self.spinBox port.value())
self .settings.setValue(" filter filetypes", self.
filter filetypes.toPlainText())
self .settings.setValue("filter hosts",self.filter hosts.
toPlainText ())
self.close ()

class AboutWindow (QDialog) :
def _ init_ (self):
super (AboutWindow, self). init ()
uic.loadUi(’resources/about.ui’, self)
self.textBrowser.setSource (QUrl("resources/about.htm"))

self .show ()

88

def accept(self):
self.close ()

class MyApp(QMainWindow, Ui MainWindow) :
def _ init_ (self):

QMainWindow. __init__ (self)
Ui MainWindow. init (self)
self.setupUi(self)
self .px = ProxyThread () # Proxy Qthread
self.settings = QSettings("Boan", "Boan")
self.connect ()
self.centerOnScreen ()

def connect(self):
#Shortcuts

self .shortcut quit = QShortcut (QKeySequence(" Ctrl4+Q"), self

self .shortcut quit.activated.connect(self.on quit)

self .shortcut settings = QShortcut(QKeySequeHce("Ctrl+Shift
+S"), self)

self .shortcut settings.activated.connect(self.do settings)

#Menu

self.actionSettings.triggered.connect(self.do settings)
self .actionAbout.triggered.connect(self.do about)
self.actionQuit.triggered.connect(self.on quit)

#Buttons

self .pushButton forward.clicked.connect(self.
handleButton forward)

self . pushButton power. clicked [bool]. connect(self.
handleButton power)

self .px.statusbarsignal.connect(self.update statusbar)

self .px.reqsignal.connect(self.handle reqgsignal)

def centerOnScreen (self):

>’ 7centerOnScreen () Centers the window on the screen.’’’

resolution = QDesktopWidget () . screenGeometry ()

self .move((resolution.width() / 2) — (self.frameSize().
width () / 2),(resolution.height() / 2) — (self.frameSize().
height () / 2))

def do_settings(self):
dlg = SettingsWindow ()
dlg.exec_ ()

def do_about(self):
dlg = AboutWindow ()
dlg.exec_ ()

def on_ quit(self):
self.close ()

def handleButton forward(self):

self . pushButton forward.setEnabled (False)
self .px.raw_req = self.box_ body.toPlainText ()

89

self .box body.clear ()
self . wakeup ()
return

def handleButton power(self ,isPressed):
if isPressed:
self .px|[’port’| = int(self.settings.value("port", 8080)

self .px.start ()

self .pushButton power.setText ("Running...")
else:

self.px.stop ()

self . pushButton power.setText ("Run")

self . pushButton forward.setEnabled(False)

def update statusbar (self ,msg,msec):
self.statusbar.clearMessage ()
self.statusbar.showMessage (msg, msec)

def handle reqgsignal(self):
self .raise ()
self .show ()
self.activateWindow ()

self .box_ body.append(self.px.req.command+" "+self.px.req.
path+" "+self .px.req.protocol version);

for h in self.px.req.headers:

self .box body.append(h+": "+self.px.req.headers|[h])
self .box body.append("") # newline
if self.px.req body:

self .box body.append(self.px.req body.decode("utf—8"))
self . pushButton forward.setEnabled (True)

def wakeup(self):
waitCondition . wakeAll ()

class PX(proxy.ProxyRequestHandler):
settings = QSettings("Boan", "Boan")
def request handler (self , req, req body):
filter hosts= self.settings.value("filter hosts")
if filter hosts and (req.headers|[’Host’| not in
filter hosts):

return

filter filetypes= self.settings.value(" filter filetypes").

split (", ")
if any([x in req.path for x in filter filetypes]):
return

self.pt.req = req
self.pt.req body = req body
self.regsignal.emit ()

90

mutex. lock ()
waitCondition . wait (mutex)
mutex . unlock ()

Parse the raw request and map onto the httpreq object
raw = self.pt.raw_req.split (’\n’)

req.raw_req = self.pt.raw_req
try:
req.command, req.path, req.protocol version = raw[0].
split ()

except Exception as e:
self .send error(400)

for ¢ in range(1l,len(raw)):
#print (c,raw|c])

if raw|[c] = ’’: # the newline
break

try:
h,v = raw[c].split (’:)

except Exception as e:
self .send error(400)

del req.headers|[h]
req.headers|[h] = v

req body = bytes(’\n’.join(raw[c+1:])," utf—8")
return req_ body

def wakey(self):
self .wakeup ()

class ProxyThread (QThread) :
port = 8080
statusbarsignal = pyqtSignal(str,int)
reqsignal = pyqtSignal()
updsignal = pyqtSignal(str)

req = None
req body = None
raw_req — None

def setitem (self, key, item):
self. dict_ [key]| = item

def run(self):
HandlerClass=PX
ServerClass=proxy . ThreadingHTTPServer

protocol="HTTP/1.1"
server address = (’’, self.port)

HandlerClass . protocol version = protocol
HandlerClass.pt = self
HandlerClass.statusbarsignal = self.statusbarsignal

HandlerClass.reqsignal = self.reqgsignal

self . httpd = ServerClass(server address, HandlerClass)

91

if

sa = self.httpd.socket.getsockname ()

self .statusbarsignal.emit("Listening on "+sa[0]4"
str(sa[l])+"...",0)
self .httpd.serve forever ()

def stop(self):
self . httpd.server close ()
self . terminate ()
~name — " main__":
app = QApplication(sys.argv)
window = MyApp()
window . show ()
sys.exit (app.exec_ ())

port

||+

92

proxy.py

—*— coding: utf—8 —x—

import sys

import os

import socket

import ssl

import select

import http.client

import urllib.parse

import threading

from urllib.parse import urlparse
import gzip

import zlib

import time

import json

import re

from http.server import HTTPServer, BaseHTTPRequestHandler
from socketserver import ThreadingMixIn
from io import BytesIO

from subprocess import Popen, PIPE
from html. parser import HTMLParser

def with color(c, s):
return "\x1b[%dm%s\x1b[0m" % (c, s)

class ThreadingHTTPServer (ThreadingMixIn, HTTPServer) :
address family = socket.AF INET6
daemon_threads = True

class ProxyRequestHandler (BaseHTTPRequestHandler) :

cakey = ’ca.key’
cacert = ’ca.crt’
certkey = ’cert.key’
certdir = ’certs/’
timeout = 5

headers buffer = []
lock = threading.Lock()

def _ init (self, request, client address, server):
self.tls = threading.local ()
self.tls.conns = {}
BaseHTTPRequestHandler. _init__ (self , request,
client address, server)

def log message(self , format, *xargs):
Queit the http server

#sys.stderr. write("%s — — [%s] %s\n" % (self.address string
(), self.log date time string() ,format%args))
pass

def log error(self, format, kargs):
surpress "Request timed out: timeout(’timed out’,)"
if isinstance(args|[0], socket.timeout):

93

return
self.log message(format, xargs)

def do CONNECT(self):
if os.path.isfile(self.cakey) and os.path.isfile (self.
cacert) and os.path.isfile(self.certkey) and os.path.isdir(self
.certdir):
self.connect intercept ()
else:
self.connect relay ()

def connect intercept(self):

hostname = self.path.split (’:’)[0]

certpath = "%s/%s.crt" % (self.certdir.rstrip(’/’),
hostname)

with self.lock:
if not os.path.isfile (certpath):
epoch = "%d" % (time.time() * 1000)

pl = Popen([" openssl", "req", "—new", "—key", self.
certkey , "—subj", "/CN=%s" % hostname]|, stdout=PIPE)

p2 = Popen([" openssl", "x509", "—req", "—days",
"3650", "—-CA", self.cacert, "—-CAkey", self.cakey, "—set serial
", epoch, "—out", certpath], stdin=pl.stdout, stderr=PIPE)

p2.communicate ()

self . wfile.write(bytes("%s %d %s\r\n\n" % (self.
protocol version, 200, ’'Connection Established ’) ,"utf—-8"))

#self . wfile.write(bytes("HTTP/1.1 200 Connection
established\r\n\r\n"," utf —8"))

self.connection = ssl.wrap socket(self.connection, keyfile=
self.certkey, certfile=certpath, suppress ragged eofs=True,
server _side=True)

self.rfile = self.connection.makefile("rb", self.rbufsize)
self.wfile = self.connection.makefile("wb", self.wbufsize)
conntype self.headers.get (’Proxy—Connection’, ’’)
if self.protocol version = "HTTP/1.1" and conntype.lower ()
= ’close ’:

self.close connection = 0
else:

self.close connection =1

def connect relay(self):

address = self.path.split (’:’, 1)
address [1] = int(address|1]) or 443
try:
s = socket.create connection(address, timeout=self.
timeout)

except Exception as e:

self .send error(502)

return
self .send response(200, ’'Connection Established)
self.end headers()

conns = [self.connection, s]

94

self.close connection 0
while not self.close connection:

rlist , wlist, xlist = select.select(conns, [|, conns,
self.timeout)

if xlist or not rlist:

break
for r in rlist:
other = conns[1] if r is conns[0] else conns|[0]

data = r.recv(8192)

if not data:
self.close connection =1
break

other.sendall (data)

def do GET(self):
if "boan.cert" in self.path:
print ("Send the cert")
self .send cacert ()
return

req = self

content length = int(req.headers.get (’Content—Length’, 0))
req_body = self.rfile.read(content length) if
content length else None

if req.path|[0] = 7/ :
if isinstance(self.connection, ssl.SSLSocket):
req.path = "https://%s%s" % (req.headers|’ Host’],
req.path)
else:
req.path = "http://%s%s" % (req.headers|[’Host’],
req.path)

with self.lock:
req_body modified

self .request handler(req, req_ body)

if req_body modified is False:
self.send error(403)
return

elif req body modified is not None:
req body = req body modified
del req.headers|’Content—length ’|

req.headers |’ Content—length ’] = str(len(req body))
u = urllib.parse.urlsplit (req.path)
scheme, netloc, path = u.scheme, u.netloc, (u.path + ’?’ +
u.query if u.query else u.path)
assert scheme in (’http’, ’https’)

if netloc:
req.headers |’ Host’| = netloc
setattr (req, ’headers’, self.filter headers(req.headers))

try:
origin (scheme, netloc)
if not origin in self.tls.conns:
if scheme = ’https ’:

self.tls.conns|[origin]| = http.client.
HTTPSConnection(netloc , timeout=self.timeout)

95

else:

self.tls.conns|[origin] = http.client.
HTTPConnection(netloc , timeout=self.timeout)
conn = self.tls.conns|[origin|
#if req.raw req != None:
print ("raw")

reqq = "GET http://example.com/ HITP/1.1\ nHost:
example.com\nUser—Agent: Mozilla /5.0 (X11; Ubuntu; Linux x86 64
; rv:50.0) Gecko/20100101 Firefox /50.0\nAccept: text/html,
application /xhtml4xml, application/xml;q=0.9,%/%;q=0.8\nAccept—
Language: en—US,en;q=0.5\nAccept—Encoding: gzip, deflate)
nConnection: keep—alive\nUpgrade—Insecure—Requests: 1\nCache—
Control: max—age=0\n"
reqq = reqq.replace(’\n’, ’'\r\n’)
reqq 4= "\r\n"
print (repr(reqq))
conn.connect ()
conn.send (bytes(reqq," utf —8"))

As an alternative to using the request () method
described above, you can also send your request step by step,
by using the four functions below.

https://docs.python.org/3.0/library /http.client .html

#else:

conn.request (self.command, path, req body, dict(req.
headers))

FF I

res = conn.getresponse ()

version table = {10: °HTTP/1.0’, 11: "HTTP/1.1’}
setattr (res, ’'headers’, res.msg)

setattr(res, ’'response version’, version table|[res.

version |)

support streaming
if not ’Content—Length’ in res.headers and ’no—store’
in res.headers.get (’Cache—Control’, ’’):
self .response handler(req, req body, res,)
setattr (res, ’'headers’, self.filter headers(res.
headers))
self .relay streaming(res)
with self.lock:
self .save handler(req, req body, res, ')
return

res _body = res.read ()
except Exception as e:
if origin in self.tls.conns:
del self.tls.conns|[origin]
self.send error(502)

return
content encoding = res.headers.get (’Content—Encoding’, ’
identity)

res_body plain = self.decode content body(res body,
content encoding)

96

res_body modified = self.response handler(req, req body,
res, res_body plain)
if res_body modified is False:
self .send error(403)
return
elif res body modified is not None:
res_body plain = res_body modified
res body = self.encode content body(res body plain,
content encoding)

res.headers|’ Content—Length’| = str(len(res body))
setattr (res, ’headers’, self.filter headers(res.headers))
#if req.raw_req != None:
print ("sent raw")
#

#reqq = "GET http://example.com/ HTTP/1.1\nHost: example.
com\nUser—Agent: Mozilla /5.0 (X11; Ubuntu; Linux x86 64; rv
:50.0) Gecko/20100101 Firefox /50.0\nAccept: text/html,
application /xhtml4xml, application/xml;q=0.9,%/%;q=0.8\nAccept—
Language: en—US,en;q=0.5\nAccept—Encoding: gzip, deflate)
nConnection: keep—alive\nUpgrade—Insecure—Requests: 1\nCache—
Control: max—age=0\n"

reqq = reqq.replace(’\n’, ’\r\n’)

reqq += "\r\n"

print(repr(reqq))
self.wfile.write(bytes(reqq," ascii"))
self.wfile. flush ()
return
#pass

self .send response(res.status)
for k,v in res.headers.items():
self.send header (k,v)
self .end headers()
try:
self . wfile.write(res_body)
except Exception as e:
#print ("error")
pass
self. wfile. flush ()

with self.lock:
self .save handler(req, req body, res, res body plain)

def relay streaming(self, res):
self . wfile.write(bytes("%s %d %s\r\n" % (self.
protocol version, res.status, res.reason),"utf—8"))
for k,v in res.headers.items():
self .send header(k,v)
self .end headers()
try:
while True:
chunk = res.read(8192)
if not chunk:
break

97

self.wfile.write(chunk)
self.wfile. flush ()
except socket.error:
connection closed by client
pass

do_HEAD = do_GET

do POST = do GET
do_PUT = do_GET

do DELETE = do GET
do_OPTIONS = do_GET

def filter headers(self, headers):
http://tools.ietf.org/html/rfc2616#section —13.5.1

hop by hop = (’connection’, ’keep—alive’, ’proxy—
authenticate ’, ’proxy—authorization’, ’te’, ’trailers ’, ’
transfer —encoding’, ’upgrade’)

for k in hop by hop:
del headers[k]

accept only supported encodings
if ’Accept—Encoding’ in headers:
ae = headers |’ Accept—Encoding ’|

filtered encodings = [x for x in re.split(r’,\s=*’, ae)
if x in (’identity ’, ’gzip’, ’x—gzip’, ’deflate)|

del headers|’Accept—Encoding’]

headers |’ Accept—Encoding’] = ’, ’.join(

filtered encodings)
return headers

def encode content body(self, text, encoding):

if encoding = ’identity ’:
data = text
elif encoding in (’gzip’, ’'x—gzip’):

io = BytesIO ()
with gzip.GzipFile(fileobj=io, mode='wb’) as f:
f.write(text)

data = io.getvalue ()
elif encoding = ’deflate ’:
data = zlib.compress(text)
else:

raise Exception ("Unknown Content—Encoding: %s" %
encoding)
return data

def decode content body(self, data, encoding):

if encoding = ’identity ’:
text = data
elif encoding in (’gzip’, ’'x—gzip’):

io = BytesIO(data)
with gzip.GzipFile(fileobj=io) as f:
text = f.read ()
elif encoding =— ’deflate ’:
try:
text = zlib.decompress(data)
except zlib.error:

98

text = zlib.decompress(data, —zlib .MAX WBITS)
else:
raise Exception("Unknown Content—Encoding: %s" %
encoding)
return text

def send cacert(self):
with open(self.cacert, ’rb’) as f:
data = f.read ()

self . wfile.write(bytes("%s %d %s\r\n" % (self.
protocol version, 200, ’OK’) ,"utf—8"))

self .send header(’Content—Type’, ’application/x—x509—ca—
cert ’)

self .send header (’Content—Length’, len(data))

self .send header (’Connection’, ’close’)

self .end headers()

self.wfile.write(data)

def print info(self, req, req body, res, res body):
#print (req.path)
#print res header text
pass

def request handler (self , req, req body):
#print (req.path)
pass

def response handler(self , req, req body, res, res body):
#print (res.status)
pass

def save handler(self, req, req body, res, res body):
#self .print_info(req, req body, res, res_ body)
pass

def test (HandlerClass=ProxyRequestHandler, ServerClass=
ThreadingHTTPServer, protocol="HITP/1.1"):
if sys.argv|[1:]:
port = int(sys.argv|[1l])

else:

port = 8080
server address = (’’, port)
HandlerClass . protocol version = protocol

httpd = ServerClass (server address, HandlerClass)

sa = httpd.socket.getsockname ()
print ("Serving HTTP Proxy on", sa|[0], "port", sa[l], "...")
httpd.serve forever ()

if name — main

“test ()

99

proxy.py

—*— coding: utf—8 —x—

import sys

import os

import socket

import ssl

import select

import http.client

import urllib.parse

import threading

from urllib.parse import urlparse
import gzip

import zlib

import time

import json

import re

from http.server import HTTPServer, BaseHTTPRequestHandler
from socketserver import ThreadingMixIn
from io import BytesIO

from subprocess import Popen, PIPE
from html. parser import HTMLParser

def with color(c, s):
return "\x1b[%dm%s\x1b[0m" % (c, s)

class ThreadingHTTPServer (ThreadingMixIn, HTTPServer) :
address family = socket.AF INET6
daemon_threads = True

class ProxyRequestHandler (BaseHTTPRequestHandler) :

cakey = ’ca.key’
cacert = ’ca.crt’
certkey = ’cert.key’
certdir = ’certs/’
timeout = 5

headers buffer = []
lock = threading.Lock()

def _ init (self, request, client address, server):
self.tls = threading.local ()
self.tls.conns = {}
BaseHTTPRequestHandler. _init__ (self , request,
client address, server)

def log message(self , format, *xargs):
Queit the http server

#sys.stderr. write("%s — — [%s] %s\n" % (self.address string
(), self.log date time string() ,format%args))
pass

def log error(self, format, kargs):
surpress "Request timed out: timeout(’timed out’,)"
if isinstance(args|[0], socket.timeout):

100

return
self.log message(format, xargs)

def do CONNECT(self):
if os.path.isfile(self.cakey) and os.path.isfile (self.
cacert) and os.path.isfile(self.certkey) and os.path.isdir(self
.certdir):
self.connect intercept ()
else:
self.connect relay ()

def connect intercept(self):

hostname = self.path.split (’:’)[0]

certpath = "%s/%s.crt" % (self.certdir.rstrip(’/’),
hostname)

with self.lock:
if not os.path.isfile (certpath):
epoch = "%d" % (time.time() * 1000)

pl = Popen([" openssl", "req", "—new", "—key", self.
certkey , "—subj", "/CN=%s" % hostname]|, stdout=PIPE)

p2 = Popen([" openssl", "x509", "—req", "—days",
"3650", "—-CA", self.cacert, "—-CAkey", self.cakey, "—set serial
", epoch, "—out", certpath], stdin=pl.stdout, stderr=PIPE)

p2.communicate ()

self . wfile.write(bytes("%s %d %s\r\n\n" % (self.
protocol version, 200, ’'Connection Established ’) ,"utf—-8"))

#self . wfile.write(bytes("HTTP/1.1 200 Connection
established\r\n\r\n"," utf —8"))

self.connection = ssl.wrap socket(self.connection, keyfile=
self.certkey, certfile=certpath, suppress ragged eofs=True,
server _side=True)

self.rfile = self.connection.makefile("rb", self.rbufsize)
self.wfile = self.connection.makefile("wb", self.wbufsize)
conntype self.headers.get (’Proxy—Connection’, ’’)
if self.protocol version = "HTTP/1.1" and conntype.lower ()
= ’close ’:

self.close connection = 0
else:

self.close connection =1

def connect relay(self):

address = self.path.split (’:’, 1)
address [1] = int(address|1]) or 443
try:
s = socket.create connection(address, timeout=self.
timeout)

except Exception as e:

self .send error(502)

return
self .send response(200, ’'Connection Established)
self.end headers()

conns = [self.connection, s]

101

self.close connection 0
while not self.close connection:

rlist , wlist, xlist = select.select(conns, [|, conns,
self.timeout)

if xlist or not rlist:

break
for r in rlist:
other = conns[1] if r is conns[0] else conns|[0]

data = r.recv(8192)

if not data:
self.close connection =1
break

other.sendall (data)

def do GET(self):
if "boan.cert" in self.path:
print ("Send the cert")
self .send cacert ()
return

req = self

content length = int(req.headers.get (’Content—Length’, 0))
req_body = self.rfile.read(content length) if
content length else None

if req.path|[0] = 7/ :
if isinstance(self.connection, ssl.SSLSocket):
req.path = "https://%s%s" % (req.headers|’ Host’],
req.path)
else:
req.path = "http://%s%s" % (req.headers|[’Host’],
req.path)

with self.lock:
req_body modified

self .request handler(req, req_ body)

if req_body modified is False:
self.send error(403)
return

elif req body modified is not None:
req body = req body modified
del req.headers|’Content—length ’|

req.headers |’ Content—length ’] = str(len(req body))
u = urllib.parse.urlsplit (req.path)
scheme, netloc, path = u.scheme, u.netloc, (u.path + ’?’ +
u.query if u.query else u.path)
assert scheme in (’http’, ’https’)

if netloc:
req.headers |’ Host’| = netloc
setattr (req, ’headers’, self.filter headers(req.headers))

try:
origin (scheme, netloc)
if not origin in self.tls.conns:
if scheme = ’https ’:

self.tls.conns|[origin]| = http.client.
HTTPSConnection(netloc , timeout=self.timeout)

102

else:

self.tls.conns|[origin] = http.client.
HTTPConnection(netloc , timeout=self.timeout)
conn = self.tls.conns|[origin|
#if req.raw req != None:
print ("raw")

reqq = "GET http://example.com/ HITP/1.1\ nHost:
example.com\nUser—Agent: Mozilla /5.0 (X11; Ubuntu; Linux x86 64
; rv:50.0) Gecko/20100101 Firefox /50.0\nAccept: text/html,
application /xhtml4xml, application/xml;q=0.9,%/%;q=0.8\nAccept—
Language: en—US,en;q=0.5\nAccept—Encoding: gzip, deflate)
nConnection: keep—alive\nUpgrade—Insecure—Requests: 1\nCache—
Control: max—age=0\n"
reqq = reqq.replace(’\n’, ’'\r\n’)
reqq 4= "\r\n"
print (repr(reqq))
conn.connect ()
conn.send (bytes(reqq," utf —8"))

As an alternative to using the request () method
described above, you can also send your request step by step,
by using the four functions below.

https://docs.python.org/3.0/library /http.client .html

#else:

conn.request (self.command, path, req body, dict(req.
headers))

FF I

res = conn.getresponse ()

version table = {10: °HTTP/1.0’, 11: "HTTP/1.1’}
setattr (res, ’'headers’, res.msg)

setattr(res, ’'response version’, version table|[res.

version |)

support streaming
if not ’Content—Length’ in res.headers and ’no—store’
in res.headers.get (’Cache—Control’, ’’):
self .response handler(req, req body, res,)
setattr (res, ’'headers’, self.filter headers(res.
headers))
self .relay streaming(res)
with self.lock:
self .save handler(req, req body, res, ')
return

res _body = res.read ()
except Exception as e:
if origin in self.tls.conns:
del self.tls.conns|[origin]
self.send error(502)

return
content encoding = res.headers.get (’Content—Encoding’, ’
identity)

res_body plain = self.decode content body(res body,
content encoding)

103

res_body modified = self.response handler(req, req body,
res, res_body plain)
if res_body modified is False:
self .send error(403)
return
elif res body modified is not None:
res_body plain = res_body modified
res body = self.encode content body(res body plain,
content encoding)

res.headers|’ Content—Length’| = str(len(res body))
setattr (res, ’headers’, self.filter headers(res.headers))
#if req.raw_req != None:
print ("sent raw")
#

#reqq = "GET http://example.com/ HTTP/1.1\nHost: example.
com\nUser—Agent: Mozilla /5.0 (X11; Ubuntu; Linux x86 64; rv
:50.0) Gecko/20100101 Firefox /50.0\nAccept: text/html,
application /xhtml4xml, application/xml;q=0.9,%/%;q=0.8\nAccept—
Language: en—US,en;q=0.5\nAccept—Encoding: gzip, deflate)
nConnection: keep—alive\nUpgrade—Insecure—Requests: 1\nCache—
Control: max—age=0\n"

reqq = reqq.replace(’\n’, ’\r\n’)

reqq += "\r\n"

print(repr(reqq))
self.wfile.write(bytes(reqq," ascii"))
self.wfile. flush ()
return
#pass

self .send response(res.status)
for k,v in res.headers.items():
self.send header (k,v)
self .end headers()
try:
self . wfile.write(res_body)
except Exception as e:
#print ("error")
pass
self. wfile. flush ()

with self.lock:
self .save handler(req, req body, res, res body plain)

def relay streaming(self, res):
self . wfile.write(bytes("%s %d %s\r\n" % (self.
protocol version, res.status, res.reason),"utf—8"))
for k,v in res.headers.items():
self .send header(k,v)
self .end headers()
try:
while True:
chunk = res.read(8192)
if not chunk:
break

104

self.wfile.write(chunk)
self.wfile. flush ()
except socket.error:
connection closed by client
pass

do_HEAD = do_GET

do POST = do GET
do_PUT = do_GET

do DELETE = do GET
do_OPTIONS = do_GET

def filter headers(self, headers):
http://tools.ietf.org/html/rfc2616#section —13.5.1

hop by hop = (’connection’, ’keep—alive’, ’proxy—
authenticate ’, ’proxy—authorization’, ’te’, ’trailers ’, ’
transfer —encoding’, ’upgrade’)

for k in hop by hop:
del headers[k]

accept only supported encodings
if ’Accept—Encoding’ in headers:
ae = headers |’ Accept—Encoding ’|

filtered encodings = [x for x in re.split(r’,\s=*’, ae)
if x in (’identity ’, ’gzip’, ’x—gzip’, ’deflate)|

del headers|’Accept—Encoding’]

headers |’ Accept—Encoding’] = ’, ’.join(

filtered encodings)
return headers

def encode content body(self, text, encoding):

if encoding = ’identity ’:
data = text
elif encoding in (’gzip’, ’'x—gzip’):

io = BytesIO ()
with gzip.GzipFile(fileobj=io, mode='wb’) as f:
f.write(text)

data = io.getvalue ()
elif encoding = ’deflate ’:
data = zlib.compress(text)
else:

raise Exception ("Unknown Content—Encoding: %s" %
encoding)
return data

def decode content body(self, data, encoding):

if encoding = ’identity ’:
text = data
elif encoding in (’gzip’, ’'x—gzip’):

io = BytesIO(data)
with gzip.GzipFile(fileobj=io) as f:
text = f.read ()
elif encoding =— ’deflate ’:
try:
text = zlib.decompress(data)
except zlib.error:

105

text = zlib.decompress(data, —zlib .MAX WBITS)
else:
raise Exception("Unknown Content—Encoding: %s" %
encoding)
return text

def send cacert(self):
with open(self.cacert, ’rb’) as f:
data = f.read ()

self . wfile.write(bytes("%s %d %s\r\n" % (self.
protocol version, 200, ’OK’) ,"utf—8"))

self .send header(’Content—Type’, ’application/x—x509—ca—
cert ’)

self .send header (’Content—Length’, len(data))

self .send header (’Connection’, ’close’)

self .end headers()

self.wfile.write(data)

def print info(self, req, req body, res, res body):
#print (req.path)
#print res header text
pass

def request handler (self , req, req body):
#print (req.path)
pass

def response handler(self , req, req body, res, res body):
#print (res.status)
pass

def save handler(self, req, req body, res, res body):
#self .print_info(req, req body, res, res_ body)
pass

def test (HandlerClass=ProxyRequestHandler, ServerClass=
ThreadingHTTPServer, protocol="HITP/1.1"):
if sys.argv|[1:]:
port = int(sys.argv|[1l])

else:

port = 8080
server address = (’’, port)
HandlerClass . protocol version = protocol

httpd = ServerClass (server address, HandlerClass)

sa = httpd.socket.getsockname ()
print ("Serving HTTP Proxy on", sa|[0], "port", sa[l], "...")
httpd.serve forever ()

if name — main

“test ()

106

setup https intercept.sh

#!/bin/sh

openssl genrsa —out ca.key 2048

openssl req —mew —x509 —days 3650 —key ca.key —out ca.crt —subj "/
CN=proxy2 CA"

openssl genrsa —out cert.key 2048

mkdir certs/

107

Resources

about.htm

<h1>Boan</h1>

<p>

https://github.com/0
x64796¢c616e /Boan

</p>

<p>
About this program—
</p>

108

about.ui

<?xml version="1.0" encoding="UTF-8"7>
<ui version="4.0">
<class>Dialog </class>
<widget class="QDialog" name="Dialog">
<property name="geometry">
<rect>
<x>0< /x>
<y>0</y>
<width >400</width>
<height >300</height >
</rect>
</property>
<property name="windowTitle">
<string >About Boan</string>
</property>

<item row="0" column="0">

<property name="openExternalLinks">
<bool>true </bool>
</property>
<property name="openLinks">
<bool>false </bool>
</property>
</widget>
</item>
</layout>
</widget>
<resources/>
<connections/>
</ui>

<layout class="QGridLayout" name="gridLayout">

<widget class="QTextBrowser" name="textBrowser">

109

g.ui

<?xml version="1.0" encoding="UTF-8"7>
<ui version="4.0">
<class >MainWindow</class >
<widget class="QMainWindow" name="MainWindow">
<property name="geometry">
<rect>
<x>0< /x>
<y>0</y>
<width >431</width>
<height >604</height >
</rect>
</property>
<property name="windowTitle">
<string >Boan</string >
</property>
<widget class="QWidget" name="centralwidget">
<layout class="QGridLayout" name="gridLayout">
<item row="1" column="0" colspan="2">
<widget class="Line" name="line">
<property name="orientation">
<enum>Qt :: Horizontal </enum>
</property >
</widget>
</item>
<item row="2" column="0" colspan="2">
<layout class="QVBoxLayout" name="verticalLayout">
<item>
<widget class="QLabel" name="label 2">
<property name="text">
<string >Request</string>
</property>
</widget>
</item>
<item>
<widget class="QTextEdit" name="box body">
<property name="focusPolicy">
<enum>Qt : : ClickFocus </enum>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="pushButton forward">
<property name="enabled">
<bool>false </bool>
</property >
<property name="text">
<string >Forward</string >
</property >
<property name="default">
<bool>false </bool>
</property>
<property name="flat">
<bool>false </bool>
</property>

110

</widget>
</item>
</layout >
</item>
<item row="0" column="0" colspan="2">
<widget class="QPushButton" name="pushButton power">
<property name="text'">
<string >Run</string >

</property >

<property name="checkable">
<bool>true </bool>

</property >

<property name="autoDefault">
<bool>false </bool>

</property>

<property name="default">
<bool>true </bool>

</property >

<property name="flat">
<bool>false </bool>
</property >
</widget>
</item>
</layout>
</widget>
<widget class="QMenuBar" name="menubar">
<property name="geometry">
<rect>
<x>0< /x>
<y>0</y>
<width >431</width>
<height >25</height >
</rect>
</property>
<widget class="QMenu" name="menuFile">
<property name="title">
<string >File </string>
</property>
<addaction name="actionQuit"/>
</widget>
<widget class="QMenu" name="menuHelp">
<property name="title">
<string >Help</string>
</property>
<addaction name="actionAbout"/>
</widget>
<widget class="QMenu" name="menuEdit">
<property name="title">
<string >Edit</string>
</property >
<addaction name="actionSettings"/>
</widget>
<addaction name="menuFile"/>
<addaction name="menuEdit"/>
<addaction name="menuHelp"/>
</widget>
<widget class="QStatusBar" name="statusbar"/>

111

<action name="actionQuit">
<property name="text">
<string >Quit</string>
</property>
<property name="toolTip">
<string >Quit (CTRL+Q)</string>
</property >
<property name="shortcut">
<string >Ctrl+Q</string >
</property>
</action>
<action name="actionSettings">
<property name="text">
<string>Settings </string >
</property>
<property name="shortcut">
<string >Ctrl+Shift+S</string>
</property >
</action>
<action name="actionAbout">
<property name="text">
<string >About Boan</string>
</property >
</action>
</widget>
<resources/>
<connections/>
</ui>

112

settings.ui

<?xml version="1.0" encoding="UTF-8"7>
<ui version="4.0">
<class>Dialog </class>
<widget class="QDialog" name="Dialog">
<property name="geometry">
<rect>
<x>0< /x>
<y>0</y>
<width >400</width>
<height >300</height >
</rect>
</property>
<property name="windowTitle">
<string >Dialog</string>
</property>
<layout class="QGridLayout" name="gridLayout">
<item row="3" column="0" colspan="2">
<widget class="QLabel" name="label 3">
<property name="text">
<string >In—Scope Hosts</string>
</property>
</widget>
</item>
<item row="0" column="0">
<widget class="QLabel" name="label">
<property name="text">
<string >Port</string>
</property>
</widget>
</item>
<item row="4" column="3">
<widget class="QDialogButtonBox" name="buttonBox">
<property name="contextMenuPolicy">
<enum>Qt : : DefaultContextMenu </enum>
</property>
<property name="orientation">
<enum>Qt :: Horizontal </enum>
</property >
<property name="standardButtons">
<set>QDialogButtonBox :: Cancel | QDialogButtonBox : : Ok</set >
</property >
</widget>
</item>
<item row="2" column="3">
<widget class="QLabel" name="label 4">
<property name="text'">
<string >Comma seperated list </string>
</property >
</widget>
</item>
<item row="3" column="3">
<widget class="QPlainTextEdit" name="filter hosts">
<property name="placeholderText">

113

<string notr="true">Enter a comma seperated List for
example.com, subdom.example.com, example.io</string>
</property>
</widget>
</item>
<item row="1" column="0" colspan="2">
<widget class="QLabel" name="label 2">
<property name="text">
<string>Blacklist Filetypes:</string>
</property>
</widget>
</item>
<item row="1" column="3">

ex .

<widget class="QPlainTextEdit" name="filter filetypes"/>

</item>
<item row="0" column="1">
<widget class="QSpinBox" name="spinBox port">
<property name="baseSize">
<size>
<width>0</width>
<height >0</height>
</size>
</property >
<property name="focusPolicy">
<enum>Qt : : ClickFocus </enum>
</property>
<property name="maximum">
<number >65536</number>
</property>
<property name="value'">
<number >8080< /number>
</property >
</widget>
</item>
</layout >
</widget>
<resources/>
<connections>
<connection>
<sender>buttonBox</sender>
<signal>accepted ()</signal >
<receiver >Dialog</receiver >
<slot>accept ()</slot >
<hints>
<hint type="sourcelabel">
<x>248< /x>
<y>254</y>
</hint>
<hint type="destinationlabel">
<x>157</x>
<y>274</y>
</hint>
</hints>
</connection>
<connection>
<sender>buttonBox</sender >
<signal>rejected ()</signal >

114

<receiver >Dialog </receiver>
<slot>reject ()</slot >
<hints>
<hint type="sourcelabel">
<x>316< /x>
<y>260</y>
</hint>
<hint type="destinationlabel">
<x>286< /x>
<y>274</y>
</hint>
</hints>
</connection>
</connections >
</ui>

115

Algorithms Exam

{

"C

}
{

}
{

ells": |

"cell type": "markdown",
"metadata": {},

"source": |

"# Algorithms Exam\n",
"Dylan Murphy—Mancini\n",
"\n",
"April 27, 2017"

J

)

"cell type": "markdown",

"metadata": {},

"source": |

"#4# Question 1\n",

u\nn7

"Explain, implement, explore numerically the O() behavior
either\n",

"Prim’s or Kruskal’s algorithm , which find the minimum spanning
tree\n",

"of a weighted graph.\n",

n\nn’

"The core of this work should be a numerical experiment in
which you\n",

"randomly generate graphs of different sizes, find either the
time or\n",

"number of steps the algorithm takes, use those to create plots
of its\n",

"behavior , and compare the shape of the plot with the expected
result.\n",

ll\n"’

"As usual with my assignments, your code should be clearly\n",
"documented with explicit tests.\n",

"\n"?

"Be clear that you should choose one of these to do, not both."

I

)

"cell type": "markdown",

"metadata": {},

"source":

"### Prim’s Algorithm\n",

"\Il",

"Prim’s is a greedy algorithm that finds a minimum spanning
tree (MST) for a weighted undirected graph.^{[1|} The
MST is a subset of the graph that contains all the vertices
without cycle with the least amount of edge weight. Frequently
MST algorithms are used in random graph generation, however, I
will be using the networkx library— installed by default in
the Anaconda suite.^[2] \n",

n\nn,

"Prims works as follows:\n",

116

"x Start at an arbitrary vertex and add it to a list of visited
vertices (which just contains this root one for now)\n",

"x Find the least costly edge from a vertice in the visited
list to a vertice that hasn’t been visited\n",

"x Add the vertice that you just visited to your list of
visited and repeat until all vertices are marked visited\n",
u\nn,

"There are of course many different datastrucures to represent
the graph and implement the algorithm , and they effect the run—
time complexity. I’ve chosen to represent my graph as an
adjacency matrix— purely because of personal preference.
Adjacency matrices use O(n*n) memory. They have constant lookup
time to check for the presence or absence of a specific edge,
but are slow to iterate over all edges. Adjacency lists on the
otherhand, use memory in proportion to the number edges, which
might save a lot of memory if the adjacency matrix is sparse.

J

)

}
{

"cell type": "code",
"execution count": 1,
"metadata": {
"collapsed ": true

}7

"outputs": [],

"source": |

"# Some library inclusion\n",

"import random\n",

"import networkx as nx # for random graph generation"

|

}7

{

"cell type": "markdown",

"metadata": {},

"source": |

"Below is my graph generation function. Another reason I chose
to represent the graph as adjacency matrix was so that I wasn’t
replying on networkx’s class methods for retrieve edges or
finding neighbor vertices. I wanted the algorithm part to be
all my own code."

|
})

"cell type": "code",
"execution count": 5,
"metadata": {
"collapsed": false
}7
"outputs": |
{
"name": "stdout",
"output type": "stream",
"text": |
"[[0 15 2]\n",
" J1 0 7 0]\n",
" [5 70 6]\n",
n [2 0 6]]\n"

117

I
}

"source": |
"def gen graph(n,p=1):\n",
n \u\?\u\nu7
n = The number of nodes.\n",
= Probability for edge creation.\n",
n'",
Returns an adjacency matrix representation of a random
undirected graph weighted.\n",
" \"\"\"\n”’
" G = nx.fast gnp random graph(n,l1)\n",
" for (u, v) in G.edges():\n",
" G.edge|u][v][weight ’| = random.randint (0,10)\n",
" return nx.adjacency matrix(G).todense()\n",
"\n",
"G = gen graph(4)\n",
"print (G)"

I

)

p
" \

}
{
"cell type": "markdown",
"metadata": {},
"source": |
"Following is my Prim’s Algorithm implementation. Some
implementations use a priority queue or two lists to manage
nodes visited and not reached— I am using one list to mark
nodes as seen or unseen (False or True). The lookup if a node
has been reached is done in constant time: unreached[node].
While there are still unreached nodes, I find an edge from a
visited node to one that has not been seen with the lowest cost
The MST ouputted is a graph in edge list form. The edges have
the structure (nodel,node2,weight)."

J
} ’
{

"cell type": "code",
"execution count": 6,
"metadata": {
"collapsed": false
}7
"outputs": |
{
"name": "stdout",
"output type": "stream",
"text": |

"[(o, 1, 1), (1, 3, 0), (0, 2, 5)]\n"
I
}

)
"source": |

"def prim(G,start=0):\n",

" unreached = [[True||#*len(G)\n",
" unreached [start] = False\n",

n Il",

v MST = [\nt,

118

n nll
\nt,

"\Il",

" e = min([(x,y,G[(x,y)]) for x in range(len (unreached))
for y in range(len (unreached)) if not unreached|[x] and
unreached [y]] , key=lambda x: x[2])\n",

"p"
MAnt,
n n n
MAnt,

"\n" s
" return MST\n",
"\n" s
"print (prim(G))"
|
}7
{

"cell type": "markdown",

"metadata": {},

"source": |

"To visualize an MST I am using my code on a previously
generated graph.\n",

u\nn,

"Starting Graph\n",

""

J

)

while any(unreached):\n",

unreached|[e[1]] = False\n",

MST. append (e)\n",

A

"cell type": "code",
"execution count": 7,
"metadata": {
"collapsed": false
}7
"outputs": |
{
"name": "stdout",
"output type": "stream",
"text": |
"This is the adjacency matrix\n",

7]\n",
0]\n"7
8]\n",
5]\nll7
0]]\n",

"This is MST edge list (Node,Node,Weight)\n",

5
0
n [7 2
8
0

o O N
GO =~ 00O

"[(o, 3, 0), (3, 2, 4), (2, 1, 2), (1, 4, 0)]\n"

"source": |

"G = nx.adjacency matrix(nx.convert.from dict of dicts({0: {1:
{’weight ’: 5}, 2: {’weight’: 7}, 3: {’weight’: 0}}, 1: {0: {’
weight >: 5}, 2: {’weight’: 2}, 3: {’weight’: 8}}, 2: {0: {’
weight ’: 7}, 1: {’weight’: 2}, 3: {’weight’: 4}}, 3: {0: {’

119

weight >: 0}, 1: {’weight’: 8}, 2: {’weight’: 4}}, 4: {1: {°
weight >: 0}, 2: {’weight’: 8}, 3: {’weight’: 5}, 0: {’weight ’:
7}}}1)) - todense () \n"

"print (\"This is the adjacency matrix\\n\")\n",

"print (G)\n",

"print (\"\\nThis is MST edge list (Node,Node,Weight)\\n\")\n",
"print (prim(G))"

J

}7

{

"cell type": "markdown",

"metadata": {},

"source": |

"Produced MST\n",

""

|

}7

{

"cell type": "markdown",

"metadata": {},

"source": |
"The expected time complexity of my implementation is O(V~2)
using the adjacency matrix. An improvemnt could be made by
using a priority heap to store all edges of the input graph,
ordered by their weight. That would lead to an O(Exlog(E))
worst—case running time.^[1l]"

|

}7

{

"cell type": "code",

"execution count": 22,

"metadata": {
"collapsed ": false

}9

"outputs": [],

"source": |

"# This will take about two minutes on a 4—core processor \n",
"from matplotlib import pyplot\n",
"import timeit, functools\n",
ll\n",
"y = A1
"\n",
"for n in range(20,420,20):\n",
" x.append (n)\n",
" G = gen graph(n)\n",
" t = timeit.Timer(functools. partial (prim, G)) \n",
" y.append (t.timeit (1))"
]
}7

"cell type": "code",
"execution count": 69,
"metadata": {
"collapsed ": false
}7

"outputs": |

{

120

"data": {
"image/png":

n

iVBORWOKGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhKiIAAAAAIwSFlz

\nAAALEgAACxIBOt1+/
AAATABJREFUeJzs3Xd4VGX2wPHvSSEJNdI7AaQKiBIRBRVFbIhgFORFXVnd\
nddeyirrrT1d3XSu6uq5rZS0gilqgrhURFQtNelMQkIQSWkJLz/
n9cW9gmMwkkzlzmZnzeZ48mblz\

nZ94zk5t75r73vecVVcUYY0zsigt3AMYYYS8LLEoExxsQ4SwTGGBP]LBEYY0yMsORgjDExzhKBMcbE

\nOESEEUJE/
iwiL4c7jIASkTQRURFJqObrnClia2sqrera6iYiSORkn4j8sQZe73kR b+
aiK2miMge \ nEfINkF67301cRMaKyNxgtB3LqvUPZmqOiOz3uFsXyAeK3fu/VdV/
hDCWOsCfgSuB1sAOYDbwoKpu'\

nDFUcNUVVvwG61d4XkY3Ab1R1VhCaGw98qap9fT00InOAAUARKAdA8DfxeVbf6 WI9Vb6xqICLyV

/c1\n/lqgF5wqwHshT1Z5VjaGyPLdzEUkDNgCJqloUghhikROR1BKqWr /0B/
gVGO6xbHKIw3kHUAAYDTQC\ njgUWAKNCHEck6gCsrGCdm92/ c1cgFXjK100iEl/
DsVXGqUBzoJOInBCKBqt75GeqzhJBhBCRv4rI\
nJPd2aZfJtSKyWUT2iMiNInKCiCwTkWwRedbr+
deJyGp33U9FplOfds4EhgljVHWBqghapao6qPqgeq\
nr7jrtBaR90Vkt4isES5EbvOJ8W0Qmud0jyOWkq4jclyJZbrxneaw /
ROQeFpH5IrJXRGaKSGM /sTUS\
nkVdEZKulZIrI30t3liLyHxF512PdROXkC3EMFpEMd /kbQHvgAxHZLyLjReR /
IvIHr7aWiciFfuK4 \nQERWup/zHBHp4S6fDZwOPOu+d1fff02Hqud4 G3gV6uc9 /1
X0fH4nIAeB0d9nf3ccHi0iGG30 W+HzmM\nFJHzZROQn9-+/
xZz8xNxWRD92Yd4vINyJS3v//
NcBM4CP3tk8iEi8iEORkp4hsEJGbPbvzAthW3nG3\nlb3AWM /tHOdoCSDb/
TxP8njuE+62vEFEzvVYPsfdLr5zn /OBiDQRkenu9rVAnCMN401V7aeW /QAb\
ngTO9vOVmMOTeTgMUeB5IBs7TC6WaY gfMtrg2QBZzmrj8CWAf0wOkOvBf4zk /
bjwBfVRD{18Bzbtt9\ncbqOzvCIMw84223rdZzD 78
AicANwAaP150DZOLsDOvh7Bi932eCe /894 AV3vebAfJxuM3C6034C\
nxgKnADuBtub5jgd EM{58vcBkwz+P+scAuol6P994VOICTLBNxuoLWla7rvp/
fIPPZHXocalrT5faG\ne /9
VIAcYiPMILdId9neP91EE30{xWe4A3gQaAMcAuUBHH+0+7
G4vieTPKYD4ibEusBc4D7jY / Szr \n+HkPNwKrgLbAUcAsr79ZRdtKITDSfb8p+
N70EzzaHus+5wYgHrgJ2FL6XtzY1gGdcY5mV 7nbxZkc\n3h7 /G+7/8
dr2Y0cEkelvgpqngp/

h7JymqgGqWaqmY C3wDHuevdCDysqqvV6WvIBIDXz1FBESBnfzWA \
niLTD2VHd5ba9BHgZuNpjtW9U9VO3rbeBZsAjqloITAXSRCTVY /03VHWFqh4A / g
+4TLy6RUSKBc60\
n6VZVPaCqWThdKlcAqOpB4CrgSWAS8AdVzSj30zvsfaCriHRx718FvKWgBT7WvR4
+7r6£J3B2\nYCcH2BbAMyKSDSzF+axv93hspqp+
q6olgprn47TmFwEMen2VT4G1V3aeqK3F2fM{6eV4rolOgFqrq\nN-+
ruOX24COcc1WIA /3ASxzA /617 mtp+
hqntwvkgAAW8r36vqDPfI5vppw9IsmVX1JVYuB19z31cLj\ n8f+qbnpVzQE+
Btar6iyP7f{G4si8Z2ywRRLbtHrdzfdyv797uADztdgtkA7sBwTly8LYL5x/
Ln9bA\nblXd57Fsk9drecex0 /2nLb2PR2wAm7leKxFnB+

epg7t8q8f7e AHnyAAAVZ0OH /ILz3qaV8x60405w\n3wLGuNO0lo4A3/
Kze202x9Lklbvy+Pkt//qiqqaraRIWvVNUdHo09t9vssxy4fn6W /v7unx3G-+HKX8m
\nlrt+

IyN3ltHENME2dbsE8nKMO0{f91Drb1i3uzl WEXbSkXv15dtpTfcLwBw5HsO9P /
CuCwRxIbNOF0o\nqR4 /
Kar6nY91ZwHI9RaStn9faAjQWkQYey9rjdO9UVTuvlyrE6Y 7wtBnnW2pTj/
fQUFWPKV1BRH4P\ nJLkxji+nPV/fhF /DGSU1BDioqt /Tee4dWnKRU2qa48Vin/
VcUW/ VI1D1i+JOqdsIZCHCT7iJQ5+e/+\n3c/
ASYrbRGQbcAlwnoh4J2dwjmg8txXPv2Ug20p579dKI4elJYLY8DxwjdgcA4dOul7
+\
nDrwnlvlEJEFEGohzMvo6VAOMfAc8LCLJItIHuB6nO6aqxohl TxGpCzwIvOPxrbc0
\niMSJSGcROc19T12BvwNjcLp2xoulzy GcON8QO3m9 /vdACTAB/0

4n6p

qaOV1hlR

q04XRUTRKSh

121

c¢D4BxpDBORISKSCPwJJOH5Sqql\ nhoicLyJHu4krB2docomPVa/
C6VPvhtOn3xfnvEgGzpGSt2nALSLSxu3uu6vOgRrY VnadMXaqaEVT\
nPZYIYoCqvgc8Ckx1R2esAM4t5ymX4IwWeQtnp7ECSMc5WgBnh5CG843vPeB+
rd6Y /DdwTopuwzmp\
n609CrKuBOjj94Htwhrm2ckeoTAIeVdWlqvozznUQb4hlko/XeRi41+1iusNj+
etAb8rZUanqWpxk\n8y+co5bhOEN9IfZ1PqE264Pz99gPfA8+p6pc+1rvGfWybsw
/Olwlf3UMv4STo0ZcBinO2miMPXwFR5\nW3G7fR4CvnX /
VgMCeqemOkrPtBsTFuJcYDVJVcN+1bSIXA2MU9VB4Y41UrIDOZIXVZ /
Dk03tZEcE\
nxgBut9TvgBfDHUskEZEU92qGBBFpA9yP883fRBBLBCbmicjZOP3R23HG5IvACEA A

nJoJY15AxxsQ40ylwxpgYFxFFnpo2bappaWnhDsMY YyLKokWLdqpgsdrWi4hEkJaW
\nRBQR2VTxWtY1ZIwxMc8SgTHGxDhLBMY YE+
Mi4hyBLAWFhWRkZJCX56tSr6kNkpOTadu2L.YmJieEO\
nxRhTjohNBBkZGTRo0IC0tDScOlgmNIFVdu3aRUZGBh07dgx30MaY ckRs11BeXh51])
\nmjSxIzZjqmrZNHiqF /w11fm9LOApNiotYo8IAEsCtZz9fYypomXT4IM /
QqE791DOZuct+QJ/Lary5\niDOiMMaY qPXFg4eTQKnCXGd5EFgiqlb4+
Hj69ulLr169uPTSSz148KDP9c477zyys7TMr9dozZszg \nwQfL /6
Pv2LGDc845p1KvadyJADH-ptv2t7yaYiYRzFicycBHZtPx7v8x8JHZzFhc/
ZkFU1JSWLJk\nCStWrKBOnTo8/ /zzRzyuqpSUIPDRRx+Rmprq51V8e+yxx /
jd735X7irNmjWjVatWiPvtt5WO3RhT\
niyU18L28kb8ZZKsnJhLBjMWZ3DN9OZnZuSiQmZ3LPdOX10gyKHXKKaewbt06Nnj
\nlasXmzdvJi0tjZ07d7Jx40a6d+/
O2LFj6dq1K1deeSWzZs1i4dMCBdOnShfnz5wPw008 /kZSURNOm\
nzhSx69evZ8CAAfTu3Zt7772X+vUPz709cuRIJk+eXGPvwxgTZivig/
yOIPFHLkKIMgSHBqfAdOSeL\ nSz3wwUpWhdnr9 /HFv2ZTUHzk9Ky5hc WME2cZU + b
/6vM5PVs35P7hx / h8zFtRUREff/zxoW6an3/+\
nmddee40BA8rOrLdu3TrefvttJk6cyAknnMCbb77J3Llzef /99 /nHP/7BjBkz+
Pbbbzn++OMPPeeW\ nW27hlltuYdSoUWWOOtLT07n33nsDitM Y U8ttWQLv3QRt+0
0O/sTDnYac7qFFbJwkE4UQxREkiqlh3\nEqhoeaByc3Pp29eZH /2UU07h}
uuvZ8uWLXToOMFnEgDo2LEjvXv3BuCYY45hyJAhiAi9e /dm48aN\
nAGzdupVmzQ4XDPz—+++ZMWMGAKNH}H-

a0O0w5Ps9u8eX O2bNISrfdhjKkFIm2DKaOgX104YjLUbw7H\
nXRmSpgMiEVT0zX3gI7PJzM4ts7xNagpv/fakKrdbeoTAW7169fw+
Jynp8FzqcXFxh+7THxcVRVFRO\n6HVzcnICiiEvL4+
UlJTKhG2MqWO0Kc2HgaMjLges /dZJACMXEOYI17z+5GSuKR / WOpifHceXa3MEVU\
nvh49erBu3dbpD9wcMGMCT7774LwNSpU49Y96effqJXr14hjc8 Y U4NUYebNkLkILnoRW
\nHteGhy /qTZvUFATnSODhi30z8rg24Q7NplINPPZXFixdTOo30P/ /5
T5588kn690nDunXraNSo0aF1\nv/zyS4YNGxauUIOx1fXNBFjxDpzxf9Dj/
LCEEBFzFqgenp6v3xDSrV6+mR48eY Yoo+G655RaGDx /O\
nmWeeycGDBOIJSUFEmDpl KIOmTGHmzJmAkzRmzpzJUUcdFealfYv2v5Mx1bL6A3h
+zDkaqOGr\n8UVkkaqmV7ReVIwjiEZ //
vOfmTdvHgCLFi3i5ptvRIVITU114sSJgHNB2e23315rk4 Axphxbl8HO0\
ncdAmHS74V40ngcol2hGBiEwEzgey VLW X 12N / Ap4AmgnqgzopeKxaPCKKF /
Z2M8WHf{dnjpDEDhhi+h\nQYugNBPoEUEwzxG8CpSpfy Ai7TY CzAN8D+
10xJpoV5sFbVOLubhgl JWhJoDKClghU9Wtgt4+HngLG\nA7X /5
1QxxtQkV{jgFshYABc+D620DXdEQIhHDYnICCBTVZeGslljjKkVvvOnLJsKp /8
Feo4IdzSH\nhOxksYjUBf6M0y0UyPrigHEA7du3D2Jkxhg T Ams +glkPQK
L4dQ7wx3NEUJ5RNAZ6AgsFZGNQFvg\
nRxFp6WtIlVX1RVANVNd2z3EJtM2PGDESENWvWhKX9F198ke7du909e3{69+/
P3L1zj3j8kksudZdf\ nfuHaa6/
1hRdeOOKxGTNmcO655x66 X 1RUxLBhw2jatCkrVqwdYt0777yT7t2706dPHy688MJD
\nL1/02LFjg/PmjlkW21bAu7+B1nlhxL/
DOKLIIAIAIVdrgrNVTVNVAOADOB4VdOWkgCCNO3bICIT\
nGDRoEFOmTKmR1wMOlZqoylcffsgLL7zA3L1IzWbNmDc8/ /
zyjR49m2zbnl125¢ciXFxcV06tSJUaNG \nlbkqeerUgYwaNerQ /
Ztuuonu3dbszY8YMLr /8 cjly Dt c+HzpOKCtWrGDZsmV07dqVhx9+GIDevXuT\

122

ATIfdYmA1znUO

xsKFC8MdhjHG

NmjSxJFBLiQhN

17c¢SLdu3bj66qvp

VvY OeQgxkQhG

rDPS

ZbWX

nkZHBr7/auX9;jfNq /w6khINwQrpjiVBGtZYKWCERKCvA9OE1EMkTk+
mC1VaHSad9yNgN6eNqg3aiaD\n/
fv3M3fuXF555ZUjdrJz5szh1FNPZdiwYXTrlo0bb7yRkhKnwF 39+
vW57bbbDhWc27FjBwCDBw /m\n1ltvJT09naeffpoRIObw-+uuvA /
DCCy9w5ZV1i089+uijPP7444fKVR9 //PFcc801 /Pvf/wZg8uTJ\
njBjh9EMOGTKENWvWsHXrVgAOHDjArFmzGDlyJAAPPPAAjRol1YsKECQwaNIiXX36

nZ5GQ4PQkDhgw4lgkMXz48DJJxpiYt2waPHUMPHGO0s89Jvw4atgp3VD4F7RyBqo6|
\n23L/j2csgOL8I5¢V5jr1PRa95vs5LXvDuY+U2+4
zMmTM555xz6Nq1K02aNGHRokX069cPgPnz57Nq\n1S06d0OjAOeecw /
Tp07nkkks4cOAA6enpPPXUUzz44IM88MADPPvsswAUFBRQer3EmDFjGDhwIB0O7\
ndmTChAn88MMPZdpfuXLlofZKpaen89prznv69ttvD33jj4+P5+
KLL2batGncesstfPDBBwwePJiG\nDRsCcP /99x /xOieddBLffPONz/c9ceJELr
/88iPafOSRRxg/fny5n5cxMcN7zmEU5j4JR6UFrZRO\
ndcREraEySaCisQGaMmUKV1xxBQBXXHHFEdID /
fv3p1OnTsTHxzNql1KhDffdxcXGHdqJjxow5o0k/ f \ nc-HaokULHnzwQU4//
XQmTJhA48aNKx2fdzlrz+4h726hQD300EMkJCQccYRipbCN8RLiOYerKzpK\
nTFTwzZ2nerndQl4atYNr /1
elJnfv3s3s2bNZvnw5IkIJxcTEiwuOPPw6AeJOMS8r7va7l3+erly 5T\
npEkTvzvZnjl7smjRIs4444xDyxYtWsQxxzhluVNSUsjLyzv02Mknn8zWrVtZunQj
\n9VU+/PBDvvjiiyPitlLY xnjxtb4+BoMO05XF2xcUQw5L6yJ2iq0e3bO++8
wlVXXcWmTZvYuHEjmzdv\ npmPHjoe6U-+bPn8+

GDRsoKSnhrbfeYtCgQQCULJ TwzjvvAPDmm28eWubt / vz5{PzxxyxevJgnnniC\
nDRs2lFIn/
Pjx3HXXXezatQuAJUuW80qrrx6a69i7TnLWIcPnll3PNNddw7rnnkpycHPD7 /
eSTT3js\nscd4 //33qVu37ThGPWSlsYzxs+Nr/Y0Gac7i6YIMRILkMhj/jHAEgzu
/hz1Srr27K1ClceOGFRyy7\n+OKLD3UPnXDCCdx888306NGDjh07HIq3Xr16zJ8
/n169e¢jF79mzuu69sMsrPz+eGG25g4sSJtG7d\
nmgkTJIJnDdddfhXRfqggsu4LrrruPkk0-+me/
fu3BHDDDUyaNIIWrZwTUsOGDWPOnDIHPG{UqFEsXbq0\ n0t 1CN998M /
v27TWPoOKH07duXG2+88dBjVgrbGFfWapg6BhqOgoSa/
fIZTFaGOgjmzJnDE088wYcf\nfljmsfr167N ///6QxJGbm8vpp5/Ot99-+
S3x8tMVPqIL8 /HxOO+005s6de2h Ukafa /Hcypkbt3Qqv\nDIXiAvjNLPj1B+
ecQAjmHPbHylAbU1JSeOCBB8jMzAzaldm/ /vorjzzyiM8kYEzMyN8Hb14GB3fD\
ntR9BanvnpxaOEPLF /nuDYPDgwQwePNjnY6E6Gih19tInB /
X1u3TpQpcuXYLahjG1WnERvDOWtq+E\n0W85Vw9IHmIg+RxAJ3VgxzP4+
Jugpwv9ug3Wz4PwnocvQcEdUJRGbCJIKTkIm1a5ithGopVWXXrl2V'\
nGplkTMT5ZgL8+
Dqcegf0GxvuaKosYruG2rZtS0ZGxqESDab2SU50pm3b2jlczphqW /oWzP4b9Lke

7.UaNGHap5dNZZ

q4PGOGmvs47th

p3333XaW7clb59

nzrg33NFUS8QmgsTERDp27BjuMIwxseiXr2Dm7yHtFLjg2VpXTbSylrZryBhjwmL7KnjrKmhyNFw

+\
nCRLghDuiarNEYIwxgdq7FSZf6lwcduXbkJIa7ohqRMR2DRIjTEj174M3L4W8bPd4
\ nxpiKFBfCtGucbqHR02rNpPM1xRKBMcaURxU+vA3SWIwEX /
Au6nBnuiGqcJQJjjPG2bNrhOKFJDSE /\ nB04dD8dfHe7IgsISgTHGePKeXSw /
ByQemkZvKZVgzlk8UUSyRGSFx7LHRWSNiCwTkidEJDpOuRt;j |

gXbhjqjGWCIw

nooev2cWOuNbOLIYTgjl89F XgHKI9InwO9VLUPS8BNwTxDbN8aYyvM3ilgtnV2sJgQtEajql8Bur2Wf

\ngWqRe/cHwOoPGGNgql/ ot fC+
vpbOL1YRwXIB2HfCxvwdFZJyILBSRhVZPyBgTErs3QOHBsstr8exi\nNSEsiUBE
/glUAZPIraOqL6pquqqmN2vWLHTBGWNIi077t8MaFEBcPZ /61
Rqe2rel1CPmpIRMY C5wND \ n1GpIG2Nqg9xsmHQR7M+
Ca96Htukw6LZwRxUyIUOEInNIOMB44TVVI9HHSZY OyIFRy ENy+HHWvhymlO\
nEogxwRw+OgX4HugmlIhkicj3wLNAA+
FxElojI88Fg3xhjKIRUANOuhoz5cPHLOPMMcEcCUFKE7IIDV '\
nUT4WvxKs9owxplJKSmDGTbDucxj+NBwzMtwRhY2VoTbGxB5V+
PhOWPGOc2I4gqeZrAmW ClwxsefL \ nh2DBy3DyH2PqgpLA /1giMMbHI4+
fg68fhuKtgaPSWjagMSwTGmNixZAp8eg /0uMA5LxDhcw3XFESE\

123

nxpjYsOYjZ8L5ToOdEUJx8eGOgNawMtTGmOi34Rtdeyy07guXT4aEpHBHVKEZizNp

/NO1bMnOpXVq\

nCnee3Y2Rx7UJSIuWCIwx0cdzY pn6zZ0rhxt3hCvigaT64Y6uQjMWZ3LPIOXkKFhYD)
\nJRIY15AxJrqUTiyTsx1Q2L8digsg/Tqo22jc0QXk8U /
XHkoCpXILi3n807VBac8SgTEmuviaWAaF\n7/4VInCqYku2d/
zIL68uSWTGmOgSBRPLNExJILm8dWpKUNqzRGCMiS4NWvleHIiETyyzcuJuduYXE\
neY1sTUmMb586zuwWITUsExpjosW87IBSXXR4hE8tk7c3jpsk /0qF JX{5+YS/
apKYgQJvUFB6+qLeN \nGjLGmHLt3wGvDYeC/

XDqeFgbxekOat TWSQK1fGKZgqlISfjf5R /bnFTHp+hPplrIBo/t3CEnblgiM\
nMZHvwC54/ QLI /hXGvANpgt+CMv4Q7qkr5x0erWbhpD8+
MOo5uLRuEtG1LBMaYyHZwN7w+Anb /AqOn\

nOUkgwry3OINXvIvI9Y M6csGxrUPevpOiMMZErtw98MZI2PkTXPEmdDot3BFV2sof
\n3ed2D0sMdkRgjIIMeTnwxkWQtdpJAkcPCXdEIZZ9sIAbJy0iNaUOz44+
nsT48Hw3DygRiEg6cArQ\nGsgFVgCig+qecp4dzEWeS+
ixV7eUuawy8BaQBG4HLynsNY4zxKW8vTLoYti2Hy9+ALKkPDHVGIFZco\
nt0xdwracPN767UkOaxCH++kflph8RuVZEfgTuAVKAtUAWMAIY JSKviUh7P09 /
FTjHa9ndwBeq2gX4\nwrlvjDGBy98Pky+FLYvhOleh27nhjqghKnp71E1 /9

tIP7hx /D8e2PCmssFROR1AUGqqrP65pFpC/Q\ nBfjV+zFV /VpEOrwWjwAGu7dfA
+YAdwUcrTEmthUcgDcevgdwFcMIE6HF+uCOgklmrtvPM7HVc2q8t\
nV57077t06JSbCFT13xU8vqSSThVQ1a3u7W1AC38risgdYBxA+/bh /6
COVMMWEWBCOXAG/ fg8 X vRSx \

nk81v2HmA295aQq82DfnbyF5ILZgcJ6 AzEyLymIgOFJFEEfICRHalyJjgNKyqCmg
+oqumgmt6s\
nWbPgNGWMiXSFeTB1tDOvwMjnofcldY60Sg7kF3HjG4tliBeeHOOP5MTaMT1O0K
\n30uAr4FJIWxvudi0UtWtItIK53yDMcY cy XM-+gUZtIKkRZK2Ckc /
BsZeHO70qUVXuencZP2{t47Xr\n+t
tP2qLrhDumQQMcqlSaMYcDbqppTxfbeB65xb18DzKzi6xhjopX3fAISGZC1E06/
CvqODndOVIbK\
n3A18uGwrd5zdjVO61K5ejkATwYcisgboB3whIs2AvPKelICJTgO+
BbiKSISLXA48AQ0XkZ+BM974x\ nxhzmcz4BYP2XoY+lhny /
thePf7yGs49pwU2ndQ530GUE1DWkgneLyGNAjqoWi8hBnBFA5T1nlJ+H\ nTu+
gD2NM6ETBfAKetubkcvObTkXRJy49tlacHPZWbilQkYt8LPO8072mAzLGxLiGrWH
\nQKkZizN57JM1bMnJQ4Bxp3akQbLvCW{CraljguHu7+bAycBs9 /7
pwHdAYIjDG1KS8vZDgYxauCJIP\noJT35PMK /
HPWOIlo0TAnanALVUe45AIWIVIWvVvBRKBnqp6sapeDBzjLjPGmJpxcLdbSnoj9B8Hj
\n4vwe/kytn0/AU6gnn6+uQlePtvO4EAxgO2BXeRljasb+
LHh9JOxaB5dPhm7nwHmPhzugKssM8eTz\
n1RVolvhCRD4Fprj3LwdmBSckY0xMyclO5hPYmwlXToNOg8MdUbX8uusglqA+
LpcN1uTz1RXoqKGb\n3RPHp7iLXITVIIX]jEmJuzedHQH5WbDmOnQ4aRwR1Qt
+/IKuf61BSQnxFGikF9Ucuix YE4+X10B\
nz0egqtOxk8PGmJqy4ymSKAoF66eCW20D3dE1VJaVvqXnQd447r+ZO3L5/
FP171105fWqSnceXa3\nWnmiGAK{j+Ai4dFGcOUPi/
qigNgxibMaYaLVthTOzGMDY /0GLY8IbTw149JM1zF6Txd9G9uLko5sC\
nl1Nodv7dAjwgeA4ar6upgBmOMiQGZi5yZxerUgbvith6ZHhzuiant74WZe /
PoXrhrQgasGdAh30JUW \ nalmJ7ZYEjDHVtuk7e GOEJDeCaz+0iiSwcONu /
vLeCgYe3YT7hveMdzhVEugRwUIReQuY AeSXLnTP\
nGxhjTMXWz4YpoyGInXNOoGHrcEAUbRI7TDnLjpEW0Tk3m32Gcc7i6 AKOEDY GDwFkg
\nj2HaldCOK1wlA+
rXrugbVXEgv4gbXI19EfIEJU8edQGrdOuEOqcoCHT56bbADMcZEEc/5B0Oo02dqg4a\
nbnOcjHnXuR /hSkqU295awtpte5k49gSObl4 /3
CFVS6AzILUVkfdEIMv9eVdEIqsCIDEmNLznEzi4\ nC0Sg39i0SAIAT37+E5+
t2s69w3oyuFvzcldTbYF2aP0XZ1KZ1u7PB+4yY4wb5kq /5 BLQEvoT7ckhGe)\
nZi7J5Nkv13HFCe24dmBauMOpEYEmgmaq+19VLXJ /XgUivBPPGFPzomw+
AU9LNmdz5zvLEN+xMQ+O\
ngB0Tz9¢eEQBPBLhEZIyLx7s8YYFcwAzPGRKCiAqdkt CSRNp+
At205eYx7TfSHNGyTx /Jh+1EmIzBFC\
nvgT6Tg4DLgO2AVuBS4AqnOAWkdtEZKWIrBCRKSKSXNXXMsbUEnlI74c1LofAgxHI

124

D

kJmdyz3TIwME

OdwzfTkndmzM

5j7

OGzILV8SJylchJ

'vZtnlETKf

oB

yxQ7eWyMCcTa

VqY

+w+QSS5RYU\
nc8PrCzmQX8Qr15xA43qROOLIOBHDWOCLGiJBkWkDfBHnPkNckVkGnAFSGpNvL4

\
nahj5H4ic2YIOAAAgAEIEQVRLODxqqFFbJwIEOHwCnISVO95Zyo0otObx0VTrdWjY
\nt6hqtnv/
KGCCql5XjXZTRKQQqAtsqeLrGGPCbefPMOkiOLALRrOFXc50lkfojh+
cGcZKC8bVT05g\nX14Rd5/
bnTNT7tgh3aEER6AVIfUqTAICq7ThGR46rSoKpmisgTwKIALvCZgn5WldcyxoTZ5gXw

\
ncTD2w4ivIAplp5nclldEvAgtGiSFObLgCfQcQZx7TFACAIDSmEiWsPbmvMwLoiD)
\nsIBEFu7YsaMqTRljgmntJ /DacKduOPW{RUUSAN /
TTBar8RnP4UpouALNBFMAL4Xkb+JyN9wJq5 /\ nriptnglsUNUdqlqIU6biZO+
VVPVFVU1X1fRmzWykqjGlyqLXYOo0aN4drv8ecmnQOd0Q1xt90krV1\
nmsmakEQOjJ4tdFZCFwhrvollVdVcU2fwUGIiEhdnK6hIcDCKr6 WMSaUVOGrx2DOP+
DoMVH-HS 1y Apsssr\neGtaP4kd+ /PLLK+
t00zZWhMoMhGOMHFDVZ4EdItKxKg2q6jzgHeBHY Lkbw4tVeS1jTAgVF8GHtzpJ\
n4NjRMGpql CWBZRnZ7MOrwPsysdo8zZWRNCLTWOP3AXcA97qJEYFIJVGIXV+1
W1ubr2UtWrVLVsHXG\

n1B4FB2HaVbDoVTjlTzDyOYhPrPBpkWRF Zg5jXp5H84bJ3De8J21SUxCg TWoKD1
/UO02JmG6uKQE/ 4\ nXggch /MtHIXdIILRN5;WGOPwrB7asDXEJ8GeDXDeEID /
hnBHVH+NWZOZwb5cvzaJCcyJQbBtD2gLpc)\
nO7BKnR4RKdBEUKCqKIIKICL1ghiTMSacSquHlhaO25vp /
D7xxqhMAiu35DDmlXnUT0pg6jgnCeSa\
nQM8RTBORF4BUEbkBmAWSFLywjDFh46t6KMCa / 4U+
liBbtWUvV748j7qJ8Uy5YQDtGsdeEoDARw09\nISJDgb1 AV+A+
V{08qJEZY8IjiquHelqzbS9IXvvwDKYnxTBk3gPZNYjMJQCUuCIPVzOXkR+
BUYHfw\nQjLGhIOgJDWE/ JyyjOV49VBPaT7{tY /
RL80hKcI4EQjSJ7d7ucruGRORDEenl3m4FrMCpRPqGiNwa\ngviMMaFSmAvv /
sZJAhJ /5GMRX;j3U00/b9zH6pRIIIBOmMjBtAWtPYTgJQ8TmCjqqbwrl19LIC5qgdH
\nTsRJCMaYaLBvG7w6DFa8COPuhwufhObt AHF+
D38moovIlfrZTQLxbhLoaEkAqLhrqgNDj9hDcE8Sq\
nuk9ESoIWITEmdLYsgSmjIC8HLp8EPc531k{Bjt /
Tuqz9jHppHiLCmzcMoHOz6LoYrjogSgSbReQP\
nQAZwPPAJglikdFxUZoyJZKtmwvT{Qt0mcP2n0LJ3uCMKivU79jPqpR8AmHLDiRz
\ngziF4i73KEU9AJu83pjIlpepMJv/
1Q9C2P1wxGeo3D3dUNcZzPoFmDZLILSgiyROienRzuxbWW7mJ\nQFWzgBt9LP8S
+DJYQRIljgqgwF2b+3
jkf0OcKGP40JEbPbLHe8wlk7XMq2Pzu9KPp0sKSgC8VjRp6\ngXTUKI/
H6onIdSJyZXBCM8bUuH3b4L /nwYrphO8KR1ESAN /zCQBVMHuHXMEQTGSrqGvo3cJ
+HIMYZ\
nOroDSAa6AA2BicDkoEZojKkZnieFr5gM3YeFO6KgiMX5BKqroq6hJcBIIIIfSAd
\nPmNMVXgWjWvUFrqdBz—+DvWaRvVJYYCmDZLYsS+25
hOorkBLTOwH5gQ3FGNMjfAuGpezGea/AEdL\
ncpJAFJOU9rZkezb7cp35BNRjebTPJ1BdIZmYxhgTCfwVjSsuiOoksGDjbne+
gRTuPb9HTMOnUF1V\ nmoDeGFOL+
SsOV1pOOgp9u24nv3ltlalSk3nzNwNo2SiZ6wd1CndY EaNSRwTuPMPGmNgsbhPfy!
\naJynL9dkce2rC+
jQpC5vjTullo2iaxRUKAQ6VeXJIrIKWOPeP1ZEnqtqoyKSKiLviMgaEVktIidV'\
n9bWMMa7ilvj8Pji4dE8Rr1t00Khrn6ZMVWxn3xkK6tWjAIBsGOKxBUrhDikiBHhES
\n5air6mngE1XtDhwLrK7Gaxlj9m2HNO0bCt09D+nUw4rmoLBrnaeaSTHT7 /5
mL6tE118g0nclS9OuEO\
nKWJVZj6CzXLktdyyV2wEQEQa4SSRse7TrFgAFVXktYwyw6Tt4+1rn+
oCRz0P{Uc7yvgPDG1cQTVuw \nmbuml+
PEjo155Z0oTqJdkpzurl9Ajgs0icjKglploIndQ9W /
xHXEuTPuviCwWkZd9zYESIUNEZKGI\nLNyxY0cVmzImiqnCd/+CV8&+
HOvXghi8OJ4E09vr3Gxn /7jJOTAKMV6 /tb0mgBgSaCG4Efg+0ATKB\
nvu79qkjAqWT6H1U9DjgA3029kqq+

125

xJgz2bY{IFOPW

"1d0g1LtBaQ68B

5mUg

MUtZ578t17vXEi

3JKAp4oSwiXA

4cwhsFpV14Yg

Oo

BZwN7AJQlaU4

qKrpgprerFmzKjZITJTKy4FpV8Fn90L382Dcl9DimHBHFXQv\ nfr2e+2
auZGjPFrx4d T4+SE+
MripKpUKAXIO0EagqmUAaQoarz3Pvv4CMRGGP82L4S3roK9myEs / 40\
nJ91c9uRwIFFVnvliHU /N+onz+7Tiqev7khhvl0HVIIASgYhOBP4ApHk-+
R1UvqGyDqgrpNRDaLSDe3\
nTMUQYFVIX8YmLROKnxwKyQ3grEfQoeTwx1RUHiWkW6dmkz3Veg35YnUWI1/
Rry6MX9yE+LroTX6gF\n2rk2A3gF+ACoiZnJ /gBMFpE6wC8402AaY /
wpyodP70aFE6HDILhkIjRoEe6ogsK7jHRmdh6Z2XkM\
n7NyYxy7uQ5wlgRoXaCLIU9VnaqpRt5hdek29njFRx7TNoXIOWEF8HsjfBwFvhjP
+D+0g9QeqvjPTG\nXQctCQRJoFvT0yJyP/ AZcKisn6r+GJSojIl13kXjom11lfg
/4HQx9THxxhYj/MtJ5IY4kdgSaCHoD\
nVwFncLhrSN37xpia5K90300P4JyHQx9PiFkZ6dALNBFcCnRyL /4yxgSTv6Jx /
pZHKkWKLNrN7{76V\ nkQ6xQMdfrQBSgxmIMTFPFRa84v /xKC0aB5BXWMw905cx /
t1InNS5KX8b2cvKSIdQoEcEqcAaEVnA \ nkecIKj181Bjjw4GdMPNm+
01jaN4Tdv8CRR5941FaNA4gY89Bfjf5R5Z15PD70ztz+9BuxMcIJYWZ0\
nCHdoMSPQRHB/ UKMwJpb9PAtm3AR52XD2w3DijbDinSOnmhxyX9QVjQP45ucd /
HHKYoqKIRev6sdZ\

nx7QMd0gxKdAri78 KdiDGxJzCPJh1P8x73jkKuOo9aNnLeazPZVG54y9VUqL856v]TPhsLV2aN

+D5\ nq /TRsSWmZkmMmRMpNBCIyV1UHicg+jjx314CqasOgRmdMtNg+
Et79DWStco4Azvyr0/0TA/bmF{Kn\
naUv5fNV2Lji2NY9c3Jub6daL3uohIlUNGnXw9AVRuUEIBZjol9JiXMEMOt+SE6FK9
+FLmeGO6qQWDbNt\ nLze+
sYiMPbncP7wnY090Q6K8TIIkqCgRaAWPG2MCtXercy 7gly+
h67kw4lmolzTcUYXMzCWZ3P3u\ncuonJzBI3ABOSGsc7pCMq6JEOFxEbv{3oKo+
WcPxGBMAPEtENGoLPYY7BeMKc+H8p6Dft VFdAMdSz\ naFyrRs10bl6fb37eS{+0
xjw7+jiaNTR5hWuTihJBPFAf55y AMSYQ3iUicjbDD+7Ukdd9Cs26hje+\

nIPMuGrclJ48t0OXmclrUpL19zgpWProUqgSgRbVIXBKERITLTwVyICjfokAP6Lxq3L.OmBJoJaq6K9i

\nRwLGVIJbfEhGZoY0jTPwXjfO93IRfRY1gSEiiMCZarP8SxM-/
VRSXiCjl12cptftk99WNG42qveriFV\
n3R2qQIyJaLl74NN7YckkqNfcmVO42KOCZhSXiADYfaCAvT6/
kveXbqF1lo2R2HSggv-HwHFZWNK52\
nsw47Y6prlfvw7xNh6RQYdDvcutwZGtqoHSDOT7T+
HPRO2VwvIbtpWhT37Fxyu2cvvQrsy583QevbiP\

nFY2LIKIanksFRCQeW Ahkqur55a2bnp6uCxcuDE1gxgRq33b46A5Y / T607A0j/
g2tjg13VCGzY 184\

n98lcweerttG7TSMev7QP3VtasYHaREQWqWgFs0GG87ruW4DVgG05JrKowpI34dN7nHpBQ

+6Hk /8A\

n8YnhjiwkVIJWZS7bwlwIWcrCgmPHndGPcKZ1IsBFBESssiUBE2gLDglcAvxesGVREr7NkIH9zqXB3c

\n/iS44F /QtEudowqZ7Xvz+Mt7y5m10ovj2qfy+
CVI90Lg5VaCJdOE6IvgnMB7TwuwWJyDhgHED79ulD\ nFJYxfpQUw /
wXnWsEJA7OewLSr4e42PgWrKq8vSiDv324isLiEu4d1loNrB3Yk3iaTjwohTwQicj6Q
\npaqLRGSwv/
VU9IUXgRXDOEYQoPGMcniUibrdwRv3s2QBHD3VKRKS2C3eEQeVZIqJ5wySOgluHNdv2
\n0b9jYx69ul+
Vjldy4TgiGAhcICLnAclAQxGZpKpjwhCLMWV514jYv835nX49DJsQ1TWCoGyJiO1ff
\n89m+N5+Ljm /DE5ccS5wdBUSdAkB /
XquodqtpWVAOAK4DZIgRMreKvRMTPn0V9EgD /JSLm /bLbkkCU\
nio0OTMMCtWu9UyTOF3+HI16KIqpJpJSJiTlinBVLVOcCccMZgDAD 54+
GbCfD9s7gT8IVdAJI8pLRGzf\
nm8c905{7fdxKREQvOyIwsUOVIrONz6bD3CthmIvgvMfLThsZxSUiVJUZizM566m
+W79Ti46rjUp\niUfuGgxERHSziUJN7Nq6FD6+C379HIr1hUtfg/
YnOo8INzpyYpkh90V1iYid+/P5y3vL+XTldo5v\
nn8oTIx5Lp2b10ObXr4dVFDrVNTuPPsblYilogFrcREZViJCVOjDuyC2X+
DRa9C3cbOlcHHjYG4+HBH\ nFIIfL9 /KX2asYH9eEX86qyu /
0aWTXRcQZSKhxIQxoVVcBAsnwpd /d84JnHgjDL4bUILDHVIITTIQ\

nwP1lupdDebRox4bJj6drCrg6OZZYITHTynjO4z2Ww9hPIWgkdT4NzH4XmPcldZch9sXo7d09fzp4D

\nBdw-+tCs3De5ss4dYZSwQmCvmaM /ibCZDSGC57w51IPsqvB/

126

C8Mrhlago3n9GZRZuyeWdRBt1bNuDV\na0 /gmNaNwh2mqSUsEZjo4++
CsMS60POCOMcTYt5XBmdm53LPIBUIcPPpR /PHIV20k2BHAeYwSwQm'\
nuhQc8HIB2N7YmDPY35XBTesncYcNATU+2NcCEx2KCmDHS /
DMcf7XifILwkr5uwJ45 /58n8uNsURg)\
nlltJsTNJzLP9nNnCmhwNp90VUxeEITqQX8RzcIY5F0b7TYFcGG3+sa8hEJIVY /
QHM/ jvs X OtcEHb+\nP6HzGc6J4CZHX8QFYQC5BcVM+mETZ3+1nl0HCujRsgG /7
Dxgk8ebgFkiMJFFFdbPdnbyW5dA065w\ n2evQ44IjRwL1uSxqd /yl8gqLmTr /V
/497z079uUz60im3Da0K /06 HFVm1JBAGWzKY4nA1ET7elwEM\
nuQ9S0OzjLNs2FRulh5H+
g92UQH1ubcUFRCAMWbubfX65ja04eJ3ZszLOjjuPETk0OrTPyuDa24zcB\ ni63 /
IBMZ{FOH8N5vQUugXnM493Hodw0kJIU3zh ArLC5h+08ZPPPFOjKzcw /
VBjq5cxMkyq+LMMFI\ nicDUPr6uA9ASpxDcLUugTvRPk+
jZtdMgNZnTuzVj7rpdbNplkD5tG /HQhb04rWszSwCmRIgiMLWP \
nvwlg8vbGTBLwvCBsS3Yek+dtpnWjZF660p0zezS3BGBqlCUCUzuUIMBPn8C3T+
NzUhilmesAHv1k\njcSLwhAY2rNF6AMyUS /k1xGISDsR+
VJEVonIShG5JdQxmFqkqAAWT4LnBsDUUbB3C/S5AhJi7zqA \
nLdm5PPzRarbm5P18fGu27+XGVFc4jgiKgD+p608i0gBY JCKfg+
qqMMRiwiVvrzMfwA /Pwb6t0KI3\
nXPQyHHOhRMwro6CExcx3Aks3ZvPzNL3y8YhsAKYIx5BaWIFnPLggzwRLyRKCqW4
\nlogF+7
bBvOdhwUTIz4GOp8KIZ6HzkJi6DqCoulTPVm3nlbkbWLRpDw2SErhuYBrXnJzGw
\nAHZBmAmusJ4jEJE04DhgXjjjMEHgfR1A /9/
Crp9h6RQoKXIuABv4R2jTL9yRhtS+vELeWrCZ /36 7\ nkczsXNolTuH+4
T25NL0d9Z0Ocf8e2RIUFsAvCTMiEbapKEakPfAU8pKrTfTw+DhgHOL59-+36bNmOK
\ncYSmyryvAygl8c74 /5NuhiadwxNbiHhf2XvdoDQy9+QxbeFm9ucX0T+
tMdcN6sjQnilsekg TNIFO \nVRmWRCAiicCHwKeqtmRF69ucxRHmyZ6+
Sz43bA23rw59P CHmPfyzl AAX9G3N9IYM60qdtbE2PacKj\
nls5ZLM4A6FeA1YEKARNBtq+Ef /1X/d /79bQxhMmj3zse /
hni4ZJPHIFOWWyjQmTcJwjGAhcBSwX\ nkSXusj+
r6kdhiMVUV8FBWPkeLPovZCyA+CRnJrDCg2XXjeLrAHILivls1Tbe /TGTbXt9D/
Pcvtfm\nAzC1UzhGDc3Fb8VO0EzG2r3J2/kvfckb /NOKCZ/8
Djh0F62aVPUcQhdcBqCrzN-4xm+o+Z/G/5Vvbn\nFIEmNYUGSQnsyy8qs74N /
zS11V1ZbHzzV{22x3D32/4+rsHkexNdxRv+kXwsdBh4e /Ik6TDNKrwPY\ntOsA03
/MZPriDDbvzqVunXjO692Ki45vw4COTXh /6RYb/mkiSthGDVWGnSwOMV+
jfuISIC4RinKd\nSV/6jYVjR009Jn5fJpJ5j/q5+
YzOCMK7P2awYOMeRGBg56ZcdHwbzunVkrpl Esp9vg3 /NOFQqOcN'\
nVZYlghB7qpfvCeATU2D025A26MiLv6KMv1E /AJ2blePifm0Z2beNdfWYWq /
WijhoytVhuNqz50HcS \nACjMg46nhDamENu5P5+ /frDSZxJoVj+JWhbefZpU/
TdSxRBDr8vbC209h5XRYIwWUFDoXfqmP6pdR\
nOOgnpERZuWUvs9dkMXttFssysvF3kLxzf74lAROVLBHEooIDTsnnFdPh58+
hOB8atoETfwvHXAS7\n10f8qJ /y+uj35xcx9+
cdzF6TxZdrd7BjXz4icGzbVG47sytv /LCJHIVKDvWOriATrSwRRCvvUTHD\
n74akhs43/58+dcb512 /hnPTtdRG07Q9xblXytm79Inwgd9ePdx5+
ZnctdTy5jztosdudvYN6GXRQW \nKw2SEzilazPO6Nac07010219Z+
rL903r2qgfE1PsZHEO081frB6BuU+g5iwtn5tz8J4uJDHI14+QDXxk\
nNpnZPt470KV5fc703pzTuzenX4ejSIz3PSWHjfox0cBOFsciVdixFj6603cSqNc)
/j1PuPMpnZ\nuSzYsJsFG3{f7TQICfH77aQG93sjj2t1038SM6NsjxJrcPfDLV 7D
+C1g3G /b6me8X4MDOIEKC5X0j\ nLylRfs7az /
yNulm4cTcLNuxmizurV40kBJIS4sgvsoldjAIUZOwVYpGvK3v7TXAYIxZD507vj/
wly \nFAKWQFIj6HQqnHoHfPWoM+uXtwgZ9eOvj/+
L1ds5WFDMwk17yMktBKB5gyRO6NiY36Y1Jj3tKLq3\
nbMgHdmWvMZViiaA28u7jz9kMM38HPzzvjOjJywYE2hwPp9zhTOvY Jv3wt /069
SJ21M+B/ Cle+t /q\nMuP484tK+GDZVjolq8e5vVgSntaY /mmNadcdpcyQztljB+
viNyYwdrK4tikpgad6OFM6epM4p6jb\n0UOg0+1Qt7H /1/
F3RBEiFZ1sLSgqYcPOA6zdvo+12/aydtt+1m7fy+bdvvv3wenj3 /DIsBBEb0x0\
nsBIT4RbojvjgbshY6HTxZCyAzEW QHPnRQX+mh3UsGuCrxINdeLjOLNHc+Lj4 /
hp2z7W79hPUYmz\n7cXHCZ2algNrywZ0b9GA /363kd0HCsq8bpvUFL69+4

Gt7ul9IrlaaANY

b17jjhH

VIbl

127

yQvQ9jIp2NGgonX107H /zRmau3aTd3p+/u\n+
PdscNaROGjeE3qOhNXvOyeBvYWwj78ywyd VIVOHCti48wAbdh7ggQIWlenaKSgu4d

nlg0400dzurdsQNcWDejUrB5JCYeHsbazcfzGhJQlgmD44sGywzcLc2HGTYfv128J
\ndyCpvvNY2qCw9vH70l17z /RI7TM8vokerhmzceY CNubyd /sZdB9i086D P+
vveBAL6RmM99 /MaEliUC\ nfwLp2lF1hmTu+hl2 /gQT7{3Z+/
BVtA7j0NScBNGzjv4InDdTzr+wFUQfyi8jal0 /W3jweS8FFOLbew\
nhHtnrDhOP06g7VF1SWtaj+PbHOVak3pObFqPtKbluPLIH9iSXXaWrsoM37Rx /
MaETvQmguqcLPXV\ ntfP+H2DLYueirF3rDu /48

zz67BOSnVr9CSIO3X5vjdr BMSMDCmFG8UAez3+-GLXm5tE504c¢7ibgT2\nTN/
f6Me /s4dwFG3fRrnE9svbmk7Uvj6x9+exwd /4
HCnwUmfNh4th0OjSpR7uj6lInwfdVuePP7m5d\
nO8ZEkKLAkAhE5B3gaiAdeVtVHarSBZdMomvkHEordb6U5mb537¢cGQyKCl2Ttbu3dw4H
/1InP7q8fL\ndu0U5cEPzzm367¢Epl2cMglNuzrTNDbt4uzod+JY8P4L9FpOLyly
+IRnrtZhRec/cEIA4fvakd /9\n7jK27821X4fGZB8sJCe3kOzcQnIOFhy6nX3Q+
b0iM4fikiMHARQUI1zB5nnOkUrdOPMObJNG8QTI9\ nWzdkcLdmNG+
QTPMGSbRomMzt05aQ5aPoWpvUFM703qLCHK 1rx5;IEvJRQyISD /
wEDAUygAXAKFVd\ n5e851R01dPDR7tTNLXtBVVF8CgkdBzo7+/1
ZTreOj3LLiu9JIRXhwO2/ UJRQn4LiEoqKlcLiEgqL\
nlaKSEgqLIMKSEsa9vpCTD85mfMIOWssutmgTHiu6jK+
SBvPb0zqTV1BMbgH7U1BCbmERuYeWIbAy\nVH-
fQiJgKiEDD5ERS6yaSmpJIw5REvvI5Sp+91geUPnE39pPLzv69RPymJ8Tx8UW /
bmRsTQWrzqKH-+\nwDpV /QVARKYCIwC/iaCyknN9jMEH40tyWb1+
17skld30ZpekslMasZOj2EIDdmoqWZrK2yW30zau\n7M40s6QJg /7
xfUAxvM8g3i8YdOTC3Cle+2QtIs6ONSUxnuTEeOrWiSeljnM7NSWx3CTw+
nX9Sa2b\nSKOURFJT6tAgOYG4uCPTIr+
ia61TUypMAmD{612JNeFIBGOAz7OpGcCJ3iuJyDhgHED79u0r1cCW\ nkia+d+
TalJe6v4dKIECcQJ0JcHMSLOEqgjQhx1jz2w2U8kvgydT26dgbqHR4ruoy/
nNeDhHghIT60\nOvFCQlwciQlxJMY JifFxJMQLd7y91J37y46Db9UomS /
vGExSQly5E52425G3SU3h1K7NKnz /d57d\
nrdp99Hay1pjYUWtPFqvqi8CLAHQNVea5L9cZw /jC58rsy F+uM4YnL+9
b4fMHrhrK3Xsp07WzqOFQ\
nnjm1U4XPv3dYT5874rvO6U5yYsVIn6u7l7dvOMaYyghHIsgE2nncb+
suqzF9h43jvveKuFWnHtqR \n/5MrGDRsXEDPd3bEBUd07aQkxvNwiHbENDbE;jt2
/0xphAheNkcQLOyelhOAlgATBaVV{6e05VSkxU\nd2IRm5jEGBPpanWtIRE5D /
gnzvDRiar6 UHnrR2StIWOMCbPaP GolV{0I+CgcbRtjjDmS70tDjTHG\
nxAXLBMYYE+
MsERhjTIyzZRGCMMTEuImYoESEdwKYwNd8U8F28x9q39q19a792x9BBV SssRxARiS
\nRGRhIMOvrH1r39q39iM1BusaMsaY GGeJwBhjYpwlgoq9aO1b-+9a-+tROGQY/
BzhEYYO0yMsyMCY4yJ\ ncZYIjDEmx1ki8 CIi8 SKyWEQ+dO83FpHPReRn9/
dRQWz7NhFZKSIrRGSKiCQHu30RmSgiWSKywmPZ\
ndyKyRkSWich7IpLq8dg9IlrJORNaKyNnBaN9d /gc3hpUi8lgQ228nll+
KyCq3rVve5X4 /95qMwV/7\nHo//SURURJqGsnOR6SsiP4jIEhFZKCL9g9R+
sojMF5G1lbvsPuMtDsg36a999LFTbYMD7nJputxBV\ ntR+PH{B24E3gQ / {+
Y8Dd7u27gUeD1G4bYAOQ4t6fBowNdvvAqcDxwAqPZWcBCe7tROvbBHoCS4Ek \
noCOwHogPQvunA7OAJPd+-8yC23wo043r3dAGeujJ7+PveajsF{+479
dsCnOBdTNg1l4-8BnwLnu8vOA\
nOUFqX4D67ulEYB4wIFTbYDnth3IbDGifE4y2S3/
siMCDiLQFhgEveyweAbzm3n4ANGBnEEBKAFHEm\ n76kLbA12-+6
r6NbDba9lnqlrk3v0BZxY53Fimqmq+qm4AlgHIqQZITQM3AY+oar67TIY Q29+
qqj+6\nt/cBq3GSsr/
PvUZjKKd9gKeA8YDnil5Qta9AQ3el1RjjbYjDaV1Xd795NdH80V Nugv /
YJOTZYyX10\njW//

pSwRHOmMfOP94JR7TLWqjqVvi2NgBFMBpW1UzgCeBXY CuQobqfhar9clwHfOzebgNs
\nrZrUFThFROaJyFcicklo2he RNOA4nG+F/j730MXg2b61jAAyVXWpl2ohaR+4
FXhcRDbjbJf3BKt9\

MV22iTmkL3

bdOdOXzbpEPr

[smB

{_C

Ingsg8MT7

nt2tkCZAFfK6q87xWCe026 Kf9UG2DIdnnBO1vb4nAJSLnA 1mqusjfOuocnwVIvK3bDzgC55CvNVBP

128

\nRMaEqn0/M{OFKAImh6pNVwLQGOcQ/
U5gmohIMBsUkfrAu8CtqrrX87FQfO6e7eN85n8G7gtmm /7a\nd9//
TcBtqtoOuA14JVhtq2qxqvbF+dbfX0R6ecQVIG3QT /tB3wbDvc/
xZIngsIHABSKyEZgKnCEi\ nk+
MjSQUAAAQjSURBVIDtItIKwP2d5{8lquVMYIOq7IDVQmAG6cHII2z+
CilwFzgeudDdGcOaYbuex \nWIt3WU3LAKa7h+3z2cb4tNQI1W+yKSiLMTnKyq093F
/j73Go /BR/udcb4QLHW3x7bAjyLSMkTtAlyD\
nsw0CvM3hLoighQOqmgl18CZzjxjWWEG6DXu2HYhus7D4neP9 /NXGildp+
gMEcPnHzOEeeuHksSG2e\nCKzEOTcgOH2DfwhF+4-0
AaR56sPQAYBTTzWu8YjjxZ9QslcLLKR /s3Ag+6t7viHASLMNp3X /d14J9e\ny31
+7jUdg7 /2vdbZyOGTxSFpH+
dewWD39hBgUZDabwakurdTgG9wdv4h2QbLaT9k26DbxmAq20cE\nq21VtUQQwB+
ICfAF8DPOKILGQWz3AWANsAJ4w / 2DB7VIY ArOOYICnGIB1+OchNoMLHF /nvdY /
y84\noxXW404qCUL7dYBJ7ufwI3BGENsfthHPovczj/
7Z5X3udekzH4a99rnY24iSBUTbvLF7k7nnlAvyC1\n3wdY7La/
ArjPXR6SbbCc9k02DbqvOZgA9jnBaFtVrcSEMcbEOjtHY IwxMc4SgTHGxDhLBMY'Y]
+Ms\nERhjTIyzZRGCMMTHOEoGJKW61zbO91t0gIv+px Gv82ev+
dzUVnzHhYMNHTUwRKXHASap6rceyH4Dx \ n6h TAK+-+5gnNROV5VIR /
c¢SIOJHTsiMLHmHWCYINSBQ4XWWePfiMidIrLArYF{fWhe/za39 /jrOxUWv\
n4FSIXSIik911SqtXIiJ3ichyt7791+6yziLyiYgsEpFvRKSTu/
xSceaeWCoi5SYhY4IpldwBGBNK\
nqrpbROYD5wIzgStwbindY CnTBqakjwPsicipONdguwDWqg+
gM403B1ipQdQUTOxSkceKKqHhSRxu5D\ nLwI36v-+3d/+-+DEVhGMe/
j0XSsBgsRn9IAEwa7SAwGkwETXfwBZqvBYJMwYCJhYpIYTIhEI35sBiEx\
nicTCYngN55QSIiHpcp7Pcpvb23vHp6ened61a0kDwBIwSCqV G461++
bBK2at5iCwEmM2SAqARBDVg\
nnDQM5Sxf00EKgDvgthECvxgC1liLiBd5Dp4NUHrjd VF7Zno+
HwLqkLT4K3sxazkFgJdoBFiX1AZWI\nqEuaAOYjYrn5wvzTOfM /
ntUGPH23goilmbxCGAHgkvoj4vEfzzL7E4+8RWHEITaQ6AFZJqwNIlyGn'\
n8zd4JPVI6v7hFq+5uvmrfWBKUiXfoytSt/+NpLF8TpKqt
XVvRIXExBzwwOeKYbOWCcRBYqTaBaj4S\
naRrcBnAs6ZK0qdz5w2dXglvGZnFDROwBu8Bpnnglm9+aBGqSzklV46P5 /
ELeWL4CjkhNn2Yt57+P\
nmpkVzisCM7PCOQjMzArnIDAzK5yDwMyscA4CMT7TPCOQjMzArnID AzK9wbd-+THG/
gPBUKAAAAASUVO\nRK5CYII=\n",
"text/plain": |
"<matplotlib. figure.Figure at 0x7efe8da02470>"
]
} 9
"metadata": {},
"output type": "display data"
}
] b
"source": |
"pyplot.title (’Time Complexity of Prim\\’s Algorithm ’)\n",

ll\nll ,

"ll1=pyplot.plot(x, y, ’o—’, label='Prim(g)’) \n",

"\n"’

"avg = sum(|y[i]/x[i] for i in range(len(x))])/len(x)\n",
"\n"’

"12=pyplot.plot(x, [(avg*v)**2 for v in x|, ’o—’, label='Apprx
O(v~2))\n",

”\n”,

"pyplot.legend ()\n",

"pyplot.ylabel (’Time (Seconds)’)\n",
"pyplot.xlabel (’Vertices ’)\n",
"pyplot.xticks (range(40,440,40))\n",

129

"pyplot.xticks (range(40,440,40))\n",
"pyplot .show ()"

|

}7

{

"cell type": "markdown",

"metadata": {},

"source": |

"## Question 2\n",

"\n",

nsnn’

"Illustrate a depth—first and breadth—first tree search,
preferably\n",

"using a stack and queue, using the tree of possible moves in a
\n"7

"triangular peg solitaire game as the tree.\n",

"\n",

"The game I have in mind starts with this configuration\n",
"\n",

n .\n||7

"\t * x\n",

" * % x\n",

* % ok x\n",

* % % % *x\n",

"

n

ll\n"
B

"where each % is a peg in a hole, and the . is an empty hole.\n

n

b
"The goal is to remove pegs by jumping as in checkers, leaving)\
n",
"one peg in the center as the final position.\n"
|
}7
{
"cell type": "markdown",
"metadata": {},
"source": |
"Switching from a breadth—first search (BFS) to a depth—first
search (DFS) is as simple as switching from a queue to stack.
In a BFS, from the root node you add children to a queue. Those
children are then visited at that depth and the process
repeated for their children at another depth. If you switch to
a stack you now have a DFS. You will search down an entire
branch(s) before reaching a second child from the root.
Arguably the hard part of this problem is the generation of the
tree and representation of the game. I’ve chose to represent

it in a pseudo matrix form, where each hole is a coordinate:\n

n
)

n \nﬂ ,

"<center > (0,0),(1,0),(2,0),(3,0),(4,0)
\n",
" (0,1),(1,1) ,(2,1) ,(3,1)
\n",

" (0:2) ,(1,2) 1(2,2)
\n",

" (073) 1(1,3)
\n"

" (0,4)
\n"

" </center> \n",

"This would make the corners points (0,0),(4,0) and (0,4). The
center is (1,2). Pegs are represented as astriks and holes are
periods."

130

J

)

~—

"cell type": "code",
"execution count": 8,
"metadata": {
"collapsed": true

}7
"outputs": [],
"source": |

"problem board = [[’%7, %7, %7 7%’ ’x’], #0 — 0,1,2,3,4\n",
" [P%°,7%7 7% %], #1 — 0,1,2,3\n",

! [7*777*777*7]7 #2707172\1’1"7

n [7*7’7*7]’ #3_0’1\111[’

n [’,’]] #4 — 0"

|
})
{

"cell type": "markdown",

"metadata": {},

"source": |
"Below are some utility functions for things like making moves,
displaying the board, finding neighbors, and determining if a
point is a peg or hole."

|

}7

{

"cell type": "code",
"execution count": 75,
"metadata": {
"collapsed": false

}7
"outputs": [],
"source": |
"import copy\n",
"\n"’
"def print board(board):\n",
n \u\n\?\nu7
" board = Array or arrays representing board.\n",
n \1’1”7
Given a board as
[[’*777*’,7*777*’77*7]7[7*’77*7”*’77*7]7[7*’77*7 ’>‘<7]7 [
ERR N R TRTS
it pretty prints the board:\n",
x % % % x\n",
* % x k\n",

* % x\n",

* x\n",

An",

n \"\"\"\n",
i =0\n",
for row in board:\n",
" print (\"{}{}\".format (\" \"*xi,’ ’.join(row)))\n",
" i+:1V“U
" \nu’
"def neighbors(p):\n",
n \"\"\"\n”,

131

p = A point in tuple form (x,y)\n",
n \n",

Returns a list of points surrounding it.\n",

n \n||7

" >>>neighbors ((1,2))\n",

" [(2, 2), (0, 2), (0, 3), (1, 3), (1, 1), (2, 1)]\n",

n \H\n\u\nu7

n X = p[O]\n",

" y — p[l]\n"’

" return list (filter (lambda c¢: c¢[0] >= 0 and c[0] <= 4—c|[1]
and C[l] >= 0 and C[l] < 5» [(erlvy) 7(X71:Y)7(X717Y+1)7(X7y+1)
7(X7y_1)7(X+17y_1)]))\n”1

ll\n"’

"def ispeg(p,b):\n",

n \"\"\"\n”,

" p = point (x,y)\n",

" b = board in the form
[[7*7’7*7,7*777*7,7*7],[7*7,7*777*7,7*7]7[7* ,*77’*7]7 [
0 A",

[N

Returns true if the point is a ’x’ peg\n",
n \"\"\"\n",
" return [(x,y) for x,y in filter (lambda c: blc[1]][c[0]] =
’*’7 p)]\n”7
ll\n"’
"def valid moves(b):\n",
" \u\n_u\nu7
" b = board in the form
[[7*777*7”*777*777*7]7[7*77’*777*777*7]’[7*7y7*7*1]7 [
7*77»*7 7[7.7]]\11"’
n \n||7
" Returns a list of valid moves on the board. Moves are in
the tuple form (peg to move, peg to remove, peg to land on)\n",
" where each of those is points in tuple form ((x,y),(x1,yl)
((x2,y2))\n",
n \n||7
" >>>valid _moves(board in the form
[[1*7 7*7,1*7 7*7’7*7]’[7*7’7*777*177*7]7[7* , 777*1]7 [
el e
'(\"7"\2):| (0, 3), (0, 4], [(2, 2), (L, 3), (0, 4)]]\n",
n b
moves=[]\n",
or y in range(len(b)):\n",
for x in range(len(b[y])):\n",
" if bly][x] '= ’%7:\n",
continue\n",

)
)

-+

p = (x,y)\n",

n = neighbors(p)\n",
pn = ispeg(n,b)\n",
for m in pn:\n",

" nx = 0\n",

ny = 0 \n",

1 if m[0]==p[0]:\n",
nx=m[0]\n",

" if m[0] < p[0]:\n"

132

nx=m|[0] —1\n",
" if m[0] > p[0]:\n",
" nx=m|[0|+1\n",

i om[1]=—p[1]:\n",
ny=m[1]\n",

" if m[1] < p[1]:\n",

ny=m[1l] —1\n",

" if m[1] > p[1]:\n",

" ny=m|[1l]|+1\n",

"\n"’

" if (nx < 0 or ny < 0) or ((nx,ny) not in
neighbors(m)) or b[ny|[nx] = ’%7:\n",

" continue\n",

n n",
||\

n
"\n"’
"def move(m,b):\n",

n \"\"\"\n",

" m = Move to be made in the form ((x,y),(x1,yl),(x2,y2))\n

moves . append ([p,m, (nx,ny)]) \n" |
return moves\n",

" b = board\n",

}%I;tllrns a new board instance with the move made.\n",

n \"\H\"\rl”7

nb = copy.deepcopy(b)\n",

" nb [m[O][T]][m[O][0]] = *."\n",

" ob[m[1][1]][m[1][0]] = "."\n",

" ob[m[2][1]][m[2][0]] = *x"\n",
return nb\n",

ll\n"’

"\n",

"def pegcount(b):\n",

" \"\"\"\nﬂ’

" b = board\n",

" \Il",

Returns the number of pegs on the board.\n",
n \"\"\"\n",

return sum(x.count(\"*\") for x in b)\t\n",
"\n"’

"def gen tree(b):\n",
n \u\f\u\nu7
" b = Board\n",
" \nu7
Returns a reference to a root node of a tree of all
possible moves. \n",
Nodes are in dict form:\n",
" Node {\n",
" board :b\n",
valid moves:[|\n",
" children:[]\n",
" Nn",
Children of a node are references to nodes with the parent
moves made on their board and so on.\n",
n \"\ll\"\rlﬂ7
" n={\"board\":b}\n",

133

" n[\"valid moves\"| = valid moves(n[\"board\"|)\n",
""\ , n[\"children\"] = []\n",

" 7for m in n[\"valid moves\"]:\n",

" child = gen tree(move(m,b))\n",

" child [\ "move\"|] = [m]\n",

" n[\" children\"].append(child)\n",

u\nn,

J

)

return n"

}
{

"cell type": "markdown",

"metadata": {},

"source": |

"Generating the tree takes up most of the time — I average

around 55 seconds. This is mainly due to me copying the board
every move."

J
} ’
{

"cell type": "code",

"execution_count": 77,

"metadata": {

"collapsed": false

}7

"outputs": |

{

"name": "stdout",
"output type": "stream",
"text": |

"It took 58.63520812988281 seconds to generate the tree of
moves\n"

]
}
] b
"source": |
"import time\n",
"\n” s

"s = time.time()\n",
"root = gen_ tree(problem board)\n",
"gentime = time.time()—s\n",

ll\n"’

"print (\"It took {} seconds to generate the tree of moves\".
format (gentime))"

]

}7

{

"cell type": "markdown",

"metadata": {},

"source": |

"Here is my depth—first search. Without a specific goal in mind
, my search returns a dictionary containing a lot of
information found along the way. I keep track of end games
found, the moves to reach them, and also tally them based on
the number of pegs left."

134

})
{

"cell type": "code",
"execution_count": 78,
"metadata": {
"collapsed ": true

}7

"outputs": [],
"source": |

"def dfs(root):\n",

root [\" children\"|\n",

" results = {\"info\":{}}\n",

paths — {}\n",

n \nu7

" while stack:\n",

node = stack.pop()\n",

n \1’1",

" children = node[\" children\"]\n",

for ¢ in children:\n",

" c[\"move\"]= node|[\"move\"|+c[\"move\"]\n"
n \nu,

" if not children:\n",

¢ = pegcount (node|’board ’|)\n",

" if ¢ not in results[\"info\"]:\n",
" results[\"info\"][c] =0 \n",
" paths[c] = [J\n",

" results[\"info\"|[c] += 1\n",
paths[c].append(node[\"move\"])\n",
" \nn,

" stack.extend (children)\n",

n \nu’

results [’paths’] = paths\n",

return results"

J
} ’
{

"cell type": "markdown",

"metadata": {},

"source": |

"My breadth—first search is the same code with the stack
exchanged for a queue. I’'m using python’s collection library
because a default list ’s method of pop(0) is not as efficient
as deque’s popleft()."

|
} ’
{

"cell type": "code",
"execution count": 79,
"metadata": {
"collapsed ": true

} b

"outputs": [],

"source": |
"from collections import deque\n",
n nll

b

"def bfs(root):\n",

135

n \IIU7
queue = deque(root[\"children\"])\n",
" results = {\"info\":{}}\n",
" paths — {}\n",
n \n",
while queue:\n",
node = queue.popleft ()\n",
\Il",
" children = node[\" children\"]\n",
for ¢ in children:\n",
" c¢[\"move\"]= node[\"move\"]+c[\"move\"]\n",
\n"7
" if not children:\n",
¢ = pegcount (node[’board’])\n",
" if ¢ not in results[\"info\"]:\n",
" results [\"info\"|[c] =0 \n",
" paths[c] = []\n",
" results [\"info \"][c] += 1\n",
paths[c].append(node[\"move\"])\n",

n \n"’

" queue.extend (children)\n",
n \n",

" results [’ paths’] = paths\n",

return results"

]

}7
{
"cell type": "markdown",
"metadata": {},
"source": |
"Running the BFS:"
]
}7
{
"cell type": "code",
"execution count": 80,
"metadata": {
"collapsed ": false
}7
"outputs": |
{
"name": "stdout",
"output type": "stream",
"text " :_[

"Tree generation took 55.356807231903076 seconds.\n",
"The BFS took 3.0062286853790283 seconds.\n",

u\nu7

"Pegs\t\tNumber\n",

" Remaining\t of Games\n",

"
"1\ t\t29760\n",
"2\ t\t139614\n",
"3\ t\t259578\n",
"4\t\t123664\n",
"5\ t\t14844\n",
"6\t\t844\n",
"7\ t\t324\n",

136

}
{

}
{

"8\ t\t2\n"

I)
"Total: \t\t568630\n"
J
}
]7
"source": |
Nt BFS\H",
"import time\n",
"\n",
"s = time.time()\n",
"root = gen tree(problem board)\n",
"gentime = time.time()—s\n",
u\nn,
"s2 = time.time()\n",
"results = dfs(root)\n",
"dfstime = time.time()—s2\n",
n\nn’

"print (\"Tree generation took {} seconds.\".format(gentime))\n

n

"print (\"The BFS took {} seconds.\".format (dfstime))\n",
"\n"’

"print (\"\\nPegs\\t\\tNumber\")\n",

"print (\" Remaining\\t of Games\")\n",

n print(\" \")\nll ,

"for p,n in sorted(results[\"info\"].items()):\n",

" print (\"{}\\t\\t{}\". format (p,n))\n",

”printﬂ" \")\Il",

"print (\"Total: \\t\\t{}\".format(sum(results[\"info \"].values
O

|

"cell type": "markdown",

"metadata": {},

"source": |

"Running the DFS:"
|

K
"cell type": "code",
"execution count": 81,
"metadata": {
"collapsed ": false
}7
"outputs": |
{
"name": "stdout",
"output type": "stream",
"text": |

"Tree generation took 62.894432067871094 seconds.\n",
"The BFS took 2.132901668548584 seconds.\n",

H\n"’

"Pegs\t\tNumber\n",

" Remaining\t of Games\n",

"1\ t\t29760\n",

137

}
{

"2\ t\t139614\n",
"3\ t\t259578\n",
"4\ t\t123664\n",
"5\ t\t14844\n",
"6\ t\t844\n",
"7\ t\t324\n",
"8\ t\t2\n",

n

"Total: \t\t568630\n"

J
}

"source": |

"4 DFS \n",

"import time\n",

ll\nll’

"s = time.time()\n",

"root = gen_ tree(problem board)\n",
"gentime = time.time()—s\n",

"\n"’

"s2 = time.time()\n",

"results = bfs(root)\n",

"bfstime = time.time()—s2\n",

"\n",

"print (\"Tree generation took {} seconds.\".format (gentime))\n
n

"print (\"The BFS took {} seconds.\".format(bfstime))\n",

"\1,1"7

"print (\"\\nPegs\\t\\tNumber\")\n",

"print (\" Remaining\\t of Games\")\n",

”print@" \u)\nu7

"for p,n in sorted(results[\"info\"].items()):\n",
" print (\"{}\\t\\t{}\". format(p,n))\n",

n print(\" ")\n" ,
"print (\" Total: \\t\\t{}\".format(sum(results|[\"info \"].values
]())))"

)

"cell type": "markdown",

"metadata": {},

"source": |

"The time complexity of my queue implementaion is O(VH+E) as the
total time spent looking in the adjacency list is E (the
number of edges) and all of V (vertices) are added to the queue
in constant time. This is the same big O behavior for the DFS.
Push and pop on the stack are constant so there is V nodes
added, and E edges are visited. In my implementation both
algorithms run about the same pace.\n",

n\nn’

"Interestingly , in all the games with 1 peg left not a single
one ends with it in the center of the board (point (1,2)). My
results are in agreement with Keith Wannamaker’s results— he
is a software engineer who published a paper on the number of
games and various endings starting from different positions.<
sup >[2]</sup> "

138

})
{

"cell type": "code",
"execution_count": 86,
"metadata": {
"collapsed ": false

} b

"outputs": [],

"source": |
"for path in results[\"paths\"][1]:\n",
" if path[—-1][-1] = (1,2):\n",

" print (path)\n",
"# No games end in the center"
]
}7
{

"cell type": "markdown",

"metadata": {},

"source": |

"Also in my returned results are the games themselves. Attached
is results.txt which contain all 29760 games ending in one peg
. Below is an example game of a random 1 peg solution."

|
K

}
{

"cell type": "code",
"execution _count": 298,
"metadata": {
"collapsed ": false

} b

"outputs": |

{

"name": "stdout",
"output type": "stream",
"text": |

"Starting position\n",
" ok % ok x\n"
"ok ok ok x\n",
* & x\n",
n
K

)

n
n
n .\n"

"Move (2, 2) to (0, 4) and remove (1, 3)\n",
" % % k x\n",

* % % x\n",

"Move (0, 2) to (2, 2) and remove (1, 2)\n",
" % % % x\n"
* % % x\n",
n . . *\Il”,
n * .\n"7

*\n",

"Move (0, 4) to (0, 2) and remove (0, 3)\n",
" % % k x\n",

"k ox % x\n"

* .ox\n",

)

)
n

139

"Move (0, 1) to

"« % % % x\n",

"Move (3, 0) to

£ % % . #\n",
n *) . n”
n * \>1H ’
. b
n * *\n" s

n .\n"
"Move (2, 0) to

"s % . . x\n",
n n“
k)

n * % '\n"7
n * *\nll’
n .\n"7
"Move (1, 3) to
"x % . . #\n",
n * . n||
n * . >1”77
n * \n"

b

* % . . *x\n",

". * *\H",
n * ‘\n||7
n * . . n"
n \>1" ’

. b
n '\n"7
"Move (0, 2) to
"% ok . #\n",

A\n
"Move (1, 0) to
. * *\n",
noo .\Il",

0)

and

and

and

and

and

and

and

and

and

and

remove

remove

remove

remove

remove

remove

remove

remove

remove

remove

140

1)\n||

0)\11"

J
}

"source": |

"b = problem board\n",

"print (\" Starting position\")\n",

"print board(b)\n",

"for m in results|[\"paths\"][1][0]:\n",

" b = move(m,b)\n",

" print (\"Move {} to {} and remove {}\".format(m[O0],m[2],m
[1]))\n",

" print board(b)"

|

})
{

"cell type": "markdown",

"metadata": {},

"source": |

"More interesting I find is the worst—case senario from the
starting position. There are only two \"solutions\" that end
with 8 pegs and end in the same position. For example:"

|
})
{

"cell type": "code",
"execution count": 85,
"metadata": {
"collapsed ": false

} k)

"outputs": |

"name": "stdout",
"output type": "stream",
"text": |

"Starting position\n",
" % % k x\n",

"k ox % x\n"
* % x\n",
* x\n",

n .\n"7
"Move (0, 2) to (0, 4) and remove (0, 3)\n",
"x % % x x\n",
* % x x\n",
* x\n",
n . * nll,
n *\I\l"7
"Move (2, 0) to (0, 2) and remove (1, 1)\n",
£ % . ok x\n",
"k . ox x\n",
* & x\n",
n . *\n"7
n *\n",

)
n

n

n

141

"Move (3, 1) to (1, 1) and remove (2, 1)\n",

"x % * *\n",
LI An"
"% ok #\n"

n *\n"

n *\n"
"Move (0, 1) to (2, 1) and remove (1, 1)\n",
" % * *\n",
n * .\n||7
" % % x\n",
n * nll,

n *\I\l"

"Move (2, 2) to (2, 0) and remove (2, 1)\n",
" % % k x\n",

n \n||7
* % . \n"
n A * Il",
n *\I\l",
"Move (0, 4) to (2, 2) and remove (1, 3)\n",
" % % k x\n",

n \ n "
Ce e)
n

)

J
}
] bl

"source":

"b = problem board\n",

"print (\" Starting position\")\n",

"print board(b)\n",

"for m in results[\"paths\"|[8][0]:\n",

" b = move(m,b)\n",

" print (\"Move {} to {} and remove {}\".format(m[0]| ,m[2],m
[1))\n",

" print_board(b)"

|

)

}
{

"cell type": "markdown",
"metadata": {},
"source ":

"## Question 3\n",
"\1,1"7

n\nn’

"The task of finding a given string from a collection of
strings can be\n",

"solved by algorithms that fit into several paradigms,
including brute\n",

"force and (if the list is sorted) divide—and—conquer.\n",
"\1,1"7

" % Given an example of an algorithm that fits each of these\n

n
)

descriptions , and describe their O() behavior.\n",

ll\n"’

" % Can you come up with a third algorithm design technique
that can be\n",

142

}
{

" applied to this problem, a representative algorithm , and its

o()\n",
" behavior?\n",
ll\n" s

"(You don’t need to code these — just discuss what’s going on.)
n

]

b

"cell type": "markdown",

"metadata": {

"collapsed ": true

}7

"source": |

"In string matching the most basic approach is bruteforcing— a

variation on sequential searching. With N being the search
space or collection of strings, and M being pattern to look for
, bruteforcing works as follows: \n",

"\n",

"For each character in N, compare it to the first character of
M. If they don’t match, you move forward a character in N. If
the two characters match, then continue matching the next
character of N and M. You continue this search pattern until
you find M within N or not at all.\n",

n\nn’

"Bruteforcing is quite slow, and the time complexity is O(NxM)
as you compare each element of N agaisnt M. One way to improve
runtime might be preprocessing the list to be sorted in some
desired way.^[4]\n",

"\Il",

"If the search space is already sorted, a binary search would
be an optimal divide—and—conquer algorithm. Given a sorted
search space N, a binary search first compares the middle
element of N with search pattern M. If the pattern matches the
middle element, its position is returned. If the pattern is
less than the middle value, the process is repeated on the
lower half of the search space until found. If the pattern is
greater than the middle value, the process is repeated on the
upperhalf. Since each comparison in the binary search halves
the search space, it is easy to assert that the time complexity
is a logarithm: O(log(N)).^[5]\n",

"\n",

"Greedy algorithms are another paradigm of pattern matching
algorithms. An aglorthm behind some of the fastest search
algorithms out there is the Boyer—Moore algorithm. In the
vanilla Boyer—Moore algorithm you search for occurrences of the
pattern M in the set N by performing explicit character
comparisons at different alignments. Unlike in bruteforcing,
you skip as many alignments as possible using heuristic
information from preprocessing the set. The shifts are
calculated on two rules: the good—suffix shift and the bad—
character shift. Preprocessing the set takes O(N) time but the
searching happens in O(N«M). I’ve included the Boyer—Moore
algorithm in the greedy algorithm catergory but it sort of
lives in limbo between greedy and bruteforce. It uses heuristic
information like a greedy algorithm , but pure greedy
algorithms usually return a suboptimal solution.^{|[6]}<

143

sup >|[7]</sup>"
}7
{

"cell type": "markdown",

"metadata": {},

"source": |

"## Question 4\n",

n\nn’

"You’re given a list of N names and told that you’ll need to
search\n",

"the list for a given name M times. The following are
suggested:\n",

”\n”’

using a hash table\n",

using a heap\n",

sequential search\n",

sorting followed by binary search\n",

* %X ¥ ¥

"\n",
"Discuss the time efficiency of these approaches as the size of
N\n”,
"and M vary. Which one would you suggest and why? Would your
answer\n",
"change if you needed to change the list of names by adding and
\n"7
"deleting names (say, P times) between searches? \n"

]

}7

"cell type": "markdown",

"metadata": {},

"source": |

"A hash table would be the best solution— even more so if you

wanted to add or delete names. Search, insertion, and deletion
operatons all happen in constant time. The only constraint
would be picking a good hash function that provides a uniform
distribution of hashes. The less uniform it is, the more you
need to compensate for collisions with execution time.\n",
"\l’l",

"Sorting the array and using a binary search would leave you
with a binary tree as search, insertion, and deletion operatons
would happen in O(log(N)) time. Although a hastable is a
faster implementation for the problem at hand, it fails for
relative searchs— things like the \"next smallest\" or \"one
greater than\". The binary search tree would provide this
relation —type information.\n",

u\nn,

"My second choice would be a heap. The structure is tree—like
similar to binary search tree except nodes must be ordered
either greatest to least or least to greatest. Insertion and
deletion happens in O(long(N)) but finding the min or max would
be constant time. Again, this is not relavant to the problem
but is a benefit over the binary search tree.\n",

u\nn,

"A sequential search (as talked about in question 3) would be
my last resot option. Insertion, deletion, and search would all
be O(N)."

144

|
}

I

"metadata": {
"kernelspec": {
"display name": "Python 3",
"language": "python",
"name": "python3"

}7

"language info": {
"codemirror mode": {
"name": "ipython",
"version": 3

}

k)
ile _extension

n ll: ||.py" R
"mimetype": "text/x—python",
"name": "python",
"nbconvert exporter": "python",
"pygments lexer": "ipython3",
"version": "3.6.0"
}

I

"nbformat": 4,

"nbformat minor": 2

145

Programming Languages Exam

fraction sum search.c

/*

fraction sum search.c

DESC:

A brute—force solution to the problem: what permutation of the

digits from 1 to 9 will add to 1 when arranged in a form
similar to 1/23 4+ 4/56 + 7/89 7

RUN:

$ gcc fraction_sum_search.c —o fss
$./fss

5/34 + 7/68 + 9/12 =1

5/34 + 9/12 + 7/68 =1

7/68 + 5/34 + 9/12 =1

7/68 + 9/12 + 5/34 =1

9/12 + 5/34 + 7/68 =1

9/12 + 7/68 + 5/34 = 1

Execution time: 0.018168 seconds
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define ARRAY LEN 9

unsigned cc(unsigned x, unsigned y) {
unsigned pow = 10;
while (y >= pow){ pow x= 10; }
return x * pow + y;

}

void swap(int *x, int =xy){
io(x 1= y) {

*X = *Yy;
*y "= *X;
*X T= xy;

void printArray(int array|[]){
for (int i 0; i < ARRAY LEN; -++i){
printf("%i", arrayl[i]);

printf("\n");

}

146

void pp(int a]){
printf("%i/%i%i + %i/%i%i + %i/%i%i = 1\n", a[0], a[l], a[2], a
[3], a[4], a[5], a[6], a[7], a[8]);

int testArray(int al]

if ((float)a[0]/cc(

61/ cc (al7],al8))
return ;

}

return 0;

)
all]

1 i:)1{[2])Jr(float)a[3]/cc(a[4] ,al5])+(float)a

}

void permute(int *array,int i,int length) {

if (length =— 1){
if (testArray (array)==1){
pp(array);

}

int j = i;

for (j = 1i; j < length; j++) {
swap (array-i ,array+j);
permute (array ,i+1,length);
swap (array-i,array+j);

}
}

int main(int argc, char const xargv[]){

clock_t begin,end;

double time spent;

int digits [ARRAY LEN];

begin = clock ();

for (int i = 0; i < ARRAY LEN; 4+i){
digits[i] = i+1;
permute(digits , 0, ARRAY LEN);
end = clock();

printf (" Execution time: %f seconds\n", (double)(end — begin) /
CLOCKS_PER_SEC) ;

return 0;

147

fraction sum _search.js

/%

fraction sum search.js

DESC:

A brute—force solution to the problem: what permutation of the

digits from 1 to 9 will add to 1 when arranged in a form
similar to 1/23 4 4/56 + 7/89 7

RUN::

nodejs fraction sum search.js
[5, 3, 4, 7,6, 8,9, 1, 2]
[57 37 47 97 17 27 77 67 8]
[7, 6, 8 5, 3, 4,9, 1, 2]
[77 67 87 97 17 27 57 37 4]
[9,1,2,5,3,4,7,6, 8]
[9,1,2,7,6,8,5,3,4]
Execution time: 703ms

*/

var permArr = [],usedChars = [];

function permute(input) {

var i, ch;

for (i = 0; i < input.length; i++) {
ch = input.splice(i, 1)[0];
usedChars . push(ch);
if (input.length =— 0) {

permArr. push (usedChars. slice ());

}
permute (input) ;
input.splice(i, 0, ch);
usedChars.pop () ;

}

return permArr

function cc(x,y) {
return x*x10+y;

}

console.time (" Execution time");

var a = [];

for (var 1 = 1; i <= 9; i++) {
a.push(i);

}

perms = permute(a);

for (var i = 0; i < perms.length; i++) {

148

if (perms|[i][0]/cc(perms|[i][1l],perms|[i]|[2])+perms|[i][3]/cc(perms]|
i][4] ,perms[i][5])+perms[i][6]/cc(perms[i][T7],perms[i][8])==1){
console.log(perms|[i])
}
}

console.timeEnd (" Execution time");

149

fraction sum search functional.py

nmnn

fraction sum search functional.py
DESC:
A brute—force solution to the problem: what permutation of the

digits from 1 to 9 will add to 1 when arranged in a form
similar to 1/23 4 4/56 + 7/89 7

RUN:

$ python3 fraction sum search functional.py
[((5, 3, 4, 7,6, 8,9, 1, 2),

(5, 3,4, 9,1, 2, 7, 6, 8),

(77 67 87 57 37 47 97 17 2)7

(r, 6, 8, 9, 1, 2, 5, 3, 4),

(97 17 27 57 37 47 77 67 8)7

(9, 1,2, 7,6, 8,5, 3, 4)]

Execution time: 0.6779532432556152

nmnn

import itertools
import time

def cc(x,y):
return xx10+y

def check(p):
return float (p[0]) /cc(p[l],p[2])+float (p[3])/cc(p[4],p[5])+float (
p[6])/cc(p[7],p[8])==1

t = time.time ()

print (list (filter (lambda x: check(x),list (itertools.permutations(
range (1,10))))))

print ("Execution time: {}".format (time.time()—t))

150

fraction sum search imperative.py

nmnn

fraction sum search imperative.py
DESC:

A brute—force solution to the problem: what permutation of the
digits from 1 to 9 will add to 1 when arranged in a form
similar to 1/23 + 4/56 + 7/89 ?

RUN:

$ python3 fraction sum _search imperative.py
(5, 3, 4, 7,6, 8, 9,1, 2)

(5, 3, 4, 9,1, 2, 7, 6, 8)

(7, 6, 8, 5, 3, 4, 9, 1, 2)

(7, 6, 8, 9, 1, 2, 5, 3, 4)

(9, 1, 2, 5, 3, 4, 7, 6, 8)

(9, 1, 2, 7,6, 8,5, 3, 4)

Execution time 0.6378731727600098 seconds.

nmnn

import itertools
import math
import time

def cc(x, y):
return xx10+y

digits = range(1,10)
perms = list (itertools.permutations(digits))
t = time.time ()
for p in perms:
if (float(p[0])/cc(p[1l],p[2])+float(p[3])/cc(p[4],p[5])+float (p
[6]) /cc(p[7].p[8])==1):
print ("{}".format (p))

print ("Execution time {} seconds.".format (time.time()—t))

151

fraction sum _search OOP.py

import itertools
import time

class Permuter (object):
"""docstring for ClassName
def init (self, r):

nnn

super (Permuter, self). init ()
self.r = r
self .p = itertools.permutations(self.r)

def next(self):
return self.p.next ()

def perms(self):
return self.p

def listAll(self):
return list (itertools.permutations(self.r))

def cc(x, y):
return xx10+y

t = time.time ()
p = Permuter(range(1,10))
results = []

for 1 in p.listAll(

)
if (float (1[0])/cc(1[1],1[2])+float(1[3])/cc(1[4],1[5])+float (]
[6]) /cc(1[7],1[8])==1):
results.append (1)
print (results)
print ("Execution time {} seconds.".format (time.time()—t))

152

network graph.py

import argparse, sys

from urllib.error import URLError

from urllib.parse import urlparse ,urljoin
from urllib.request import urlopen

from html. parser import HTMLParser
import gzip

import zlib

from io import BytesIO

def validate wurl(url):
p = urlparse(url)
return True if all ([p.scheme, p.netloc]) and p.scheme != ’mailto’
else False

class LinkParser (HTMLParser) :
def _ init_ (self):

HTMLParser. __init__ (self)
self.links = []

def handle starttag(self, tag, attrs):

if tag != ’a’:
return

attr = dict (attrs)

try:

self.links.append(attr[" href"])
except KeyError:
return

def feed(self, data):
self .output = []
HTMLParser. feed (self , data)
return self.links

def decode content body(data, encoding):

if encoding =— ’identity ’:
text = data
elif encoding in (’gzip’, ’'x—gzip’):

io = BytesIO (data)
with gzip.GzipFile(fileobj=io) as f:

text f.read ()
elif encoding = ’deflate ’:
try:
text zlib .decompress(data)

except zlib.error:
text = zlib.decompress(data, —zlib .MAX WBITS)
else:
return None

return text

def process wurl(url):
parser = LinkParser ()

try:

153

res urlopen (url)
except URLError:
return None

content encoding = res.headers.get (’Content—Encoding’, ’identity

)

res_body plain = decode_content_ body(res.read (), content_ encoding

)

if not res body plain:
return None

links parser . feed (res_body plain.decode (" utf—8"))

for i in range(len(links)):
if links[i] is None:
del links|[i]
if validate wurl(links[i]) == False:
links[i] = urljoin(url, links[i])

return links

def main(args):

visited = []
nodes={}
links process _url(args.hostname)

total = int(args.n);

while (total and links):
link = links.pop(0)
total —=

cur _netloc = urlparse(link)[1]

if cur netloc and cur_ netloc not in nodes:
nodes[cur netloc| = |[]

print (" Visiting #{}: {}".format(total ,link))
if (link not in visited):
visited .append(link)
more links = process url(link)
if more links is not None:
print (" Urls {} found. The queue is now: {}".format (len (
more links) ,len(links)))
for new_ link in more links:
if new link not in visited:
links .append (new _link)
new netloc = (urlparse(new_ link) [1])
if new netloc and new netloc != cur_ netloc and
new netloc not in nodes|[cur netloc]:
nodes [cur_netloc|.append(new netloc)

154

Dot file
f = open(’network graph.dot’,
f.write(’digraph G {\n’)
f.write(’graph [splines=ortho, nodesep=1, rankdir = "TB"|\n’)
for node,connected in nodes.items():

for ¢ in connected:

if ¢ in nodes:
if node in nodes|c]|:
f.write(""{}" — "{}";\n’. format (node,c))

f.write(’}\n”)

’W’)

f.close ()
print (total)
return
if name == ' main ’:
parser = argparse.ArgumentParser(description = ’Network Graph’)

parser.add argument(’hostname’, help="The website URL from which
to spidering.’)

parser .add argument(’—n’, metavar="N’, type=int, help="Number
of urls to parse from the queue’,default=200)

args = parser.parse_args()

if validate wurl(args.hostname) = False:
parser .print help ()
sys.exit ()

main (args)
""" python3 network graph.py http://cs.marlboro.edu && dot
network graph.dot —Tpng —o output.png && eog —f output.png

nnn

155

network graph.dot

digraph G {

graph [splines=ortho, nodesep=1, rankdir = "TB"]|
"minds. marlboro.edu" —> "www.marlboro.edu";
"cs.marlboro.edu" —> "www.marlboro.edu";
"cs.marlboro.edu" —> "nook.marlboro.edu";
"cs.marlboro.edu" —> "akbar.marlboro.edu";
"courses . marlboro.edu" —> "www.marlboro.edu";
"courses.marlboro.edu" —> "nook.marlboro.edu";
"nook . marlboro.edu" —> "courses.marlboro.edu";
"nook . marlboro.edu" —> "www.marlboro.edu";

"nook . marlboro.edu" —> "cs.marlboro.edu";

"www. marlboro.edu" —> "marlboro.askadmissions.net";
"www. marlboro.edu" —> "minds.marlboro.edu";

"www. marlboro.edu" —> "nook.marlboro.edu";

"www. marlboro.edu" —> "marlboro.us2.list —manage.com";
"www. marlboro.edu" —> "www.youtube.com";

"www. marlboro.edu" —> "cs.marlboro.edu";

"www. marlboro.edu" —> "courses.marlboro.edu";

"www. marlboro.edu" —> "akbar.marlboro.edu";
"marlboro.askadmissions.net" —> "www.marlboro.edu";
"akbar.marlboro.edu" —> "cs.marlboro.edu";
"akbar.marlboro.edu" —> "www.marlboro.edu";

"www.youtube.com" —> "www.marlboro.edu";
"marlboro.us2.list —manage.com" —> "www.marlboro.edu";

}

156

	Acknowledgements
	Foreword
	Modifying a Process on Linux
	Introduction
	DLL Injection
	GDB
	PTRACE
	Adding a System Call
	Linux Kernel Modules
	Writing and Reading Process Memory

	Boan: an HTTP(S) MitM Proxy
	Background
	How Boan Works
	Results
	Moving Forward

	Examinations
	Programming Languages
	Algorithms

	References
	Code Appendix
	ctf.c
	externalhack.c
	flag.c
	flag2.c
	inspectprintf.c
	lkm.c
	printfecho.c
	ptest.c
	random.c
	target.c
	tracer.c
	unrandom.c
	Boan
	boan.py
	proxy.py
	proxy.py
	setup_https_intercept.sh
	Resources
	about.htm
	about.ui
	g.ui
	settings.ui

	Algorithms Exam
	Programming Languages Exam
	fraction_sum_search.c
	fraction_sum_search.js
	fraction_sum_search_functional.py
	fraction_sum_search_imperative.py
	fraction_sum_search_OOP.py
	network_graph.py
	network_graph.dot

